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Abstract 

     In silico metabolic engineering has shown many successful results 
in genome-scale model reconstruction and modification of metabolic 
network by implementing reaction deletion strategies to improve 
microbial strain such as production yield and growth rate. While 
improving the metabolites production, optimization algorithm has 
been implemented gradually in previous studies to identify the near-
optimal sets of reaction knockout to obtain the best results. However, 
previous works implemented other algorithms that differ than this 
study which faced with several issues such as premature convergence 
and able to only produce low production yield because of ineffective 
algorithm and existence of complex metabolic data. The lack of 
effective genome models is because of the presence thousands of 
reactions in the metabolic network caused complex and high 
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dimensional data size that contains competing pathway of non-
desirable product. Indeed, the suitable population size and knockout 
number for this new algorithm have been tested previously. This study 
proposes an algorithm that is a hybrid of the ant colony optimization 
algorithm and flux variability analysis (ACOFVA) to predict near-
optimal sets of reactions knockout in an effort to improve the growth 
rates and the production rate of L-phenylalanine and biohydrogen in 
Saccharomyces cerevisiae and cyanobacteria Synechocystis sp 
PCC6803 respectively. 

     Keywords: metabolic engineering; ant colony optimization; flux variability 
analysis; L-phenylalanine; biohydrogen. 

 

1      Introduction 

Metabolic engineering (ME) has shown a big improvement and is getting more 

popular in these recent years. Metabolic engineering has been used to study and 

manipulate the biological microbial cell metabolism by many researchers in this 

field [1]. An example of a strategy that has been introduced by metabolic 

engineering method is by suggesting any genes or reactions from its complex 

metabolic network to be deleted [2,3]. This technique has shown many 

achievements towards genome-scale metabolic network (GSMN) model in 

addressing high yield of by-product secretion and cell growth rate. 

 

The advancement of metabolic engineering has gained more attention as it is able 

to improve any desired metabolites strain that can further the process to become 

valuable products for market industries purposes [4]. With such results, more 

developments of quantitative models and algorithms using computational approach 

are growing in these recent years. However, the current production rate is still low 

than its theoretical maximum value probably due to the lack of effective 

computational technique developed to modify the metabolic model of 

microorganisms. Even modification toward biological network of an organism has 

been proven to be a successful technique, constructing a mutant strain of genome 

model is a challenging part to overproduce the interest metabolites beyond its wild 

type limit. 

 

Computational time is increasing as the problem size increases, thus some 

computationally pre-process steps are required, which matches with the biological 

theory to have more suitable and compatible data. Other than that, the models need 

to undergo an optimization process in order to prevent the solution from being 

trapped in local optima, caused premature convergence. The innate potential for 

higher production of desired metabolites is obscure, and relates to the lack of 

effective genome models. This is mainly due to the fact that in producing 
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metabolites by microorganisms the presence of interaction among thousands of 

reactions in the metabolic network caused higher dimensional data size. In addition, 

the presence of competing pathway of non-desirable product may affect the desired 

metabolite production. 

 

The reason of using advance computational approach in today’s research is because 

it is powerful and able to save costs and time in manipulating phenotypes to enhance 

desired strain model compared to wet lab procedures. The goal of metabolic 

engineering is to develop effective methods in order to improve the metabolic 

capabilities producing desired metabolites in microorganism for industrial purpose 

[5]. In metabolic engineering, there are some recognized methods available that are 

currently being used widely to assist in simulating process to improve metabolite 

production genome-scale model, for example, optimization algorithm, modeling 

simulation algorithm and modeling framework. 

 

Microbial strains are microorganisms that are widely used to produce biochemical 

products, antibiotics, drug targets, therapeutic proteins, food ingredients, vitamins, 

fuels, and other useful chemicals that are in demand in many markets and industries. 

Therefore, this research is concerned about the production of metabolites L-

Phenylalanine (L-Phe) in Saccharomyces cerevisiae and biohydrogen (H2) in 

cyanobacteria Synechocystis sp PCC6803. There is a growing concern about energy 

generation by fossil fuels to be continued such as biohydrogen because it is 

renewable and shows the tendency to be an alternative to fossil fuels for 

transportation [6]. While L-phenylalanine has been used as a precursor to vanillin 

production for food additives and also one of good nutritional supplements in 

pharmaceutical industry [7].  

