Universiti Teknologi Malaysia Institutional Repository

Identification of ground vehicle's aerodynamic derivatives using neural network

Ramli, Nabilah (2008) Identification of ground vehicle's aerodynamic derivatives using neural network. Masters thesis, Universiti Teknologi Malaysia, Faculty of Mechanical Engineering.

[img] PDF
Restricted to Repository staff only

[img] PDF (Abstract)
[img] PDF (Table Of Content)
[img] PDF (1st Chapter)


Stability of a ground vehicle is dependent on its aerodynamic characteristics when encountered by sudden crosswind disturbances. Aerodynamic side force and yaw moment have been identified as the main influence on the sensitivity of a vehicle towards crosswind, which is largely shape related. A reliable identification technique is a prerequisite to estimate the aerodynamic side force and the yaw moment. One of the recent techniques in wind-tunnel testing is the use of a pure yawing motion test rig to simulate the transient behavior of a simple vehicle model in crosswind condition. Adapting the stiffness and damping approach, the lateral aerodynamic derivatives are evaluated from the identified system’s frequency and damping of a pure yawing motion. This research explores the alternative identification technique apart from the conventional method of using a spectral density plot to identify the system’s frequency and the logarithmic decrement of peak amplitude for estimating the system’s damping from a recorded impulse response data. The present study aims to design a multilayer feedforward neural network to carry out the estimation of natural frequency and damping ratio trained with the Bayesian Regularization training algorithm. The network properties studied are necessary to give insight on the optimum network architecture, the suitable input representation and the effect of noise. The possibility of using principal component analysis technique for reducing the network input dimension has also been explored. The results show that the neural network is able to approximate the natural frequency and the damping ratio of an impulse response data and also the ability of the network to handle noisy input data. The application of principal component analysis technique has been shown to reduce the network input dimension while maintaining good estimation results and shortening the network training period. This study demonstrates that the identification of the frequency and the damping of the system can be done using neural network and can be applied to any other similar systems.

Item Type:Thesis (Masters)
Additional Information:Thesis (Sarjana Kejuruteraan (Mekanikal)) - Universiti Teknologi Malaysia, 2008; Supervisor : Dr. Hishamuddin bin Jamaluddin
Uncontrolled Keywords:ground vehicle, aerodynamic side force, aerodynamic characteristics, yaw moment
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:6942
Deposited By: Mr Mohd Shukri Ramli
Deposited On:27 Nov 2008 12:46
Last Modified:11 Sep 2012 09:52

Repository Staff Only: item control page