THE DEVELOPMENT OF MICROWAVE ABSORBER FROM OIL PALM SHELL CARBON

AHMAD ANAS YUSOF

A thesis submitted in fulfillment of the requirements for the award of the degree of Master in Mechanical Engineering

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

SEPTEMBER, 2004

Dedicated to my beloved wife and family..... For the understanding and moral support throughout the years......

ACKNOWLEDGEMENT

Firstly, I would like to take this opportunity to express my deepest gratitude to my project supervisor, Professor Ir. Dr. Farid Nasir Hj Ani from the Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), for his support, confidence and guidance towards completing this thesis.

I would like to express greatest thankfulness to Prof Madya Dr. Wan Khairudin, who has given advice and suggestion that contributed into the aspect of microwave characterization throughout the completion of this project. I would also like to thank Prof. Dr. Tharek Abdul Rahman from Faculty of Electrical Engineering for his support in further evaluation on the microwave reflectivity measurement. Besides, I would like to express my deepest gratitude and appreciation to the Human Resource Development Unit of KUTKM for the sponsors throughout my studies.

In particular, I would like to express my sincere thanks to Mr Adil, research officer at Wireless Communication Research Laboratory for the time spent in supervising the measurement, to Mr Wong and Muhammad for their assistance in analysing the material, to all my friends, to my beloved wife and my family for their moral support in completing this assignment.

ABSTRACT

A method for reducing palm shell residues has been investigated. Using pyrolysis technique, the residues are transformed into carbons, which are later used as a lossy elements in microwave absorber application. The microwave properties of permittivity, (ε), loss tangent, (tan δ) and absorption performance of microwave absorber utilizing palm shell carbon mixed with unsaturated polyester resin were studied in the microwave region of 8 to 12 GHz (X-band). The measurement of (ε) and (tan δ) emphasize on the influence of carbon concentration (mass %) and pyrolysis temperature in the production of the carbon. It was found out that by increasing carbon pyrolysis temperature, an increase in (ε) and (tan δ) had been observed. The increase of carbon concentration inside each measured sample also influenced the increase of (ε) and (tan δ) condition. The optimum (tan δ) was found by using 30% carbon pyrolysed at 800°C temperature, suggesting significant contribution in dielectric loss properties of the material. The preparation of microwave absorber by utilizing 30% mass concentration of palm shell carbon mixed with unsaturated polyester resin had been tested for microwave absorption. The amplitude of the absorption was relatively measured to a metal plate reference, which resulted in a various microwave absorption with respect to the thickness of the absorber. Moderate microwave absorption around - 10 dB was achieved for most samples within the same frequency band, with maximum absorption of - 30 dB for a thickness up to 75 mm. All the data indicates the possibility of using pyrolysed carbon derived from palm shell residues in providing an affordable solution for microwave technology as well as an alternative in managing the increase of the residues throughout the country.

ABSTRAK

Satu kaedah untuk mengurangkan sisa kelapa sawit kepada bahan berguna telah dikaji. Melalui proses pirolisis, sisa buangan tersebut diubah kepada karbon, yang kemudiannya digunakan sebagai elemen kehilangan dalam aplikasi penyerap gelombang mikro. Sifat gelombang mikro seperti kebertelusan, (ε), tangen kehilangan, (tan δ) dan prestasi penyerapan penyerap gelombang mikro menggunakan campuran karbon kelapa sawit dan resin polyester telah dikaji pada frekuensi 8 hingga 12 GHz. (X-band). Pengukuran nilai (ε) dan (tan δ) menekankan kepada pengaruh kandungan karbon (jisim %) dan suhu pirolisis kepada penghasilan karbon. Pemerhatian mendapati dengan penambahan suhu pirolisis, satu peningkatan dalam nilai (ε) dan (tan δ) telah didapati. Peningkatan kepada kandungan karbon di dalam setiap sampel juga mempengaruhi peningkatan (ε) dan (tan δ). Nilai optimum (tan δ) telah didapati pada kandungan 30% karbon yang dihasilkan pada suhu 800°C, yang memberi sumbangan besar terhadap sifat kehilangan dielektrik bahan. Penyediaan penyerap gelombang mikro dengan mengunakan 30% kandungan karbon kelapa sawit dicampur dengan resin polyester telah diuji untuk penyerapan gelombang mikro. Amplitud penyerapan diukur secara relatif kepada plat logam rujukan, yang menghasilkan pelbagai kesan penyerapan gelombang dari aspek ketebalan penyerap. Penyerapan gelombang mikro yang sederhana sekitar - 10dB diperolehi untuk semua sampel pada jalur frekuensi yang sama, dengan penyerapan maksimum -30dB pada ketebalan menjangkau 75 mm. Semua data menunjukkan potensi penggunaan karbon yang dihasilkan dari sisa kelapa sawit dalam menyediakan penyelesaian mudah kepada teknologi gelombang mikro selain daripada menjadi alternatif dalam menguruskan peningkatan sisa tersebut di seluruh negara.