 

During last decades, computational approach gaining great attention from biologist 

to apply use to analyse genome scale model.  According to [8], the constraints-

based modeling is the most used method in elucidating the cell network. Besides 

that, constraint based modelling is tend to predict the intracellular fluxes of an 

objective function of stoichiometric model in steady-state condition. Flux Balance 

Analysis (FBA) is proven to be one of the effective tool that can be used to analyse 

fluxes of metabolic network and the effect of knockout on metabolism [9]. 

Simultaneous of the development FBA, there are some other method developed by 

researchers such as regulated FBA (rFBA), dynamic FBA (dFBA), integrated 

dynamic FBA (iFBA), and parsimonious FBA (pFBA) [10]. FVA is an extension 

of FBA which it is a promising technique for identification of possible minimum 

and maximum fluxes of reactions [11]. The enhancement of FVA, called fastFVA 

is then proposed to speed up the implementation of previous FVA [12]. MOMA is 

another method proposed that has been widely used by researches to analyse the 

effect of gene perturbation of mutant models [13]. ROOM is designed to analyse 

and predict the metabolic flux after the model is exposed to mutation. ROOM finds 

a flux distribution that satisfies the same constraints as FBA while minimizing the 
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number of significant flux changes. Same with MOMA, ROOM also aim to find 

minimize set of fluxes that are close to wild type without too concerning to 

minimize the growth rate [14]. 

 

Other than constraint-based methods, there are some famous and common rational 

modeling frameworks used by researchers in metabolic engineering area. These 

frameworks applies bi-level optimization strategy which it targets to solve two 

conflicts that biologically related which is the cell growth and maximum 

bioengineering objective. Modeling framework applied two key points in their 

calculation which is optimization strategy and modeling simulation. For example 

are OptKnock [15] and ReacKnock [16] which are aimed at identifying reaction 

(gene) knockout to obtain improved metabolites. OptKnock targets the set of 

reaction (gene) to be deleted without affecting the internal flux distribution of the 

genome model so that the flux of the metabolites could be optimized in a nonviable 

growth rate. OptKnock framework formulates the in silico design problem by using 

Genetic Algorithm (GA) and use FBA, MOMA or other method to calculate fitness 

if an individual [17]. While Reacknock applying FVA to predict the possible 

production rate under knockout strategies. RobustKnock [18] predicts more robust 

solution than OptKnock by predicting gene to be deleted that lead to the over-

production of chemicals of interest. OptGene [19] is an another algorithm that 

search for reaction candidates that can be activated, inhibited or eliminated by using 

evolutionary search procedure for solving the resulting combinatorial optimization 

problem. 

 

In this paper, a hybrid of Ant Colony Optimization and Flux Variability Analysis 

(ACOFVA) is proposed. This newly hybrid algorithm is developed to predict the 

reaction knockout strategy. Ant Colony Optimization (ACO) is a swarm 

intelligence based optimization algorithm which is inspired by the behavior of ants 

to find food which has been introduced in the year 1991 by [20]. While Flux 

Variability Analysis (FVA) is a constraint-based modeling approach developed by 

[21].  

 

2      Methods 

In this paper, the presence of competing reactions and genes in a metabolic network 

is suggested to be removed in order to overproduce interest metabolite beyond its 

wild type limit. The removal of selected reactions and genes is to reduce the size of 

genomes. This kind of strategy has been used by other researchers. However, a new 

algorithm is proposed here with some modifications in the way of calculating the 

objective function value. 
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2.1 Problem Formulation 
 

The problem is to find the best set of reaction knockout including the associated 

genes of biological models which can be formulated as follows: A genome-scale 

model data is present by a stoichiometric matrix which consists of; where m and n 

are the representation of number of metabolites and reactions in the network 

respectively shows in equation 1. 
 

                                                            𝑆𝑚×𝑛                                                               (1) 

                                                      𝑆. 𝑣 = 0                                                               (2) 

In equation 2, v represents the vector for overall fluxes including the internal, 

transport and the growth fluxes which are sure to achieve a steady state condition 

to bring the zero value. A steady state is referred to the total amount of any 

compound being produced that must equal to the total amount that is being 

consumed. A constraint-based method applying dynamic mass that can be 

formulated in equation 3 is as followed, where t is time:   

 

                                                
𝑑𝑥

𝑑𝑡
= 𝑆𝑣                                                             (3) 

There are two additional constraints that are commonly used in this modelling 

simulation comprising the upper and lower boundaries of internal fluxes denoted 

by v and exchange fluxes present by vector b as state in equation 4:  

                                             lowerbound              upperbound  

                                

         0 <  𝑣 <  ∞      

                                                      −∞ <  𝑏 < ∞                                                   (4)  

 

2.2 A hybrid of ACO and FVA 

 

A hybrid of ACOFVA is a combination of optimization algorithm and constraint-

based method is proposed to predict the best reaction knockout list. Table 1 shows 

the differences between existing algorithm and proposed method in this study. 

