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Hardware emulation of quantum systems can mimic more efficiently the parallel behaviour of quantum computations, thus allowing
higher processing speed-up than software simulations. In this paper, an efficient hardware emulation method that employs a serial-
parallel hardware architecture targeted for field programmable gate array (FPGA) is proposed. Quantum Fourier transform and
Grover’s search are chosen as case studies in this work since they are the core of many useful quantum algorithms. Experimental
work shows that, with the proposed emulation architecture, a linear reduction in resource utilization is attained against the pipeline
implementations proposed in prior works. The proposed work contributes to the formulation of a proof-of-concept baseline FPGA
emulation framework with optimization on datapath designs that can be extended to emulate practical large-scale quantum circuits.

1. Introduction

Quantum computing is based on the properties of quantum
mechanics, namely, superposition and entanglement. Super-
position allows a quantum state to be in more than one basis
state simultaneously, whereas entanglement is the strong
correlation between multiqubit (quantum bit) basis states in
a quantum system. Superposition and entanglement facilitate
massive parallelism which enables exponential speed-ups to
be achieved in the well-known integer factoring and discrete
logarithms algorithms [1] and quadratic speed-ups in solving
classically intractable brute-force searching and optimization
problems [2, 3].

Similar to classical computing, quantum algorithms are
developed long before any large-scale practical quantum
computer is physically available. In 1994, Shor proposed
the integer factoring and discrete logarithms algorithms [1]
that brought the world’s attention to the enormous potential
of quantum computing. An example of this is the Rivest-
Shamir-Adleman (RSA) security scheme [4] which is widely
applied in current public key cryptosystem. It is based on
the assumption that integer factoring of large number is
intractable in classical computing. Shor’s proposal, which,

in contrast, factors integer in polynomial time, would make
such security scheme no longer secure. In [5], Grover
proposed a quantum search algorithm that is capable of
identifying a specific element in an unordered m elements
database in (I1/4)+/m attempts. This algorithm achieves a
quadratic speed-up over the corresponding classical method
that requires m/2 queries on average, to retrieve the desired
data. Although the solution is only polynomially faster than
the classical approach, Grovers quantum algorithm is an
important one as it can be generalized to be applied in many
intractable computer science problems. Recently, quantum
equivalents for random walks [6], genetic algorithms [3], and
NAND tree evaluation [7] have been developed.

Shor in [8] categorized quantum algorithms known to
provide substantial speed-up over the classical approach into
three types: (a) algorithms that achieve notable speed-up by
applying quantum Fourier transform (QFT) in periodicity
finding; examples of this type of algorithm include integer
factoring and discrete logarithms algorithms [1], Simon’s
periodicity algorithm [9], Hallgren’s algorithms for Pell’s
equation [10], and the quantum algorithms for solving hidden
subgroup problems [11, 12]; (b) Grover’s search algorithm
and its extensions [2, 13] which in general offer square root



speed improvements over their classical counterparts; and (c)
algorithms for simulating or solving problems in quantum
mechanics [14].

Physical realization of a quantum computer is proving to
be extremely challenging [15]. With research into viable large-
scale quantum computers still ongoing, various technologies,
namely, ion trap [16], nuclear magnetic resonance [17],
and superconductor [18], were attempted. Nevertheless, only
small-scale quantum computation implementations have
been achieved [19, 20]. Instead of focusing on the realization
of quantum gates, a different approach known as quantum
annealing which solves optimization problems by finding
the minimum point is used in the 128-qubit D-Wave One,
512-qubit D-Wave Two, and 1000-qubit D-Wave 2X systems
[21, 22]. However, based on the research report presented in
[23], the expected quantum speed-ups were not found in the
D-Wave systems.

In parallel to efforts to develop physical quantum com-
puters, there is also much effort in the theoretical research
of quantum algorithms. Until large-scale practical quantum
computers become prevalent, quantum algorithms are cur-
rently developed using the classical computing platform.
However, due to their inherent sequential behaviour, classical
computers that are based on Von Neumann architecture
cannot simulate the inherent parallelism in quantum systems
efficiently. On the other hand, the technology of field pro-
grammable gate array (FPGA) offers the potential of massive
parallelism through hardware emulation. Consequently, sig-
nificant improvement in speed performance over the equiv-
alent software simulation can be achieved. However, FPGA
is still a form of classical digital computing, and resource
utilization on such a classical computing platform grows
exponentially as the number of qubits increases. The problem
is further compounded with the fact that accurate modelling
of quantum circuit in FPGA technology is nonintuitive and
therefore difficult, providing the research motivation for this
paper.