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	xix

I INTRODUCTION.

1.1	General Background	1
1.2	Oil Palm biomass production in Malaysia	3
1.3	Processing Biomass Residues into Renewable Resources	4
1.4	The Recycling of Oil Palm Biomass	6
	1.4.1 Fibreboard	6
	1.4.2 Pulp and Paper	7
	1.4.3 Fuels	7
	1.4.4 Carbon	8

	1.4.5 Chemicals	9
	1.4.6 Tar	10
1.5	Potentials in Microwave Absorber Application	10
1.6	Objectives and Scope of the Research.	12
	1.6.1 Objectives of The Research	12
	1.6.2 Scopes of The Research	13
1.7	Thesis Over view	14
1.8	Limitation of the Study	15

II THE SIGNIFICANT OF CARBON IN MICROWAVE TECHNOLOGY

2.1	Introduction		16
2.2	Micro	wave Properties for Absorbing Materials.	18
	2.2.1	Permittivity	18
	2.2.2	Loss Tangent	19
	2.2.3	Loss Mechanism in Microwave Absorption.	20
2.3	Basic	Component of Microwave Absorber.	22
	2.3.1	Matrixes for Microwave absorber.	22
		2.3.1.1 Elastomer	23
		2.3.1.2 Resin	23
		2.3.1.3 Foam and Honeycombs	24
	2.3.2	Fillers for Microwave absorber.	24
		2.3.2.1 Ferrite	25
		2.3.2.2 Carbon.	25
2.4	Princi	ples of Microwave Absorber Operation.	27
	2.4.1	Single Layer Absorber.	27
	2.4.2	Multilayers Absorber.	30
	2.4.3	Other types of Microwave Absorber principles.	30
2.5	Samp	les measurements using Microwave	
	Chara	cterization and Free Space Test.	32

2.5.1	Microwave Characterization	33
2.5.2	Free Space Technique	34

III PHYSICAL AND MICROWAVE CHARACTERIZATION

2.6.2	Introduction.	36
	2.6.1.1 Pyrolysis Temperature	37
	2.6.1.1 Carbon Concentration	38
2.6.2	Physical Characterization	39
	2.6.1.1 Procedure in Sample Preparation.	40
2.6.2	Some Theories on Physical Characterization of	
	Carbon using Nitrogen Adsorption Analysis	42
2.6.2	Microwave Characterization	45
	2.6.1.1 Procedures in Sample Preparation.	45
2.6.2	Some Theories on Microwave Characterization	
	of Carbon using Nitrogen Adsorption Analysis	48
	2.6.1.1 Mathematical Theories in Lossless	
	Transmission Line (Medium 1)	48
	2.6.1.1 Mathematical Theories in Sample	
	(Medium 2)	50
2.6.2	Calculation on Measured Properties in Microwave	
	Characterization	51
	2.6.1.1 Permittivity	51
	2.6.1.1 Loss Tangent	53
2.6.2	Description on Microwave Characterization	
	Equipment	55
2.6.2	Experimental Results	57
	2.6.1.1 Microwave properties of Pure Polyester Resin	57
	2.6.1.1 Effect of Carbon Concentrations on	
	Microwave Properties using Palm Shell	
	Carbon pyrolysed at 600°C.	59
	2.6.1.1 Effect of Carbon Concentrations on	

Microwave Properties using Palm Shell	
Carbon pyrolysed at 700°C.	62
2.6.1.1 Effect of Carbon Concentrations on	
Microwave Properties using Palm Shell	
Carbon pyrolysed at 800°C.	65
2.6.1.1 Effect of Pyrolysis Temperature and Carbon	
Concentration over Electrical Properties.	68
2.6.1.1 Effect of Pyrolysis Temperature over	
Physical Properties.	69

IV FREE SPACE REFLECTIVITY MEASUREMENT

3.8	Introduction	71
3.8	Sample Preparation.	72
3.8	Basic Concept on Free Space Reflectivity Measurement.	75
3.8	Experimental Setup	77
	3.8.1 Microwave Analyser.	77
	3.8.1 Horn Antenna Arrangement.	78
3.8	Experimental Results.	80

V RESEARCH ANALYSIS

5.1	The Influence of Carbon Concentration.	85
5.2	The Influence of Microwave Frequency.	86
5.3	The Influence of Pyrolysis Temperature.	87
5.4	The Influence of Physical Thickness.	88

VI CONCLUSION AND SUGGESTION.