ACOFVA is proposed based on some potentials that can be handled by ACO and 

FVA in optimizing and modeling the metabolic network. For instance, ACO has 

the capability in finding the shortest path in constructing a best solution which is 

able to simultaneously perform local and global search to avoid local optima 

problem. Moreover, FVA is good in predicting the effects of the range of reaction’s 

flux after the reaction deletion.  
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Table 1: Differences between the existing and proposed hybrid algorithm. 

Algorithms Optimization 

algorithm 

Modeling 

simulation 

      Data Target 

Metabolite 

ACOFVA ACO FVA S. cerevisiae and 

Synechocystis 

L-Phe and 

biohydrogen 

ACOFBA 

[22] 

ACO FBA S. cerevisiae vanillin 

CBAFBA 

[23] 

CBA FBA S. cerevisiae vanillin 

BAFBA 

[24] 

BA FBA E. coli succinate and 

lactate 

GACOFBA 

[25] 

GACO FBA E. coli and S. 

cerevisiae 

succinate and 

lactate 

BATFBA 

[26] 

BAT FBA E. coli succinate and 

lactate 

Note: * The shaded column represents the hybrid algorithm proposed in this      

             research. 

* ACOFBA, Ant Colony Optimization and Flux Balance Analysis;    

   CBAFBA, Continuous Bees Algorithm and Flux Balance Analysis;      

   BAFBA, Bees Algorithm and Flux Balance Analysis; GACOFBA,  

   Genetic Ant Colony Optimization and Flux Balance Analysis;  

   BATFBA, Bat Algorithm and Flux Balance Analysis. 

 

The proposed ACOFVA attempts to improve the traditional approach which can 

simultaneously combine the optimization technique and modeling method in 

modifying the metabolic network in order to improve the metabolite production in 

microorganisms. The main differences between existing algorithm and this newly 

proposed algorithm is the implementation of FVA for the modeling simulation 

which has not been used before. Next, the optimal percentage of a solution 

constructed is set to achieve the highest solution which reflects to the fitness of the 

objective function. This optimal percentage can only be set with the implementation 

of FVA. The in silico research about the interest metabolites production focused in 

this study is still lack. Thus this study gives deeper view on optimizing the 

production of desired metabolites. Figure 1 shows the flowchart of ACOFVA. 

 

2.2.1 Model pre-processing 

 

The first step before experiments are carried out, the dataset is undergoing pre-

processing. The purpose of pre-processing model is to remove unnecessary 

reaction(s) and all dead end(s) involved in the model. These unused reactions that 

have been removed are not going to be used in this research in which the presence 
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may affect the result of this experiment and also the accuracy. In addition, this step 

also perform a check for consistency of the model after it has undergone the pre-

process step. 

  

 

Fig. 1. Flowchart of ACOFVA. 

 

2.2.2 Ant Representation 

 

Each ant is then placed randomly on the nodes as the starting point. The nest is set 

to be the initial point from where the ants start their searching for the food source. 

From the nest, an ant travels along the nodes to reach the target point while 

constructing the best solution. In general, the concept of this algorithm is 

represented in Figure 2. Using this representation, ant traverses the routes to search 

for individual that manages to find the optimal reaction knockout. Ant uses 

transition rule and pheromone update rule as a guide to select for the next movement. 

Pheromone refers to the marker that is left at the trail by the ant colony. Each of the 

individual ant has its own pheromone value which actually shows the quality of it. 