This paper presents an efficient FPGA emulation frame-
work for quantum computing. In the proposed emulation
model, quantum computations are mapped to a serial-parallel
architecture that facilitates scalability by managing the expo-
nential growth of resource requirement against number of
qubits. Quantum Fourier transform and Grover’s search are
chosen as case studies in this work since they are the core
of many useful quantum algorithms, and in addition, they
have been used as benchmarking models in prior works on
FPGA emulation. Experimental results on the efficiencies
of different FPGA emulation architectures and fixed point
formats are presented, which will sufficiently demonstrate the
feasibility of proposed framework.

The rest of this paper is organized as follows: Section 2
discusses prior works on FPGA-based quantum computing
emulation, emphasizing issues of hardware architecture and
modelling of quantum system on FPGA platform. In Sec-
tion 3, the theoretical background on quantum computing
and related quantum algorithms is provided. Section 4
presents the design of the proposed FPGA emulation models
for QFT and Grover’s search algorithms. Experimental results
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and analysis are given in Section 5. Finally, concluding
remarks are made in Section 6.

2. Related Work

Modelling of a quantum system on classical computing
platform is a challenging task. Hence, it is even more diffi-
cult to map quantum algorithms for emulation on classical
computing environment based on FPGA, which is highly
resource-constrained. Many attempts have been made in the
last decade in FPGA emulation of quantum algorithms, and
these works include [24-27]. However, details of the critical
design processes such as mapping of the quantum algorithms
into the FPGA emulation models and the verification of the
implementations are not revealed in these prior works.

For software-based simulation using classical computer,
various types of quantum simulators have been proposed.
An open source C library, libquantum, for simulation of
quantum computing is presented in [28] where pure quantum
computer simulation as well as general quantum simulation
is supported by the tool. In 2007, a variant of binary deci-
sion diagram named quantum information decision diagram
(QulDD) for compact state vector storage was introduced
in [29] for efficient quantum circuit simulation. Garcia and
Markov [30] proposed a compact data structure based on
stabilizer formalism called stabilizer frames.

Most of the previous FPGA emulation works are based
on the quantum circuit model, which is essentially an
interconnection of quantum gates. A different approach was
taken by Goto and Fujishima [24] where a general purpose
quantum processor was developed instead of applying the
quantum circuit model. However, Fujishima’s quantum pro-
cessor assumed that the amplitudes of a quantum state can
be either all zeros or with evenly distributed probability. In
its emulation of Shor’s integer factoring algorithm, details
of the implementation are inadequate for its results to be
verified as claimed. For instance, it is stated in [24] that a
64-bit factorization was demonstrated using their emulator
with only 40 Kbits of classical memory instead of 320 qubits as
required with Shor’s algorithm in a quantum computer. This
statement was not supported by design and implementation
details on how factorization of such a large integer can be
done with only 40 Kbits memory, where typically it would
require at least 2°%° bytes to represent a quantum state of such
a scale on the classical platform.

In [25], FPGA emulation of 3-qubit QFT and Grover’s
search are proposed. In this work, which is based on the quan-
tum circuit model, qubit expansion is performed prior to the
application of multiqubit quantum gate transformations. This
leads to an inaccurate modelling of a quantum algorithm,
since, according to [31], the input quantum state to QFT
circuit should first be placed in superposition of basis states,
where signal samples are encoded as sequence of amplitudes.
In the work by [26], hardware emulation of QFT restricts
its input quantum state to the computational basis state,
implying that superposition is not included in the modelling.
Rivera-Miranda et al. in [26] claims 16-qubit QFT emulation
is achieved. However, the emulator can only process up to 32
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input signal samples in one evaluation, which is equivalent
to a 5-qubit QFT emulation if effects of superposition and
entanglement are included.

From the above discussion it should be noted then
that the critical quantum properties of superposition and
entanglement were not considered in these previous works,
resulting in inaccurate modelling of quantum algorithms.
Without the superposition and entanglement effects, the
power of quantum parallelism cannot fully be exploited. Pre-
vious works reported in [25-27] applied pipeline architecture
in their FPGA emulation implementations so as to obtain
high throughput and low critical path delay. However, a
pipeline design imposes high resource utilization (due to the
requirement of additional pipeline registers and associated
logic), thus limiting FPGA emulation to be deployed in more
practical quantum computing applications that typically
require high qubit sizes. In these pipeline implementations
proposed in prior works, resource growth was exponential to
the increase in qubit sizes.

