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ABSTRACT

The critical step in automatic trademark matching is to extract trademark
features from the database automatically and reliably. However, the performance of
existing algorithms rely heavily on the size of the database. It is essential to
incorporate an efficient classification technique to partition the database in order to
ensure the performance of an automatic trademark matching system is robust with
respect to the increase in the database size. Two new approaches are proposed to
classify trademark images. The approaches contain five major stages, namely: image
acquisition, image preprocessing, feature extraction, data transformation and
classification. Feature normalization and data discretization techniques are utilized
to perform the data transformation phase. An Adaptive Multi Layer Perceptron
(MLP) embedded with an enhanced Backpropagation (BP) algorithm and Rough Set
Theory are applied to classify the images. Experimental results reveal that the
Adaptive MLP embedded with the enhanced BP algorithm exhibits a faster
convergence rate than the classical BP algorithm. In conclusion, the Adaptive MLP

outperforms Rough Set Theory in terms of speed, accuracy and sample size.
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ABSTRAK

Langkah kritikal dalam pemadanan imej logo ialah pengekstrakan fitur logo
daripada pangkalan data secara otomatik dan pasti. Walaubagaimana pun algoritma
yang sedia ada amat bergantung kepada saiz pangkalan data. Satu teknik klasifikasi
yang efisien perlu disertakan untuk memetakan pangkalan data supaya prestasi suatu
sistem pemadanan logo itu teguh daripada aspek peningkatan saiz pangkalan data.
Dua pendekatan baru diperkenalkan untuk pengelasan imej logo. Pendekatan
berkenaan mempunyai lima fasa yang terdiri daripada perolehan ime;j,
prapemprosesan imej, pengekstrakan fitur, transformasi data dan pengelasan. Teknik
pernormalan fitur dan pendiskretan data digunakan dalam fasa transformasi data.
Perceptron Berbilang Lapis (MLP) Adaptif beserta algoritma pembelajaran
pembaikan daripada algoritma Rambatan balik (BP) dan teori set kasar digunakan
untuk mengelaskan imej. Hasil ujikaji mendedahkan bahawa MLP Adaptif
mempunyai kadar penumpuan yang lebih pantas jika dibandingkan dengan algoritma
BP asal. Kesimpulannya, MLP Adaptif menandingi teori set kabur dari segi

kelajuan, ketepatan dan saiz sampel.
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CHAPTER 1

INTRODUCTION

1.1  Background

Trademark is a symbol in a form of an image used to publicize and indicating
services or products of an organization or a company. Trademark symbols enable
clients to identify the good products. The trademark symbol is legally registered
representing the specific company or the organization. A registered trademark is
 protected through legal proceedings from imitation and misuse. Based on these
aspects, it is a stringent requirement for trademark symbols to be uniquely different
from other trademarks for legal reasons and in order not to mistakenly identify the

company’s identity (Soffer and Samet, 1998; Eakins et al., 1996 ; Lam et al., 1995).

Trademark offices in several countries in the world strive to ensure the
uniqueness of all registered trademarks. There is a very challenging task due to ever
increasing number of registered trademarks. Up to now, the number of trademark
worldwide is over one million and is growing rapidly (Chan and King, 1999). The
problem is further aggravated by the complexity and diversity of trademark patterns.
Most trademark offices are not yet automated. Traditionally a database system is

employed to a limited extent for such purpose, as they still need to use a paper based



indexing method for searching the trademark image and Vienna Classification for

filing and indexing (Lam et al., 1995).

In Malaysia, trademarks are registered at the Ministry of Trades and Industry
(MITI). Due to the increasing number of registered companiés, of over 200
trademarks per month, it is becoming a difficult task of designing and registering
new trademarks (Puteh et al., 1998a). The current practice to classify trademarks is
by keeping them in separate files according to specific class order and the
classification process is performed manually. However, when the number of
registered trademarks escalated to hundred thousands, the tasks become tedious,

inefficient and furthermore redundancy may occur (Dzulkifli, 1997).

Other application of trademark classification is in document processing
domain, a trademark is used for the purpose of indexing documents. Given a
representative trademark (known or unknown), the database of documents is
searched and all documents, which contain that trademark, will be extracted
(Gori et al., 2003; Neumann et al.,2002; Alwis, 2000; Sieden et al.,1997).

Another problem associated with the trademark image is its intrinsic nature
that it is complex and highly occluded. In addition, the image consists of various
shapes and design style. On top of that, the text in the image composes of different
fonts and artistic style (Lam e al., 1995). A suitable feature extraction algorithm is
required to extricate the non-redundant features from the image before a

classification process is done.