Individual ant with higher pheromone is said to be the better solution. 
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Fig. 2. Basic Ant Colony Optimization Behavior at Different Time Stamps [27] 

 

2.2.3 Initialize population 

 

The algorithm starts by initializing populations of m ants. Each ant is initialized as 

by assuming a reaction with n genes. A population is initialized by a predefined 

number of individuals by assigning present and absent status. The matrix creates 

the status randomly using bit ‘0’ or ‘1’ among them. The suggested reaction to be 

knocked out is represented by ‘1’ while reaction that is not deleted and maintained 

is represented by ‘0’. The purpose of assigning those value is to select the best set 

of reaction to be deleted in order to enhance the production of a metabolite. Figure 

3 shows the representation of gene and reaction of metabolic model to give a clearer 

view of the reaction deletion. ACO is applied at this stage where the number of ants 

is initialized as mentioned using bit number. This step is important to find the 

essential or non-essential reaction to optimize the desired metabolite. The non-

desired reaction is selected to be knocked out and needs to make sure that the 

deletion of the set of reactions not defect the growth of a microorganism based on 

the biological facts. 

 

 
Fig. 3. The representation of reaction and gene of metabolic model. 

2.2.4 Solution construction 

 

Solution construction is important because optimal solution constructed is mainly 

contribute in optimizing the desired production. In this research, the solution 

construction is evaluated by fitness function of each individual. The next individual 

to be evaluated is decided by the previous ant. This involved the probabilistic 

calculation so that the next solution constructed is better. The constraint-based 

modeling simulation method of FVA is selected to calculate the scoring fitness of 
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individuals and is continuously repeated until all individuals are evaluated. 

Moreover, the bases for probabilistically constructing solutions is the 

implementation and use of heuristic information and in this study, FVA and the 

optimization rule of pheromone value are combined.  

 

2.3.5 Scoring fitness of an individual 

 

The fitness evaluation was carried out by using FVA. Figure 4 shows the basic 

flowchart of FVA to obtain the best production rate. FVA calculates the fitness of 

a mutant individual after undergoing a deletion reaction strategy. The calculation 

performed is based on steady state approximation of the internal metabolites 

concentration, which reduces the corresponding mass balances in an effective 

manner. When a list of reactions that is selected to knock out has been found and 

removed from current solution, FVA examines the model after the knockout 

process using linear objective function to determine the flux distribution.  

 

 
Fig. 4. The flow of FVA to obtain the best production rate. 

 

 

Firstly, FVA is set to calculate the cellular growth rate of a model of the new 

solution referring to the mutant model constructed by ACO. The percentage of 

optimal solution can be set up to 100 %. In this study, the optimal solution is set to 

the highest percentage which is 100%. The growth rate that is higher than 0.01 is 

chosen to further continue the process to optimize the desired product flux at a fixed 

cellular growth rate which indicates that the new model has a viable growth rate. 

Then, the process is now focused on the production rate that has been set as the new 

objective function. The final solution is obtained at the last step which carries the 
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best production rate value. This production rate is used as the fitness. The flow of 

fitness evaluation is showed in Figure 4. The aim is to maximize the objective 

function of f(x) can be formulated as equation 6.  

 

                          𝑓(𝑥) = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒   mmol g/DW/ h                                (6) 

 

3 Datasets and Experimental Setup 

Genome-scale model has been chosen as input data to perform the operation of the 

algorithm of ACOFVA. The two developed datasets Yeast (Saccharomyces 

cerevisiae) and Cyanobacteria (Synechocystis sp PCC6803) are selected. These 

models are well established and have been used by many researchers in metabolic 

engineering area to study the bacterium’s metabolism and phenotypic behaviour. 

The S. cerevisiae model used is downloaded from a published literature by [28] 

derived from http://sourceforge.net/projects/yeast/files/yeast_4.05.zip/download 

and known as yeast.4.05 which contains 1865 reactions and 1319 metabolites. The 

other model is Synechocystis sp PCC6803 version iJN678 developed by [29] 

downloaded from bigg.ucsd.edu/ models/iJN678 that contains 863 reactions and 

795 metabolites. 

 

Before all the models are applied to the constructed ACOFVA algorithm, the pre-

processed steps are carried out towards the models based on biological assumptions 

and computational approaches. During this step, some non-informative data inside 

the model are removed to obtain better results. For example, dead-end reactions are 

removed from the model to elude it from affecting the accuracy of the result while 

testing the model with the algorithm. In addition, this step also perform a check for 

consistency of the model after it has undergone the pre-process step. Table 2 shows 

the reducing of reactions and metabolites number after those model undergo the 

pre-processing steps.  

 

Table 2. Comparison between raw and pre-processed model. 

