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ABSTRACT 

 

 

 

 Gas turbine vibrations can be caused by several mechanisms, but some blade 
failures cannot be explained by the more commonly known mechanisms and 
theories. These blades are conveniently regarded as rogue “mistuned” blades that had 
failed from abnormally high stresses. This led to extensive studies of bladed disk 
vibration characteristics. There are currently no theoretical predictions which can 
fully explain the blade vibration response in the presence of airflow due to the 
complicated aerodynamic structural interaction.  A literature review is presented on 
mistuned blades research. This work involved the experimental study of forced 
response amplitude of model blades due to structural mistuning and inlet flow 
distortion in the presence of an air flow. This controlled study of blade mistuning 
with inlet flow distortion therefore represents a nearly realistic environment 
involving rotating blades in the presence of airflow. Previous work by others were 
usually based on a non-rotating blade.  The presence of airflow which introduced 
effects of fluid structural interaction was not considered in previous works on 
mistuned blades. The primary intent of this work was to acquire the data while the 
blade is rotating in a situation that almost replicates the actual situation. A test rig 
was fabricated consisting of a rotating bladed assembly, an inlet flow section (where 
flow could be controlled or distorted in an incremental manner), flow conditioning 
module and an aerodynamic flow generator (air suction module with an intake fan) 
for investigations under laboratory conditions.  Instrumentations included ultra-
lightweight surface mounted pressure sensor on a rotating blade and vibration 
accelerometer on typical blades with signal routed through a telemetry system from 
the rotating shaft. These then allowed studies under a nearly realistic environment 
with rotating blades vibrations and pressure distributions measurements in the 
presence of airflow for the study of blade mistuning and inlet flow distortion with 
structural and aerodynamic interaction. Computational studies for vibration response 
of the blades and computational fluid dynamics of the inlet flow distortion were also 
undertaken to support the experimental studies. Tests were undertaken for a 
combination of different air-flow velocities and blade rotational speeds. The 
experimental results showed that the vibration responses of a mistuned blade (in a 
single stage of 12 bladed rotor assembly) were greatly influenced by the flow 
velocity, flow-induced frequency and blade/vane count. When the inlet flow was 
distorted, additional frequencies were excited and the amplitudes of these excited 
frequencies increased with increase in flow velocity.   
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ABSTRAK 
 
 
 

Getaran turbin gas boleh disebabkan oleh beberapa mekanism, tetapi terdapat 
sebahagian kegagalan bilah turbin yang tidak dapat diterangkan oleh mekanisma 
kegagalan dan tiori biasa.  Bilah ini dianggap sebagai ‘bilah-bilah buruk talaan sepi’ 
(rogue mistuned blades) yang gagal disebabkan oleh ketegangan tinggi. Ini telah 
menyebabkan banyak kajian dijalankan oleh penyelidik ke atas ciri-ciri getaran disk 
bilah. Bagaimanapun, kini masih tiada ramalan tiori yang boleh menerang getaran 
bilah dalam aliran udara yang disababkan oleh interaksi struktur aerodinamik yang 
rumit. Satu kajian literatur dalam bidang bilah talaan sepi (mistuned blades) diberi 
dalam tesis ini. Penyelidikan yang dijalankan ini melibatkan satu kajian makmal 
untuk sambutan getaran bilah-bilah model akibat daripada ‘talaan sepi’ (mistuning) 
struktur dan gangguan aliran masuk dalam  satu aliran udara.  Kajian oleh pihak lain 
biasanya melibatkan bilah yang tidak berputaran. Aliran udara memberi kesan 
interaksi bendalir struktur yang belum pernah dipertimbangkan dalam kajian bilah 
talaan sepi.  Objektif utama kajian ini adalah untuk memperolehi data semasa bilah 
berputaran dalam satu keadaan yang mereplikakan keadaan yang sebenar.  Sebuah 
pemasangan kajian dibina daripada pemasangan bilah yang berputaran, bahagian 
aliran udara masuk (yang boleh dikawal dan diganggu mengikut kadar terkawal), 
bahagian kawalan aliran dan penjana aliran aerodinamik (modul sedutan angin 
dengan kipas) untuk kajian makmal. Instrumentasi termasuk pengesan tekanan ultra-
kecil yang dipasang di atas permukaan bilah dan pengesan getaran di atas bilah di 
mana isyarat-isyarat intrumentasi diperolehi melalui sistem telemetri yang dipasang 
di atas syaf.  Ini mebolehkan kajian di bawah satu keadaan yang hampir sebenar di 
mana getaran bilah serta taburan tekanan bilah berputaran dikaji dalam aliran udara 
untuk  kesan talaan sepi dan aliran masuk terganggu.  Kajian berkomputer bagi 
sambutan getaran bilah dan kajian dinamik bendalir berkomputer (CFD) bagi 
gangguan aliran masuk dijalankan juga untuk menyokong kajian makmal. Ujikaji-
ujikaji dijalankan untuk pelbagai kombinasi halaju putaran dan aliran angin yang 
berlainan. Keputusan ujikaji menunjukkan bahawa bilah yang bermasalah ‘talaan 
sepi’ (dalam satu pemasangan 12 bilah) mempunyai sambutan getaran yang 
dipengaruhi oleh kelajuan aliran angin, frekuensi paksaan aliran, dan bilangan 
kepingan bilah. Apabila berlakunya gangguan aliran masuk, lebih banyak frekuensi 
getaran terjana dan amplitudnya berubah dengan penambahan halaju aliran. 
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CHAPTER 1 