In this paper, the issues outline above is addressed. The
efficiencies of different hardware architectural designs for
FPGA emulation purposes are evaluated based on the chosen
case studies of QFT and Grover’s search. We propose an
accurate modelling of quantum system for FPGA emulation,
targeting efficient resource utilization while maintaining
significant speed-up over the equivalent simulation approach.
Since our proposed FPGA emulation framework applies
the state vector approach, simulation models based on the
libquantum library are selected in this work for benchmark-
ing purposes.

3. Theoretical Background

In general, quantum algorithms obey the basic process flow
structure. The computation process begins with a system set
in a specific quantum state, which is then converted into
superposition of multiple basis states. Unitary transforma-
tions are performed on the quantum state according to the
required operations of the algorithm. Finally, measurement
is carried out, resulting in the qubits collapsing into classical
bits.

3.1. Quantum Bit (Qubit). In classical computing, the small-
est unit of information is the bit. A bit can be in either state 0
or state 1, and the state of a bit can be represented in matrix

form as
01
state 0 = ,
1 (0

0fO0
state 1 = .
1 (1

On the other hand, in quantum computing, the smallest
unit of information is the quantum bit or a qubit. To
distinguish the classical bit with the quantum qubit, Dirac
ket notation is used. Using the ket notation, the quantum
computational basis state is represented by |0) and [1). A

qubit can be in state |0), or in state |1), or in superposition
of both basis states. The state of a qubit can be represented as

B B 0 [
ly) =0y + BI1) = ) [/3] ©))

where both « and 8 are complex numbers and lo* + | ﬁlz =
1. |af? is the probability where the qubit is in state [0) and
|BI? is the probability where the qubit is in state [1) upon
measurement. An n-qubit quantum state vector contains
2" complex numbers which represents the measurement
probability of each basis state. However, on measurement,
the superposition is destroyed and the qubits return to the
classical state of bits depending on the probability derived
from the complex-valued state vector.

3.2. Tensor/Kronecker Product. Tensor product or Kronecker
product is the basic operation that is applied in the formation
of a larger quantum system as well as multiqubit quantum
transformations. A quantum state vector that can be written
as the tensor of two vectors is separable, whereas a state
vector that cannot be expressed as the tensor of two vectors
is entangled [15]. The tensor operation on any arbitrary two
1-qubit transformations is shown below:

agby agby aby ab

[ao a1:|® [bo b1] agb, agb; a\b, ayb,

= . 3
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3.3. Quantum Circuit Model. A quantum algorithm is a
description of a sequence of quantum operations (or trans-
formations) applied upon qubits to generate new quantum
states. The model most widely used in describing the evolu-
tion of a quantum system is the quantum circuit model, first
proposed in [32]. A quantum circuit is the interconnection of
quantum gates with quantum wires, and gate operations are
represented by unitary matrices.

All unitary matrices are invertible and the products of
unitary matrices as well as the inverse of unitary matrix are
unitary. An N-by-N matrix U is unitary if UUT = UTU = I,
where U is the adjoint (conjugate transpose) of U. Since
all quantum transformations are reversible, quantum gate
operations can always be undone. Fundamental quantum
gates include the Hadamard gate, phase-shift gate, and swap
gate, and these gates are described as follows.

Hadamard gate H is one of the most useful single qubit
quantum gates. It operates by placing the computational basis
state into superposition of basis states with equal probability.
The Hadamard transform can be represented by the following
unitary matrix:

pe L[N 4
_ﬁ[l—l]’ @



The following example illustrates the application of
Hadamard gates in mapping a 2-qubit basis state [00) to a
superposition of basis states with equal probability:

looy 221, ~ (|00) +101) + [10) + 1)),
1 1
i LU IV|o] 1t ()
(EL —1]®ﬁ[1 —1]) ol 2|1
0 1

Controlled phase-shift gate “R; operates on 2 qubits, one
of which is the control qubit and the other is the target qubit. If
the control qubit is true, a phase-shift operation is performed
on the target qubit; otherwise, there is no operation. The
operation is represented by the following matrix:

100 0

ch010 0 ©

k=loo1 o |
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Quantum SWAP gate is used for swapping two qubits.
It switches the amplitudes of a quantum state vector. The
operation of a 2-qubit SWAP gate is represented by matrix
in

1000

0010
SWAP = ) (7)
0100

0001

3.4. Quantum Fourier Transform (QFT). The Fourier trans-
form is deployed in wide range of engineering and physics
applications such as signal processing, image processing,
and quantum mechanics. It is a reversible transformation
that converts signals from time/spatial domain to frequency
domain and vice versa. The Fourier transform is defined in
(8) for continuous signals and in (9) for discrete signals:

X(f) = J (6 e gy, ()
N-1
Xk _ aneﬂZn(kn/N). (9)
n=0

The quantum Fourier transform (QFT) is a transfor-
mation on qubits and is the quantum equivalent of the
discrete Fourier transform. It should be noted that a quantum
computer performs QFT with exponentially less number of
operations than the classical Fourier transform. However,
QFT does not reduce the execution time of the algorithm
when classical data is used. This is due to the characteristic
of the quantum computer that does not allow parallel read-
out of all quantum state amplitudes. In addition, there is no
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known method that can effectively instantiate the desired
input state amplitudes to be Fourier-transformed [33].

In order to harness the power of quantum computing
on Fourier transform, QFT has to be deployed within other
practical applications. QFT is pivotal in quantum computing
since it is part of many quantum algorithms. These algorithms
include integer factorization and discrete logarithms algo-
rithms [1], Simon’s periodicity algorithm [9], and Hallgren’s
algorithms [10]. They offer significant speed-up over their
classical counterparts. QFT has also found applications in
many real-world problems such as image watermarking [34]
and template matching [35].

To compute Fourier transform in quantum domain, dis-
crete signal samples are encoded as the amplitude sequences
of a quantum state vector which is in superposition of basis
states [31]. An n-qubit QFT operation which transforms
an arbitrary superposition of computational basis states is
expressed in

lv) = ﬁZf (jae) |5

(10)
2"-12"-1

At eZm(;k/Z |k>
\/2—;) Jzof jt)

As the requirement for a valid quantum state, |y) must be
normalized such that it fulfils (11). If the original signal inputs
do not comply with this requirement, the amplitudes of the
signal samples have to be divided by the normalization factor,

VZfﬁg ! | f(IA)|?. In most cases, the input states formed by

the normalized signal samples are entangled:

2"-1

21 Ganf =1 (1)
j=0

From (10), it can be observed that the term j/2" in QFT
equation is a rational number in the range of 0 < j/2" < 1. As
qubit representation is typically used in computations, the j
in base-10 integer is redefined in base-2 notation as individual
bit such that the binary fraction form as expressed in (12) can
be conveniently adopted:

(j)]o = (jljz "'jn)z
= (22 g+ 2%)

=" (2*1]'1 +27%, +

(12)

:2n(0'j1j2"‘jn)2-
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FIGURE 1: Quantum circuit model for n-qubit QFT.

With some algebraic manipulations, the QFT equation
can be derived from (13) to form (14) [33]:

1 2"-1 ik
QFT, |j) = o Zez GRIZ') ey (13)
k=0
1 2i0-j
= — (10) + ™7 |1))

. (|0> + eZ”iO'jn—ljn |1>) .. (|0> + eZ”iO'jljz"'jn |1>) )
Since the term ™/t produces either —1 if j, = 1 or +1
otherwise, Hadamard computation on the first qubit results
in (1/v2)(|0) + e¥™0J1|1)). Computations of the consecutive
bits in the binary fraction are obtained using controlled
phase-shift gates according to (14). QFT circuit consists of
three types of elementary gates which are Hadamard gate, H,
controlled phase-shift gate, °R;, and SWAP gate. The circuit
model of an n-qubit QFT is depicted in Figure 1.

The size of a QFT circuit grows exponentially as the
number of input qubits increases. An n-qubit QFT involves
Yr_, k+1 unitary transformations and could process up to 2"
input samples in one evaluation (provided the input samples
are encoded as the amplitude sequences of a superposition of
computational basis states).

3.5. Grover’s Search Algorithm. In computer science area, a
typical search problem is to identify the desired element from
an unordered array. For many computing applications, it is
critical that the search technique is efficient. In terms of a
function, the search problem f : {0,1}" — {0, 1} is given
with assurance that there exists one binary string x, where
f(x) =1ifx = xy; else, f(x) =0.