6.1	Conclusion.	91
6.2	Recommendation for Future Works.	95
REFERENCES		97

APPENDICES A – L	106

LIST OF TABLES

	TABLE	TITLE	PAGE
1.1	Oil Palm residues an	d by-products in 1997	3
2.1	Microwave bands.		17
2.2	Classification of mic	crowave measurement based on	
	their objectives and	measurement methods.	33
3.1	Samples preparation	based on pyrolysis temperature (°C)	
	and carbon concentr	ation (%).	39
3.2	Literature on ϵ'_r and	tan δ of unsaturated polyester resin	
	at 10 GHz		57
3.3	Results of measured	ε'_{r} and <i>tan</i> δ of unsaturated	
	polyester resin at X-	Band frequencies.	58
3.4	Results of measured	ε'_{r} and <i>tan</i> δ of samples using pyrolysed	
	carbon at 600°C in X	X-band frequencies.	61
3.5	Results of measured	ε'_{r} and <i>tan</i> δ of samples using pyrolysed	
	carbon at 700°C in X	K-band frequencies.	64
3.6	Results of measured	ε'_{r} and <i>tan</i> δ of samples using pyrolysed	
	carbon at 800°C in X	K-band frequencies.	67
3.7	Surface area of pyro	lysed carbon based on	
	pyrolysis temperatu	re.	69
4.1	Preparation and desc	ription on the prepared sample.	73
5.1	Overall reflection lo	ss characteristic of the	
	measured samples in	X-band frequencies.	90

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	The steps of producing palm oil including biomass	
	by-product and residues such as shells, fibre and sludge	2
1.2	The Structure of Cellulose, $(C_6H_{10}O_5)_n$, which is	
	the primary component in Biomass.	4
2.1	Reflected and incident wave.	20
2.2	Single layer absorber (Salisbury Screen)	28
2.3	Theoretical performance of Salisbury Screen	
	absorber.	23
2.4	Multiple layer absorber (Jaumann layer)	24
2.5	Dallenbach layer	31
2.6	Transmission line technique	33
3.1	The pyrolysed carbon from palm shell. (From left: Palm shell residues,	
	grinded palm shell and pyrolysed carbon.)	40
3.2	The production process of pyrolysed palm shell carbon.	41
3.3	Schematic on pyrolysis production of palm shell carbon.	42
3.4	Physical characterization involving Micromeritic	
	ASAP 2010 unit.	44
3.5	The production process of a carbon-based microwave	
	absorber for microwave characterization.	46
3.6	Samples for microwave characterization.	47
3.7	Sample block dimension, represented by width, a,	
	height, b and the thickness, c, of the sample.	47
3.8	Schematic diagram of standing wave in sample-filled,	

	short-circuited waveguide transmission line.	48
3.9	Basic geometry in measuring resistivity	54
3.10	Microwave characterization using waveguide	
	transmission line setup.	56
3.11	Relative real permittivity ε'_r at different	
	carbon concentrations (%) in X-band frequencies.	
	(Pyrolysed carbon of 600°C)	60
3.12	Loss tangent, tan δ at different	
	carbon concentrations (%) in X-band frequencies.	
	(Pyrolysed carbon of 600°C)	60
3.13	Relative real permittivity ε'_{r} at different	
	carbon concentrations (%) in X-band frequencies.	
	(Pyrolysed carbon of 700°C)	63
3.14	Loss tangent, tan δ at different	
	carbon concentrations (%) in X-band frequencies	
	(Pyrolysed carbon of 700°C)	63
3.15	Relative real permittivity \mathcal{E}_{r} at different	
	carbon concentrations (%) in X-band frequencies.	
	(Pyrolysed carbon of 800°C).	66
3.16	Loss tangent, tan δ at different	
	carbon concentrations (%) in X-band frequencies.	
	(Pyrolysed carbon of 800°C).	66
3.17	Conductivity versus carbon concentration (%) at in	
	polyester resin using pyrolysis carbon at 600°C,700°C	
	and 800°C.	68
4.1	The production process of a microwave absorber for free	
	space reflectivity measurement.	72
4.2	Sample and mould used in the trial. (inserted) Sample of	
	150 x 150mm and 450 x 450mm in size.	74
4.3	Samples preparation using 450 x 450 mm wooden mould	74
4.4	Full schematics of free space reflectivity measurement	75
4.5	Microwave signal generator and spectrum analyzer	
	used in the measurement.	77