1.2 Statement of the Problem

In this study we intend to come up with an approach to provide insights into
solving the feature extraction and classification of trademark images. The research

question is:

How to produce an approach that is able to classify the trademark image robust,

Jast, accurate and efficient?

In order to answer the main issue raised above, the following issues need to be

addressed as a pre-requisite:

a. What is the suitable technique to extract unique global features from the

trademark image?

b. What is the suitable Neural Network architecture to be adopted for image

classification?

c. It is well known that Back-Propagation learning algorithm suffers many
drawbacks, such as low convergence rate and the problem of local minima.

How can it be overcome?
d. How to perform image classification using Rough Set Theory?
e. Another problem with any learning algorithm is the curse of dimensionality

associated with input data, since they slow down the learning process, what is

the suggestion to reduce the dimension of the input data?



1.3  Aim

The goal of this study is to develop a trademark image classification approach

that is robust, fast, accurate and efficient.

1.4  Objective -

In order to achieve the above aim, listed below are the objectives of this

thesis:

(@  To study the trademark image classification techniques and propose
new approaches for classification of trademark images based on the

conventional approach.

(b)  To study the feature extraction process of trademark images and to
produce new algorithms for feature extraction of global shape features

belong to trademark images.

(c) To perform data transformation of the trademark image features using

Feature Normalization Technique and Data Discretization.

(d)  To compare the performance of the conventional trademark

classification approach with the proposed approaches.

In order to realize the above goal and objectives, next section is dedicated to

outline the research framework adopted in this study.



1.5

Research Framework

TRADEMARK IMAGE
ACQUISITION
TRADEMARK IMAGE
PREPROCESSING
4
SEGMENTATION
FEATURE EXTRACTION
DATA TRANSFORMATION DATA TRANSFORMATION
USING FEATURE VECTOR USING DATA
NORMALIZATION DISCRETIZATION
Y
CLASSIFICATION USING CLASSIFICATION USING
NEURAL NETWORK ROUGH SET THEORY
CLASSIFICATION
PERFORMANCE
COMPARISON

Figure 1.0: The Research Framework




Figure 1.0 depicts the Research Framework utilized in this study. In this

study three trademark classification approaches are studied and the results obtained

are compared in terms of robustness, speed, accuracy and efficiency. The first

approach is based on the conventional image classification that consists of the

following steps:

ii.
iii.

iv.

Trademark Image Acquisition

Trademark Image Preprocessing

Trademark Image Segmentation

Feature Extraction

Classification Using Neural Network that implements standard Back

Propagation learning algorithm

The second classification approach is an enhancement of the first approach by

inserting a data transformation phase before classification. It consists of the

ii.
iil.

iv.

vi.

following steps:

Trademark Image Acquisition

Trademark Image Preprocessing

Trademark Image Segmentation

Feature Extraction

Data Transformation using Feature Vector Normalization and Data
Discretization

Classification Using Adaptive MLP Architecture with an enhanced Back-
Propagation algorithm.

The third classification approach consists of the following steps:

ii.
iii.

iv.

Trademark Image Acquisition
Trademark Image Preprocessing
Trademark Image Segmentation
Feature Extraction

Data Transformation using Data Discretization



vi.  Classification Using Rough Set Theory

The main differences between second and third approaches are that in the
second approach, the data transformation process is implemented using Feature
Vectors normalization and data discretization. An adaptive MLP is used to perform
classification. In the third approach however, the data transformation process is
carried out using only data discretization method and classification is performed

using Rough Set Theory.

In Trademark Image Acquisition, an optical trademark image is scanned to
produce a continuous signal that is then sampled into a discrete form. Through
preprocessing tasks, the contrast of the discrete image is enhanced and noise is
removed. In segmentation, the resulting image from the preprocessing step is
partitioned into its constituent objects using a thresholding technique. In feature
extraction phase, suitable techniques will be used to obtain a set of condensed
representative characteristics (or features) of an image for differentiating one class of

objects from another that is RST-invariance.

The resulting feature vectors produced in the feature extraction phase are
transformed into a suitable format before classification. Two different kinds of data
transformation adopted here first is Features Normalization and second is Data
Discretization. Feature Normalization refers to the rescaling of features to an
appropriate range (for instance 0 to 1 or -1 to 1). The types of normalization
techniques chosen to be studied are unit range, linear scaling, improved linear
scaling and simple normalization. The techniques may yield zero values after the
transformation, which is not preferable in NN training (Waseem, 2002). The unit
range and simple normalization techniques are enhanced producing values within the

range (0.1 - 0.9).