In classical computing, m/2 queries on average are
required to search for a particular element in an unordered
array with m elements. In quantum computing, Grover’s
search algorithm can complete the job in (IT1/4)+/m queries
(for the rest of the text and figures in Section 3.5, the required
Grover iterations are abbreviated as V2" times). Although
the speed-up achieved is only quadratic, Grover’s algorithm
and its extensions are extremely useful in enhancing current
methods in solving database searching and optimization
problems, which include 3-satisfiability [36], global opti-
mization [37], minimum point searching [38], and pattern
matching [39]. The core operations of Grover’s algorithm are
phase inversion and inversion about mean. Phase inversion

by ————— = A
D H

T 1y

log) loy) lp,)

FIGURE 2: Quantum circuit for phase inversion [15].

inverts the phase of the state-of-interest, and its quantum
circuit model is given in Figure 2.

In Figure 2, the top n-qubit, |x), is the target qubit, and
the bottom qubit is called the ancilla qubit. The function
of Uy is to pick out the desired binary string. To apply
phase inversion on target qubits, Hadamard gate operation
is performed on the ancilla qubit, which is initialized as [1).
This is to complement the effect of U which takes |x, y) to
Ix, f(x) ® p).

In terms of matrices, the phase inversion operation can
be expressed as Us(I, ® H)Ix, 1), and the corresponding
quantum states are described as follows:

|(P0>=|X’1>7
a1 =117 [1x0) -Ix1)

|‘P1>—|X>_ NG ]—[ 7 ],

oy = oy [f @20 -F W)

(P2 | \/E
:|X)_M] (15)
L V® [0) —11)
=(-1) |X>[—\/§ ]

RS
_ 1|x)[|O> 2|1>], it x = x,,
+l|x)[7], if X # x,.

Inversion about mean boosts the phase separation
between the element-of-interest and other elements in the
unordered arrays (after phase inversion operation is applied
to invert the phase of the target element). The mean of
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(3) forV/2" times do

(6) end for
(7) Measure the target qubits

(1) Start with |0) as the target input qubits
(2) Apply n-qubit Hadamard gate on target qubits, H*"

(4) Apply phase inversion operation, U(I ® H)
(5) Apply inversion about mean operation on the target qubits, —I + 2A

ALGORITHM 1: Grover’s search algorithm.

all elements is computed and inversions are made about
the mean. The overall mean remains unchanged after the
inversion process. This is because the distance between one
element and the mean is the same before and after inversion.
The only change is if the original sequence is above the
mean, during the inversion it is flipped about the mean to the
same distance below the mean and vice versa. In general, the
inversion about mean operation can be expressed as

v = —v+2a, (16)
where a is the mean, v is the value of an element in the array,
and V' is the new value of that element after inversion.

In terms of matrices, the mean of a 2" elements vector
V is obtained by the product of matrices A and V where all
the elements in the 2"-by-2" matrix A are set to 1/2". Hence,
inversion about mean in matrix form becomes

V' = -V 424V = (-1 +2A) V. 17)

In order to achieve high confidence of getting the desired
element, the amplitude amplification process (amplitude
amplification in Grover’s search algorithm involves phase
inversion and inversion about mean operations) has to be
repeated for /2" times. This is because the probability of
success changes sinusoidally by the number of amplitude
amplification iterations (as illustrated in Figure 3) and
the highest probability of success first happened after the
required iterations. Pseudocode for a generic Grover’s search
algorithm is given in Algorithm 1.

There are two approaches to model Grover’s search
quantum algorithm. The first approach, which is based on
quantum circuit model, is discussed next. The second method
is modelling using arithmetic functions, and this is presented
in Section 4.2 since this approach is applied in this paper.

As shown in Figure 4, Grover’s search circuit given in [15]
is constructed with assumption that black box modules U
and I +2A are available. Descriptions of the Uy and -1 +2A
modules have been given earlier.

On the other hand, the circuit model for n-qubit Grover’s
algorithm presented in [33] is shown in Figure 5(a). In this
figure, H is the Hadamard gate, and G is the Grover iteration
circuit, which is illustrated in Figure 5(b).