 

 

 

          INTRODUCTION 

 

 

 

1.1 INTRODUCTION 

 

The study of blade dynamics in turbomachinery is an important area as blade 

failures represent the most common failure in gas and steam turbines. Blades can 

potentially suffer from failures (structurally and thermally) as they operate under 

elevated temperature and high forcing conditions. Dynamics of most engineering 

structures are usually studied experimentally by identifying the natural frequencies 

and mode shapes of the structure. Severe vibratory loads on the blades may cause 

cracks and ultimately blade failure. This in many cases leads to the total failure of the 

engine. During the development phase, such events cause delays and extra costs; 

with production engines, risks to passengers and the manufacturer's reputation result 

additionally. 

 

Mode shapes are quantified from modal analysis which considers measured 

acceleration, velocity, or displacement of selected locations on the structure. Periodic 

structures, such as bladed disks, are however more difficult to analyze using modal 

analysis software due to the characteristic high modal densities. Therefore, the mode 

shapes and the natural frequencies of the bladed disk are measured by examining the 

forced responses of the structure to single blade excitations. 

 

 Blade Modal Analysis provides a mean to define the vibratory motion for 

each blade natural frequency. This illustration is useful for redesign of blade sets to 
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avoid resonances. For example, the shrouds and lashing are features that can be 

readily adjusted for grouped blade sets to affect their natural frequencies. Modal 

analysis requires that a number of vibration points be recorded for each test to clearly 

define the details of motion. The required mass and stiffness changes to tune natural 

frequencies can be estimated with acceptable accuracy.  

 

 

 

1.2 FACTORS AFFECTING BLADE VIBRATIONS    

 

Most components in a gas turbine engine are exposed to vibrations caused by 

unsteady forces due to relative motions of rotating and non-rotating parts. Among the 

rotating parts are the blades. Many mechanisms are defined describing the vibrations 

of turbomachinery blades, usually classified according to the origin of excitation. 

These can be mechanical, thermal or aerodynamic nature. Mechanical excitations 

include blade tip casing contact or foreign object damage; aerodynamic excitations 

include blade row interaction, self excitation, impact of cooling jets, compressor 

surge and rotating stall as well as turbulence.  

 

The steady load of the blade, which is the steady aerodynamic load and the 

centrifugal force in rotating parts, causes a static displacement and the steady stress 

whereas the unsteady load can lead to blade vibrations and thereby cause the 

alternating stress. 