Model Number of  

Reactions 

Number of Metabolites 

Raw 

Model 

Pre-processed  

Model 

Raw 

Model 

Pre-processed  

Model 

S. cerevisiae 1865 1461 1319 881 

Synechocystis 

sp PCC6803 

863 739 795 636 

 

Three results are generated during this work which is a list of reactions knocked 

out, growth rate, and production rate, which are going to be explained in details in 
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the next section. The experiment was conducted using quad core of 3.60 GHz Intel 

Core i7 processor with 16 GB RAM workstation. 

 

Parameter Setting for ACOFVA 

 

The performance of any algorithm is largely depend on the setting of its algorithm 

dependent parameter [30]. The optimal setting should allow the algorithm to 

achieve the best performance for solving a range of optimization problems. 

 

The glucose uptake rate is used as the sole carbon source for both models in this 

study. This research is emphasized to improve the metabolites production in 

heterotrophic condition. The glucose uptake rate is set at 10 mmol g DW-1 h-1 as 

it is the common glucose value that is suitable with Yeast organism. In addition, the 

amount is also the highest value of glucose uptake rate for Yeast S. cerevisiae [31]. 

According to [32], 0.85 mmol g DW-1 h-1 is the maximum bounds of glucose 

uptake rate for the heterotrophic growth condition for Cyanobacteria Synechocystis 

sp. PCC6803 model. Therefore, by setting high glucose uptake rate as sole carbon 

for the model to grow, the desirable production can be enhanced. The set amount 

has been used widely by computational and also wet lab experiment.  

 

In addition, the population size and number of knockout for this new proposed 

algorithm are 100 and 5 respectively. These values have been tested and showed 

good results. Thus, it is selected as the most suitable parameter to have a better 

growth and production rates. All the results showed are from 30 number of runtime 

and iteration for each runtime is 100. The performance of any algorithm is largely 

depend on the setting of its algorithm dependent parameter [30]. The optimal setting 

should allow the algorithm to achieve the best performance for solving a range of 

optimization problems. 

 

4 Results and Discussion 

In this paper, a hybrid of ACOFVA is proposed to improve the result of some 

previous existing methods in elucidating phenotype behavior after modification 

towards metabolic network is carried out while improving the interest metabolite 

production. For the benchmarking function, mean and standard deviation (STD) of 

growth rate and production rate are calculated. Table 3 shows the result of mean 

and STD. Both datasets show low STD when tested with ACOFVA indicate that 

the result of each run is very close to the mean. It is apparent that the stability of the 

proposed algorithm is high as the difference between the results of each runtime is 

small. In addition, due to the set of reactions and genes knockouts performed, it 

could be hypothesized that each set of reactions might cause a specific and varying 

range of interactions that can affect the final cascading pathway for L-Phe and H2 

production. 
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Table 3. Mean and standard deviation for the growth rate of each metabolite. 

Data Mean Standard Deviation 

L-phenylalanine 

(S. cerevisiae) 

1.1547 0.5054 

Biohydrogen 

(Synechocystis) 

0.0374 0.0024 

 

 

Production of L-Phenylalanine in S. cerevisiae 

 

Table 4 shows reactions and genes information that are suggested to be knocked 

out for L-Phenylalanine in   S. cerevisiae. The list of reaction knocked out that can 

be used in real laboratory experiment to test its potential to improve L-Phe 

production is also provided. Some justifications towards the suggested reaction to 

be deleted are explained according to biological information. 

  

Table 4. Reactions and genes information suggested to be knocked out for L-

Phenylalanine in Saccharomyces cerevisiae. 

Reaction Id Reaction 

Description 

Genes Pathway 

PC Pyruvate 

carboxylase 

PYC2 atp + hco3 + pyr --> adp + h 

+ oaa + pi 

ACACT4p Acetyl CoA C-

acetyltransferase 

POT1 3odcoa + coa --> accoa + 

occoa 

ACALDCD Acetaldehyde 

condensation 

PDC1 acald --> actn-R 

GAT2_SC Glycerol-3-

phospate 

GPT2 dcacoa + ddcacoa + dhap + 

hdcoa + ocdycacoa + 

odecoa + pmtcoa + stcoa + 

tdcoa --> 1agly3p_SC + coa 

CERS Fatty acid SCS7 cer1_24 + h + nadph + o2 --

> cer2'_24 + h2o + nadp 

 