Discretization refers to the process of arranging the attribute values into
group of similar values. There are two types of discretization; unsupervised and
supervised. The unsupervised method relies on assumptions of the attribute values
distribution. This method is suitable to objects that do not have class labels. The
drawback of unsupervised method is that it is vulnerable to outliers that may
drastically skew the range of the attribute values distribution. The supervised
method is suitably applied to objects that have a class label. In our mission, we
choose a disretization method based on the integration of Rough Set Theory and
Boolean Reasoning proposed by Nguyen and Skowron (1996). The discretization

process consists of three major steps:

a. Creation of a discernibility matrix
b. Finding a minimum set of cuts or the Prime Implicant.

c. Mapping the original attributes into appropriate regions.

Step (a) and (c) involve direct computation, however step (b) is categorized as NP-
Hard problem in the literature (Nguyen and Nguyen, 1998). We proposed another

heuristic in finding the minimum set of cuts.

As for the classification process, two methods are chosen; Neural Network
and Rough Set Theory. Artificial Neural Network consists of a collection of
algorithms that facilitates learning operated in either a single layer or a multi-layer
architecture (Haykin, 1999). There are two types learning, supervised and
unsupervised learning. With supervised learning, the network is trained based on a
learning algorithm using samples with class labels, on the other hand, in
unsupervised learning training is done on samples without class labels. In this study,
an enhanced error-back propagation supervised learning implemented in an adaptive
MLP architecture is adopted to classify trademark images due to its robustness, faster

speed and producing accurate classification results.



Rough set theory is a new mathematical tool developed by Pawlak (1991) to
perform classification using data represented in a form of a table. Rows represent
objects under consideration and tuples represent attributes of the objects. In our
study tuples represent Geometric Invariant Moment features or Zernike Moment
features. The advantages of using rough set are that it does not require a priori or
additional information regarding the objects, such as probability distribution or basic
probability assignment as in other techniques. Rough set has been successfully
applied in various domains, to name a few for instance in medicine, finance,
telecommunication, vibration analysis, conflict resolution, intelligent agents, image
analysis, pattern recognition, control theory, process industry and marketing (Pawlak,
1997). The steps adopted to perform trademark image classification are:

computation of reducts, derivation of rules from reducts and classification.

1.6  Scope

The scope of this study is as follows:

(@)  Trademark images samples are obtained from the Ministry of Trade
and Industry Malaysia in a hard-copy form.

(b)  The domain chosen for this study is a 1-D monochrome (or black-
white ) trademark images.

(c) Image Acquisition, noise removal and segmentation are performed
using existing techniques.

(d)  Image orientations considered in this study are scale (enlarged and
reduced), angular (rotated to 90 degrees), positional (horizontal and
vertical orientation), rippled to 160 degrees and twirled to -72
degrees.

(e)  As for the purpose of classification a supervised Neural Network and

Rough Set Theory are used.
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1.7  Thesis Organization

The thesis consists of 9 chapters. Each chapter is briefly described as

follows;

(a)

(b

CY

(e)

®

(®

(h)

Chapter 1 describes the background, statement of the problem, aim,
objective, research framework, scope, thesis organization and ended
with thesis contribution.

Chapter 2 illustrates the trademark classification problem, image
classification phases, literature review on existing trademark image
classification, background study of BP, open issues of BP, BP
improvements and concepts of rough set theory.

Chapter 3 briefly describes the three approaches adopted to perform
the trademark image classification. '

Chapter 4 describes the implementation of the Feature Extraction
process. The results obtained are analysed and discussed.

Chapter 5 presents Data Transformation phase that consists of Feature
Normalization and Data Discretization. The implementations are
explained and the results of the experiments are analysed and
discussed.

Chapter 6 illustrates the methodology, the implementation and results
of trademark classification using the conventional and the Neural
Network approaches.

Chapter 7 describes the methodology, the implementation and results
of trademark classification using Rough Set Theory.

Chapter 8 compares and discusses the trademark image classification
performances of the Neural Network and Rough Set Theory
approaches.

Chapter 9 ends with a conclusion
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1.8 Thesis Contributions

1. Two new trademark classification approaches are proposed.

2. Two feature extraction algorithms. The first algorithm is based on Geometric
Moment Invariant Functions and another algorithm is based on Zernike Moment
technique.

3. Enhancements to two feature vectors normalization methods; the enhanced
Linear Scaling to Unit Range and the enhanced Simple Normalization Method.

4. Improvement of the performance of the standard BP algorithm by introducing a
higher-order activation function into the adaptive MLP architecture.

5. Expose the importance of discretized data in escalating the classification
performance.

6. Reveal the actual performance of Rough Set Theory for classification of
trademark images.

7. Disclose the classification performance of the proposed MLP architecture with an

embedded higher-order activation function.