 

 

 

1.2.1 SELF EXCITED VIBRATIONS 

 

When the vibrations are self excited (flutter) the vibration motion of the blade 

itself causes an unsteady pressure field around the blade sustaining the vibration. 

Such behavior is usually started by small aerodynamic or mechanical disturbances 

above a critical flow speed. It can lead to drastically increasing blade vibration 

amplitudes and rapid blade failure, if the mechanical damping is too low to dissipate 

the aerodynamic energy put on the blade. Long and slender structures are more prone 
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to flutter, i.e. the fan blades and 1st stage compressor blades, but also low pressure 

turbine blades. Flutter is not a problem in the high pressure turbine. 

 

 

 

1.2.2 FORCED VIBRATIONS 

 

Forced vibrations (forced response) are characterized by aerodynamic 

excitation sources, which are flow disturbances acting periodically on the blades and 

originate from upstream and/or downstream obstacles. The most common forced 

vibrations are due to inlet distortions originating at the air intake (inlet struts, cross 

winds), blade row interactions and hot streaks originating from the burners. Also the 

burner cans themselves cause circumferential variations in the burner exit flow. The 

time-periodic excitation is in all cases caused by the relative rotational motion of 

excitation source and the excited structure, which leads to excitation frequencies 

multiples of the rotation frequency. A common way to illustrate forced response 

regions of a blade row is the “Campbell Diagram”.  

 

 

 

1.2.3 AERODYNAMIC EXCITATIONS OF TURBOMACHINERY BLADES 

 

If turbomachinery blades are aerodynamically excited to vibrate, no matter if 

self- or externally excited, a complex interaction between the unsteady flow around 

the blades and the involved solid structures takes place: The unsteady flow causes the 

blades to vibrate, whereas the blade motion itself modifies the unsteady flow. Hence, 

a coupling exists between the structural behavior of the blades (mass, stiffness, 

damping, friction, fixation) defining the blade motion and the unsteady flow defining 

the excitation. This is classically shown by “Collar’s Triangle of Forces” [Collar 

1946], which illustrates the interaction between inertia forces, elastic forces and 

aerodynamic forces. This triangle is sometimes extended by a vertex for thermal 

forces and a vertex for control forces, two additional parameters increasing the 

complexity of the problem. 
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1.3 AEROELASTICITY OF TURBINE BLADE 

 

Aeroelasticity deals with the science that studies the mutual interaction 

between aerodynamic forces and elastic forces. The parameters affecting side 

interaction is indicated in Fig. 1.1. The blade in the turbomachinary is subjected to 

surface pressures induced by the flow. If the incident flow is unsteady or the 

boundary conditions are time-dependent, these pressures become time-dependent. 

Moreover, if the structure undergoes dynamic motions, it changes the boundary 

conditions of the flow and the resulting fluid pressures, which in turn change the 

deflections of the structure. Flutter and buffeting are examples of such fluid-structure 

interaction.     

 

Flow 
Disturbances 

Blade 
Vibration 

Aero 
Damping 

Mechanical 
Damping 

Vibrations-induced 
Pressures 

- Inlet Distortion 
- Blade/row 
  Interaction 

Figure 1.1     Fluid-structure interactions 

 

In order to predict the dynamic response of a rigid or flexible structure in a 

fluid flow, the equations of motion of the structure and the fluid must be solved 

simultaneously. The most difficult part in handling numerically the fluid/structure 

coupling stems from the fact that the structural equations are usually formulated with 

material (Lagrangian) co-ordinates, while the fluid equations are typically written 

using spatial (Eulerian) co-ordinates. Straightforward approach to the solution of the 

coupled fluid/structure dynamic equations requires moving at each time step at least 

the portion of the fluid grid that are close to the moving structure. This can be 

appropriate for small displacements of the structure but may lead to severe grid 

distortions when the structure undergoes large motion. 