Comparison of the results obtained for L-Phe production using ACOFVA and other 

methods are showed in Table 5. As can be seen from the results, this method shows 

better results in terms of growth rate and production rate compared to other methods, 

including the previous researcher’s work. The same type and version of the dataset 

model is applied for all the mentioned methods to make the comparison more 

reliable and fair. The results return by FVA is by the wild type (WT) model. It can 

be clearly seen that the value of growth rate is a bit lower than the WT. However, 
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the production rate of the modified model is far higher than the WT. This is because 

the modification towards the biological network is set to optimize the production of 

interest metabolite while maintaining the good growth. From the results, the growth 

rate of S. cerevisiae at 1.1547 h-1 it able to produce 5.7778 mmol gDW-1 h-1 of L-

Phe.  

 

 

Table 5. Comparison between different methods for growth rate and production 

rate of L-Phenylalanine in Saccharomyces cerevisiae. 

Max. theoretical yield: 6.000 

Method Growth rate 

(h-1) 

Production rate 

(mmol gDW-1 h-1) 

List of knockout 

reactions and genes 

ACOFVA 1.1547 5.7778 Reactions Id: PC, 

ACACT4p, 

ACALDCD, 

GAT2_SC, CERS 

Genes: PYC2, POT1, 

PDC1, GPT2, SCS7 

FVA 1.7023 0.1927 N/A 

OptGene 

[17] 

0.57 N/A Genes: PDC1, GDH1 

CBAFBA 

[23] 
1.7023 0.19466 Genes: ARO4, BDH1, 

ARO10 

ACOFBA 

[22] 
1.7023 0.1947 Genes: BAT1, 

ARO10, MDH1 

Note: * The bold numbers represent the best result. N/A - Not applicable. 

          * mmol gDW-1 h-1 is millimoles per gram dry cell weight per hour. 

          * The shaded column represents the hybrid algorithm proposed in    

             this research. 

 

Aforementioned, a set of reactions with the associated genes is knocked out to 

obtain the better value of the objection function. Reaction pyruvate carboxylase (PC) 

with a gene PYC is involved in a cytoplasmic enzyme to convert pyruvate to 

oxaloacetate. The removal of PYC, makes the production of competitive metabolite 

become inactive such as succinate as NADH is not utilized in the TCA cycle. Gene 

POT1 plays a role in various pathways, including valine, leucine, and isoleucine 

degradation. Thus, by removing this reaction and its corresponding genes, the 

mentioned metabolites cannot be produced. Pyruvate decarboxylase (PDC) 

involved in amino acid catabolism and the fermentation of glucose to ethanol and 

the removal of PDC caused the ethanol formation cannot be carried out. GPT2 and 

SCS7 are another genes suggested to be knockout. This information is obtained 

from known databases such as Saccharomyces Genome Database (SGD) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG). In addition, Figure 5 shows the 

convergence graph for L-Phenylalanine production. The graph shows that this 
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algorithm can converge faster which takes nearly at iterations 30 although the 

algorithm is allowed to run until 100 iterations. These results are used as the 

benchmark function of the algorithm. 

 
Fig. 5. ACOFVA convergence graph for production of L-Phenylalanine. 

 

 

Production of biohydrogen in Synechocystis sp PCC6803 

 

Table 5 shows reactions and genes information that are suggested to be knocked 

out for biohydrogen in Synechocystis.  

 

Table 5. Reactions and genes information suggested to be knocked out for 

biohydrogen in Synechocystis sp PCC6803. 

 

Comparison of the results obtained for H2 production using ACOFVA and other 

methods are showed in Table 6.  The results return by FVA is by the wild type (WT) 

Reaction 

Id 

Reaction 

description 

Genes Pathway 

PDH Pyruvate 

dehydrogenase 

sll1721 nad + coa + pyr -> nadh + 

co2 + accoa 

ENO Enolase slr0752 2pg  <=> h2o + pep  

ACKr Acetate kinase sll1299 acetyl-CoA => acetate 

SUCCtpp 

 

Succinate transport 

via diffusion 

(periplasm to 

cytosol) 

N/A h + succ <=> h + succ 

 

ALCD2y Alcohol 

dehydrogenase 

slr0942 nadp[c] + etoh[c]  <=> h[c] 

+ nadph[c] + acald[c]  

an alcohol + NADP+ = an 

aldehyde + NADPH + H+ 

Note: N/A - Not applicable. 
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model. From the table, it can be clearly seen that the value of growth date is a bit 

lower than the WT. However, the production rate of the modified model is far 

higher than the WT. For the Synechocystis model, at growth 0.0374 h-1 this model 

can produce 4.0607 mmol gDW-1 h-1 of biohydrogen. This is because the modified 

model has removed some competitive reactions that could affect the acquisition of 

high production of interest metabolite. Figure 6 shows the convergence graph for 

biohydrogen production. The graph shows that this algorithm can converge faster 

which takes nearly iterations 40 although the algorithm is allowed to run until 100 

iterations. 