The function of Grover iteration circuit is equivalent
to the phase inversion and inversion about mean. In order
to achieve high probability of successful search, G is con-
catenated for 2" times. In Figure 5(b), the role of oracle
module is to recognize the solution to a particular search

09t ! \ / \ / \ I '
0.8 | 1 1 \ Il \ 1 !
07t | \ ] \ I \ | \
0.6 | I | ,l
0.5+
04 !
0.3/ ! '
02} -

Ll
0.1} H

Measurement probability

0 20 40 60 80 100 120 140 160
Number of iterations

180 200

- - - Element-of-interest
—— Otbher elements

FIGURE 3: Probability of success by the number of amplitude amplifi-
cation iterations amongst 2'° probabilities. For 10-qubit search, first
highest probability of success happens at 25th iteration.

Repeat V2" times

Inversion
Phase inversion about mean

FIGURE 4: Modelling of Grover’s search based on quantum circuit
model [15].

problem in the phase inversion operation. By monitoring
the oracle qubit, a solution to the search problem can be
detected through the changes of the oracle qubit. The design
of oracle module varies with different search applications, and
an example of the oracle circuit for a simple 3-bit search task is
shown in Figure 6. In Figure 6, the X symbol represents Pauli-
X matrix. The open circle notation indicates conditioning on
the qubit being set to zero, whereas the closed circle indicates
conditioning on the qubit being set to one.

Deriving from the circuits in Figure 5, the corresponding
3-qubit Grover’s search circuit is provided in Figure 7. This
circuit model is made up of Hadamard, oracle, quantum
NOT, and multiqubit controlled-NOT gates.
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o)

Target qubits |0)
Oracle qubit|1)

(a) n-qubit Grover’s search

;

G| - |ac

Oracle workspace g

7
Phase:
- 0 0
n-qubits —] 10) = 10)
] Oracle ) — —lx)
Ix) — (=1)7®|x) Forx >0

(b) Grover iteration circuit, G

FIGURE 5: Quantum circuit model for Grover’s search algorithm [33].

X

.
T

FIGURE 6: Oracle circuit for recognizing binary string “010”.

4. Proposed FPGA-Based Hardware Emulation

This section presents our approach in modelling quantum
Fourier transform and Grover’s search algorithms for FPGA
emulation. The proposed techniques can be generalized to
FPGA emulation of more complex quantum algorithms that
apply QFT or Grover’s algorithm. This paper extends our
earlier work presented in [40, 41]. In these previous works, the
hardware architecture proposed was restricted to the serial
design with resource sharing facilitated at the register level.
In this paper, we enable resource sharing at the operator (or
computational) level that allows for more efficient emulation
of the quantum algorithms. Furthermore, additional case
study on Grover’s search algorithm is included for general-
ization of the proposed framework. The choice of hardware
architecture varies based on the need of different applications.
Based on the selected case studies, the efficiencies of different
hardware architectures for quantum computing emulation
purposes are discussed and analysed in this work. The goal
is to achieve scalability and also efficient resource utilization
for emulating practical larger qubit size quantum systems.

4.1. Modelling QFT for FPGA Emulation. The derivation of
quantum circuit model for n-qubit QFT was discussed earlier
is Section 3.4. Here, we present the modelling of QFT for
FPGA emulation based on a 3-qubit example. According to
(14), the mathematical expression for 3-qubit QFT is derived
as shown in

QFT, [j) = % (10y + €% 1)

. (I()) + eZm‘O-jzj3 |1>) (18)
. (lO) + 62”i0‘j1j2j3 |1>) .
Deriving from the general n-qubit QFT circuit provided

in Figure 1, the corresponding quantum circuit for 3-qubit
QFT is obtained as shown in Figure 8.

The circuit consists of Hadamard gates, H, controlled
phase-shift gates, “R, and “R,, and also the SWAP gate.
Referring to the functional block diagram given in Figure 9,
this quantum circuit model corresponds to a sequence of
unitary transformations, Ui, i = 1 to 7, defined by

Ul=HeI®I, (19)
U2="R,®1, (20)

U3 = (I®@SWAP) - (“R,®I)- (I8 SWAP),  (21)

Us=I0H®I, (22)
U5=1®°R,, (23)
U6=Ie®I®H, (24)
U7 = SWAP.. (25)

Note that, in Figure 9, the modelling of n-qubit quan-
tum system with superposition and entanglement properties
resulted in a circuit with 2" signals. Since the input samples
to QFT circuit are encoded as sequence of amplitudes in
an entangled superposition of basis states (discussed in Sec-
tion 3.4), modelling based on individual qubit with separate
quantum gate operations is unable to reflect the effects of
applying a quantum gate on entangled qubits correctly.