 

Forced response analysis involves modeling the interaction between the 

unsteady flow around the blade and the motion of the blade structure. Blade vibration 
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is caused by the unsteady flow through the machine from upstream disturbances such 

as non-uniform inlet flow (inlet distortion) or upstream blade wakes (blade row 

interaction). However, vibration of the blade structure induces an unsteady pressure 

field around the blade causing energy dissipation, resulting in aerodynamic damping.  

 

 

 

1.4 MISTUNING 

 

The design of turbomachine blades is rendered particularly challenging by a 

series of factors such as the inherent structure-fluid interaction problem, mistuning, 

the effects of rotation, temperature, etc. Noteworthy in this list is mistuning, i.e. the 

presence of small blade-to-blade variations of their structural and/or geometrical 

properties, which may produce large increases in the forced response of some of the 

blades. Since these differences originate for example from finite manufacturing 

tolerances, in-service wear, foreign object damage, they cannot be precisely 

quantified and thus are often modeled as random variables. While mathematically 

convenient, this representation implies the need to solve a particularly difficult 

random vibration problem, e.g. the estimation of the statistics of the largest 

responding blade on the population of mistuned disk, to determine the expected 

fatigue life of the corresponding bladed disks. 

 

Mistuning in bladed disks can result in blade forced response amplitudes and 

stresses that are much larger than those predicted for a perfectly tuned assembly. 

Thus, mistuning has a critical impact on high cycle fatigue (HCF) in turbine engines, 

and it is of great importance to be able to predict the mistuned forced response in an 

accurate and efficient manner. 

 

 

 

1.5 INLET FLOW DISTORTION 

 

Total pressure distortions occur in gas turbine engines when the incoming 

airflow is partially blocked or disturbed. Distorted inlet conditions can have varying 
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effects on engine performance and engine life. Short-term effects are often in the 

form of performance degradation where the distorted airflow causes a loss in 

pressure rise and a reduction in mass flow and stall margin. Long-term effects are a 

result of vibratory blade response that can ultimately lead to high cycle fatigue 

(HCF), which in turn can quickly cause partial damage to a single blade or complete 

destruction of an entire compressor blade row, leading to catastrophic failure of the 

gas turbine engine. A better understanding and prediction of vibratory blade response 

is critical to extending engine life and reducing high cycle fatigue induced engine 

failures. 

 

The immediate effects of distortions often related to the degradation in the 

performance of the engine and reduction in fan and compressor stall margin. Long-

term effects produce periodic unsteady flows on rotating blades, and are implicated 

in HCF failures. The unsteady loading on the blades can pose a serious problem if 

frequencies contained in the periodic distortion waveform and natural frequencies of 

the blade coincide, which can lead to rapid blade failure. High cycle fatigue (HCF) is 

observed as metal fatigue due to stress cycles at a sufficient level and duration to 

produce fatigue failure. For turbomachines this can occur relatively quickly, 

considering the high rotational speeds.  

 

The occurrence of fatigue-producing stress levels with realistic levels of inlet 

flow distortions will be associated with resonant response of a blade or blade system. 

Thus, HCF problems associated with flow distortions will typically be associated 

with coincidence of periodic frequency content of the distortion waveform with a 

frequency of modal response of the rotating blades. It is believed that the dominant 

driver of non-uniform flow-related HCF is total pressure flow profile distortions. 

Distorted total pressure profiles such as those obtained from distortion screen tests 

can be applied as input to mathematical models relating the periodic input total 

pressure distortion to the dynamic response of the blade and HCF potential. 
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1.6 VIBRATORY STRESSES PREDICTION 

 

The prediction of the vibratory stress level for input to the stress-range 

diagram requires the analysis of the blade row unsteady aerodynamics, structural 

characteristics, and resonant vibration response. This is because the root cause of the 

vibratory stress is flow induced vibrations. Namely, integral order forced vibrations 

can occur in fan, compressor, and turbine blading when a periodic aerodynamic 

forcing function, with frequency near a system resonant frequency acts on a given 

blade row. These forcing functions are generated at multiples of the engine rotational 

frequency and arise from a variety of sources both internal and external to the engine. 