 

Table 6. Comparison between different methods for growth rate and production 

rate of biohydrogen in Synechocystis sp PCC6803. 

Max. theoretical yield: 9.7665 

Method Growth rate 

(h-1) 

Production rate 

(mmol gDW-1 

h-1) 

List of knockout reactions 

and genes 

ACOFVA 0.0374 4.0607 Reactions Id: PDH, ENO, 

ACKr, SUCCtpp, ALCD2y 

Genes: sll1721, slr0752, 

sll1299, slr0942 
FVA 0.0632 9.19E-05 N/A 

FBA [33] 0.019 3.195 N/A 

Note: * The bold numbers represent the best result. N/A - Not applicable. 

          * mmol gDW-1 h-1 is millimoles per gram dry cell weight per hour. 

          * The shaded column represents the hybrid algorithm proposed in     

             this research. 

 

 

 
Fig. 6. ACOFVA convergence graph for production of biohydrogen. 

 

Pyruvate dehydrogenase (PDH) is located in the mitochondria. This reaction 

consists gene sll1721. PDH is necessary to convert Pyruvate to acetyl CoA in the 

presence of oxygen so that carbons from pyruvate can go through TCA cycle to 
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produce ATP. Thus by removing this reaction, conversion of pyruvate to acetyl-

CoA cannot be carried out as reflected in the production of other competitive 

metabolites that are present in that pathway. Removing ACKr also causes the 

reaction to carry acetyl-CoA as unable. Thus, pyruvate can only focus on the 

production of H2. slr0752 is a protein-coding gene which is involved in glycolysis. 

This gene helps in converting glycerate to phosphoenolpyruvate. By deleting the 

enolase reaction and its gene, phosphoenolpyruvate cannot be used to catalyse the 

pyruvate production which then lactates or ethanol is not able to be produced. 

SUCCtpp is a reaction for subsystem of transportation of succinate via diffusion 

from periplasm to cytosol. This reaction is removed because it is not an important 

path to overproduce the interest metabolites. However, this reaction does not 

contain any gene because it is a transport reaction as mentioned. Reaction alcohol 

dehydrogenase with gene slr0942 is other reaction (gene) suggested to be knocked 

out. All of this information is according to KEGG. 

 

Conclusion and Future Works 

The advancement of computational biology use in metabolic engineering area to 

predict study about genome-scale metabolic model has become more popular by 

the days. Metabolic flux analysis shows many successful results in studying 

genome data. However, the accuracy and efficiency of existing methods are still not 

viable, thus setting a challenge that calls for an action for improvement. These two 

points are the crucial keys in developing any computational methods to obtain better 

results in predicting and observing the phenotype of interest in the biotechnology 

field. Consequently, it fulfills the industrial market needed such as for biofuel, food 

and the pharmaceutical sectors. In this paper, a hybrid of modeling simulation of 

constraint-based method and optimization algorithm which is ACOFVA has been 

proposed to overcome the issues mentioned. This algorithm has successfully 

predicted several reactions and genes that can be knocked out in order to improve 

and optimize the production of desired metabolites in a viable growth rate. This 

particular research only focuses on the production rate of L-Phe and H2 with some 

information of reaction and genes suggested to knockout. The list of reaction and 

genes knockout need to be further validated through wet lab experiment. ACOFVA 

has successfully improved the performance of other existing methods such as FBA, 

FVA, CBAFBA and also ACOFBA. This is because the newly developed algorithm 

has implemented some suitable parameters in the algorithm that was tested earlier. 

It directly improves the accuracy while searching for the best value of an objective 

function. Based on the experiment, the results showed that the L-Phe and H2 

produced were higher than its wild-type models. For the future plan, Biomass per 

Coupled Yield (BPCY) as a fitness evaluation can be calculated to test the accuracy 
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of phenotype for other metabolites, too. 
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