Universiti Teknologi Malaysia Institutional Repository

Acceleration-based design of electric vehicle auxiliary energy source

Wangsupphaphol, A. and Nik Idris, N. R. (2016) Acceleration-based design of electric vehicle auxiliary energy source. IEEE Aerospace and Electronic Systems Magazine, 31 (1). pp. 32-35.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/MAES.2016.140011

Abstract

The battery electric vehicle (BEV) has disadvantages of high power loss during acceleration and poor regenerative braking energy recapture. Moreover, the battery is frequently exposed to repetitive high power demand, which consequently shortens the battery lifetime [1]. To overcome these problems, many parallel connections of energy sources have been proposed by scientists with the aim to reduce high peak power supply and repetitive power, as well as to save battery energy and lengthen its use [2], [3]. In this article, a parallel supercapacitors (SCs)- batteries scheme for battery hybrid electric vehicle (BHEV) and its control are proposed. The configuration consists of a parallel connection of batteries and SCs, which are connected to the inverter via a bidirectional dc-dc converter, as shown in Figure 1. This scheme intends to save braking energy for extending the driving range. In order to control the voltage and current of SCs, the control algorithms, composed of cascaded voltage and current loops based on the acceleration-based design (ABD), are developed. For efficiency validation, comparison of the core features between 3 different system configurations are proposed: the proposed BHEV with acceleration-based design (BHEV-ABD), BHEV with load-based design (BHEV-LBD) [4], and a pure BEV.

Item Type:Article
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:68734
Deposited By: Haliza Zainal
Deposited On:02 Nov 2017 05:06
Last Modified:20 Nov 2017 08:52

Repository Staff Only: item control page