4.6	Schematic view of the setup	78
4.7	Free space reflectivity measurement setup	79
4.8	Microwave absorption results at different thickness.	81
5.1	Relative Real Relative permittivity ε'_r at different	
	Pyrolysis Temperature in X-Band Frequencies (30% Carbon)	87
5.2	Loss tangent, tan δ at different pyrolysis temperature	
	in X-band frequencies (30% Carbon)	88
5.3	Shifting performance of the sample with respect	
	to sample thickness.	89
6.1	Padding-type attenuator	92
6.2	Terminator.	93
6.3	The flat microwave absorber panel produced	
	for the measurement.	94

LIST OF SYMBOLS

J Vector current density Ι Electric current Cross-sectional area Α Volume resistivity ρ_v R Resistance V Voltage Conductivity σ Permittivity 3 Permittivity of free-space $\boldsymbol{\varepsilon}_0$ ε, Relative permittivity ε', Relative real permittivity $\varepsilon_r^{"}$ Relative imaginary permittivity $tan\delta$ Loss tangent Permeability of free-space μ_0 μ_r Relative permeability Relative real permeability μ'r μ", Relative imaginary permeability Angular frequency ω f Frequency k Wave numbers Index of refraction n Zo Free-space impedance Ζ Intrinsic impedance Reflection coefficient ρ

Vector electric field

E

Γ	Power reflection coefficient
d	Sample thickness
l	Sample length
λ	Wavelength
λ_{o}	Free-space wavelength
V_{min}	Minimum voltage standing wave
V _{max}	Maximum voltage standing wave.
x _o	The distance of first minimum position from the dielectric material.
L _{sm}	The location of the sliding probe during second minimum of standing
	wave pattern recorded without the sample inside the waveguide.
L _{fm}	The location of the sliding probe during first minimum of standing
	wave pattern recorded without the sample inside the waveguide.
L _{nsm}	The location of the sliding probe during second minimum of standing
	wave pattern recorded with the sample inside the waveguide.
VSWR	Voltage standing wave ratio
λ_1	Wavelength in medium 1 (waveguide)
λ_2	Wavelength in medium 2 (sample)
γ	Complex propagation factor
β	Phase constant
α	Attenuation constant
S	Surface area
A_m	Area of occupied by single adsorbed gas molecule
V_m	The quantity of gas adsorbed, either using Langmuir or BET Theories.
	area of occupied by single adsorbed gas molecule.
N _A	Avogadro constant (6.023 x 10^{23} molecules/mole).
V_o	Molar volume of the gas (22414 cm^3) .
m	Mass of the adsorbing sample.

LIST OF ABBREVIATIONS

EFB	Empty Fruit Bunch
POME	Palm Oil Mill Effluent
CBP	Cement-Bonded Particleboard
GBP	Gypsum-Bonded Particleboard
NRL	Naval Research Laboratory
PAC	Pacific Activated Carbon
MEKP	Methyl Ethyl Ketone Peroxide

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Description on the unsaturated polyester resin used	
	in the sample preparation.	106
В	Microwave characterization procedures.	109
С	Measurement on samples in various concentrations	
	and pyrolysis temperature (Data Input)	112
D	Description on microwave characterization analysis	122
E	Description on the analysis done by	
	using MathCAD software	127
F	Microwave Properties of Carbon loaded Urethane	
	Absorber.	131
G	Complete results on the influence of pyrolysis temperature	
	over the microwave properties.	132
Н	The sample report of physical characterization by	
	nitrogen adsorption analysis using Micromeritic	
	ASAP 2010 on pyrolysed palm shell at 600°C, 700°C	
	and 800°C.	138
Ι	The sample report of physical characterization by	
	nitrogen adsorption analysis using Micromeritic	
	ASAP 2010 of the commercial palm shell carbon	142
J	Free space reflectivity measurement procedures.	144
Κ	Measurement on microwave reflectivity of the samples.	147