 

The rotor speeds at which significant forced vibrations may occur are 

predicted with frequency-speed or Campbell diagrams. To predict blade life or 

design blades for longer HCF life, accurate predictions of the blade vibratory stress 

are crucial. First the airfoil row is designed to achieve its steady performance 

requirements. Based on this design, the blade natural frequencies and mode shapes 

are analyzed by means of a finite element structural analysis; with the detailed blade 

row steady aerodynamics predicted utilizing a computational fluid dynamics (CFD) 

model. 

 

The blade row unsteady aerodynamics are then predicted utilizing CFD 

analysis to predict the aerodynamic damping together with the aerodynamic forcing 

functions and the resulting gust response. Current design system unsteady 

aerodynamic analyses generally consider the response of an isolated blade row, with 

both linear frequency domain and nonlinear time-marching analyses utilized. Both 

approaches require the specification of the unsteady aerodynamic forcing function 

and the vibration mode shape. Thus, there are two separate systems of equations to 

be solved – the structural system and the fluid system. They are coupled only in that 

aerodynamic forces and blade state are passed between each other after each time 

step. 

 

The structural characteristics of the blading, including the mode shapes and 

natural frequencies, are predicted with finite element analyses. The structural 

analysis is then coupled with the unsteady aerodynamic analysis through an 
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aeroelastic forced response analysis that predicts the airfoil vibration response. A 

separate analysis is then required to determine the resulting vibratory stress. The 

potential for HCF failure is then predicted by determining the effect of the combined 

mean and cyclic stress, accomplished with stress-life (S-N) diagrams which are 

concerned with component life to failure. 

 

 

 

1.7 FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING 

 

HCF of turbomachinery blading is a significant design problem because 

fatigue failures can result from resonant vibratory stresses sustained over a relatively 

short time. Fatigue failure may results from a combination of steady stress, vibratory 

stress, and material imperfections. However, the size of microscopic imperfections is 

difficult to control. Hence, stress-range diagrams are used to quantify the allowable 

vibratory stress amplitudes to avoid fatigue damage. Advanced turbomachinery 

blading is designed to have high steady stress levels. Thus, HCF occurs because of 

high mean stress - low amplitude vibratory loading of the airfoils. The prediction of 

the vibratory stress level for input to the stress-range diagram requires the analysis of 

the blade row unsteady aerodynamics, structural characteristics, and resonant 

vibration response. This is because the root cause of the vibratory stress is flow 

induced vibrations. 

 

In summary, high cycle fatigue (HCF) of turbomachinery blading is a 

significant design problem because fatigue failures can result from resonant vibratory 

stresses sustained over a relatively short time. Blade and thus engine durability and 

life are dependent on the vibratory stress level for a given steady operating stress. To 

avoid costly and time consuming development problems and to maximize engine life 

and time between overhauls, it is necessary to accurately predict the level of 

vibratory stress. This requires the analysis of both the structural mechanics and the 

unsteady aerodynamics of bladed disks to predict the vibratory stress level, with a 

stress range diagrams utilized to predict the maximum vibratory stress for infinite 

life. 
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1.8 FLOW DEFECTS 

 

In case of forced response blade vibrations the aerodynamic excitation 

mechanism is due to flow defects, which are spatial non-uniformities in the flow 

field upstream or downstream of the observed blade row. These flow defects are 

usually regarded as steady in the reference frame of the generating obstacles. They 

become unsteady when moving relative to the observed blade row. Flow defects can 

be related to different physical phenomena, the most relevant are listed below: 

 

- Wakes are generated due to the development of a boundary layer on the blade 

surfaces, which separate from the blade at its trailing edge. The wakes are 

characterized by a velocity deficit of a certain magnitude, a spatial width and 

a (negligible) small static pressure deficit. The low momentum fluid inside 

the wake has increased vorticity and entropy and is convected with the local 

flow velocity. It is clear that the wake is a completely viscous phenomenon. 

Many empirical and semi-empirical models exist to describe the wakes 

behind turbomachine blades. 

 

- Vortex shedding behind a vane or blade is another flow defect related to the 

detachment of the boundary layer at the trailing edge. In case of occurrence 

left and right rotating vortices are shed at a Reynolds number dependent 

frequency, which is usually much higher than typical wake passing 

frequencies. The related disturbance on the downstream rotor is hence a 

superposition of wake passing and vortex shedding. Due to the high 

frequency and small velocity variations the vortex shedding related excitation 

is usually not regarded in forced response problems. However, it has a 

significant impact on performance. 

 

- The static pressure field upstream and downstream of a blade row is varying 

circumferentially (and radially) due to the blade load. This causes a flow 

defect, which is felt as unsteady pressure waves by the relative moving blade 

rows. 
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- Shock waves are a special category of pressure waves, which occur due to the 

strong pressure gradient over a shock. This gradient is experienced as 

unsteady pressure wave by relative moving blades. The shock excitation in 

transonic turbine stages is probably the main contributor to blade vibration 

excitations. 

 

It is obvious that the control of the flow defect has the potential to control the 

blade excitation and hence the blade vibration. In particular, the various flow defects 

can interact with each other (i.e. wakes and pressure waves, shock – wake 

interaction) and by that either amplify or diminish blade excitation.  

 

The idea of non-uniform inlet conditions leading reduced compressor 

performance is not new and has been the subject of many experimental and analytical 

studies dating back to 1950s. All of these works have concentrated on the reduction 

of compressor performance in the form of reduced stall margins and pressure rise. 

The present work is aimed at identifying the influence of flow defect (unsteady 

aerodynamic loading on the blade surface) and its interaction on vibrational 

frequency responses of the blade excitation.  

 

 

 

1.9 PROBLEM DEFINITION 

 

Gas and steam turbines are considered the main driving elements for the 

power plants. Moreover, gas turbines are used in airplanes engines. Being important 

and critical machinery, their performance, reliability and efficiency should be 

monitored and controlled as close as possible. Turbine engines blades (compressor or 

turbine) are the most critical component in the turbine, because they are responsible 

for extracting the kinetic energy in the flow and convert it into mechanical energy. 

Blades operate in a severe environment, and are subjected to elevated temperature 

and high stresses for a very long operation period (minimum period for overhaul is 

averaged to 3 years). In addition, the maintenance cost for turbine is usually very 

high, especially when it is concern with blades, because to inspect or repair the blade 

needs the plant to shutdown for few days or longer. The problems in industrial 
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turbines can be classified into three categories according to work done with respect 

to: 

 

1- Problems which were well understood and solved. Examples are the 

resonance, surge and stall problems. 

2- Problems that are solved partially, these are problems that associated with the 

materials used for manufacturing turbines components. 

3- Problems that are not fully understood and still a lot of researches are on 

going. These are the aeromechanical and aerodynamic behavior of the blades.  

 

One of the main problems that encountered when dealing with blade is that 

some blades are subjected to higher stresses than the others. The higher vibratory 

stresses are responsible for failure due to high cycle fatigue (HCF). Previous 

researchers showed that these blades (failed ones) were slightly differing from the 

other blades due to manufacturing tolerance or wear as a result of operation. They 

named this phenomenon as blade mistuning.  

 

Other common problem associated with blade is the non-uniform 

aerodynamic loading. The non-uniformity arises from many causes mainly from the 

non-uniform fuel burning due to some defective burners (defective burners supply 

more fuel). This non-uniform aerodynamic loading on the blade leads to severe stress 

fluctuation and hence to blade High Cycle Fatigue (HCF).  

 

 

 

1.10 PROBLEM FORMULATION 

 

This work involved studies of blade mistuning by simulating a nearly realistic 

environment involving rotating blades in the presence of airflow, i.e. the interaction 

of structural and aerodynamic and their impact on mistuning.  The primary intent 

was to acquire the data while the blade is rotating as a simulation of the actual 

industrial situation. Previous work by others usually involved a non-rotating blade. 

This work therefore involved the experimental study of forced response amplitude of 

model blades due to structural mistuning in the presence of airflow. The work 
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included the study of forced response amplitudes of the flow distortion (non-uniform 

aerodynamic loading) arising from changing the inlet vane angle. To achieve this 

goal the study investigated this situation but there were still a number of questions 

that could be raised with the respect to bladed disk vibration and force response with 

the interaction of airflow. 

 

This work attempted to address the following questions: 

1- What are the real responses of blade mistuning when the data is taken from a 

rotating blade? 

2- What are the additional effects that the airflow and the stagger angle will add 

to the blades vibrational responses? 

3- What is the effect of changing the inlet vane angle on the blade vibrational 

responses? 

The work was intended to: 

 

1- Demonstrate the change in forced response amplitude due to mistuning. 

2- Investigate the impact of the airflow excitation and the stagger angle on the 

sensitivity of forced response amplitude to mistuning. 

3- The validity of acquiring data from a rotating blade. 

 

In order to address the problems above, the study aims to undertake a 

thorough analysis of bladed disk vibration from both theoretical and experimental 

aspects. 

 

 

 

1.11 SIGNIFICANCE OF THE PROBLEMS 

 

 Vibration induced fatigue has always been one of the main concerns to 

turbomacinary blading and hence the theoretical prediction of the natural 

frequencies, mode shapes and forced response level is of vital importance for 

designing away from the ranges where the stresses are likely to be high. Vibrations 

problems in turbomachinaries are of two types, globally and locally-occurring 

vibrations. The first type involved the motion of the whole structure while the second 
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type was restricted to a few internal components such as discs, blades and shroud 

attachments. Failures due to problems of the first kind are usually related to bearing 

and/or shafts and their study is outside the scope of this work which focused on the 

bladed disk vibration in the presence of air flow. 

 

The inevitable occurrence of blade mistuning in turbomachinery rotors is 

known to cause vibration localization among the blades. This in turn increases the 

likelihood of an excessive vibration response at certain conditions, thus posing a 

major safety concern. This problem motivates the exploration of the various factors 

that affect the degree to which the response of a bladed disk increases as a result of 

mistuning. Moreover, mistuning is known to dramatically impact the stability and 

forced response of the bladed disks found in turbomachinary. In addition, mistuning 

in bladed disks can result in blade forced response amplitudes and stresses that are 

much larger than those which would be predicted for a perfectly tuned assembly. 

Thus mistuning has a critical impact on the high cycle fatigue in turbine engines, and 

it is of great importance to be able to predict the mistuned forced response in an 

accurate and efficient manner.  

 

The motivation for considering such small variations is that their effects on 

the forced response of the bladed disks can be extremely large, i.e., fluctuations of 

the blade properties by 1 to 2% can lead to increases of the amplitude of vibration of 

some blades by 100% or more. These results were obtained theoretically and 

experiments were done to validate them, so the proposed work studied the effect of 

aerodynamic damping, structural mistuning and stagger angle in the frequency shift 

which will give a clear understanding to the value of the force response from the 

mistuning and hence nearly realistic effects can be predicted. 

 

On the other hand, the inlet flow distortion in the as mentioned above, the 

previous studies concentrated on the airflow distortion on the compressor as 

happened in the practical life when the military fighter suddenly changes its direction 

during maneuvering. In this study the airflow distortion in the turbine side was 

studied. In the turbine the unsteady aerodynamic loading takes place when the blades 

are subjected to non-uniform aerodynamic loading. This non-uniform aerodynamic 

loading on the blades can arise in the real life when the inlet flow to turbine is 
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distorted by a deflected vane. Moreover, malfunctioning of some burners, improper 

combustion of the gases in some chambers alter the uniformity and symmetry of the 

aerodynamic loading on the blades surfaces.     
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