In order to model the effect of superposition and entan-
glement, derivation of each unitary transformation is made
through the tensor product of individual quantum gate and
identity matrix to form unitary matrix of equal dimension
with the quantum state vector. Detailed derivations of the
quantum unitary matrices for the 3-qubit QFT have been
presented in our previous paper [41].

Since these quantum unitary matrices are mostly sparse
matrices, we extract minimal number of useful arithmetic
operations (due to nonzero elements in the matrices), result-
ing in an optimal realization of the model that can be mapped
to an efficient FPGA emulation architecture. Incidentally, a
software program has been developed to automate this map-
ping, hence easily scaling up the circuit model to larger qubit
sizes. From these arithmetic functions, the corresponding
data-flow graph for the 3-qubit QFT is derived as shown in
Figure 10.

In Figure 10, each IN and OUT signal is a fixed point
complex number register for an element of the quantum
state vector. The operation of module F corresponds to
out_r = —in_i and out_i = in_r, where F is the multiplication
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FIGURE 9: The 3-qubit QFT in terms of a sequence of unitary
transformations.

of the input complex number with imaginary number i.
This is applied in unitary transformations U2 and U5. The
operation of module CMULT in Figure 10 is described in (26).
The function of CMULT is the multiplication of the input
complex number with a constant complex number which is
derived based on the controlled phase-shift gate. As expressed
previously in (21), it is used in unitary transformation U3:

out_r = (in_r X constant_r) — (in_i X constant_i),
(26)
out_i = (in_i X constant_r) + (in_r X constant_i) .

4.2. Modelling Grover’s Search for FPGA Emulation. As men-
tioned earlier, the second approach of modelling Grover’s
quantum search is modelling using arithmetic functions
(based on mathematical model). In this work, we have
chosen this approach of modelling Grover’s algorithm for
FPGA emulation. In contrast to the quantum circuit model
approach that involves complex large dimensional matrix
operations (i.e., matrix multiplication and tensor product),
the chosen method can utilize the computational resources
available on FPGA such as comparators, adders/subtracters,
and multiplexers for efficient emulation of Grover’s search
algorithm.

This technique is based on phase inversion and inver-
sion about mean as described in Section 3.5. As shown in
Figure 11, mathematically, Grover’s search for a database
with 2" elements mainly involves the processes of inverting
the phase of target element, function F, and performing

inversion about mean on all elements, function —I + 2A, for
V2" times. Initialization of the quantum state vector with
equal probability, function INIT, is carried out once in the
beginning of the process.

For the case study of a 3-bit search problem, we derive
the data-flow graphs and obtain the result of the required
arithmetic functions as shown in Figure 12. For experimental
purposes, the oracle module is developed by comparing
all elements in database with targeted element using com-
parators, COMP modules. The arithmetic functions of the
inversion about mean are derived through straightforward
computations that involve summation, bit shift, and subtrac-
tion.

4.3. Architecture of Proposed FPGA Emulation Model. Tt is
clear that if implemented on classical computing platforms,
the resource utilization for a quantum system would grow
exponentially. Hence, the choice of suitable architecture
is critical for FPGA-based quantum computing emulation.
Here, we discuss the efficiencies of different architectural
choices in datapath: concurrent, pipeline, serial, and serial-
parallel. The block diagram of various architectures is con-
structed based on the example of 3-qubit QFT.

4.3.1. Concurrent Processing. In concurrent processing of an
algorithm, all computations are completed within a clock
cycle. In the case of 3-qubit QFT, computation blocks between
the input and output registers, through the functional blocks,
U1 to U7 are performed in one clock cycle (refer to Fig-
ure 13(a)). However, such an architecture consumes enor-
mous resources, such that the number of registers required to
emulate an n-qubit QFT is 2"*'. In addition, the critical path
delay is very high which results in unrealistic low operating
frequency.

4.3.2. Pipeline Architecture. Most of the prior works on
FPGA-based quantum circuit emulation [25-27] are devel-
oped based on pipeline architecture. The pipeline architecture
has the advantages of high throughput and much shorter
critical path delay. Figure 13(b) shows the proposed pipeline
architecture of the 3-qubit QFT. However, the main issue of
this approach is that resource utilization grows drastically
by the number of qubits, due to the circuit augmentation of
pipeline registers. 2"(};_, k+2) pipeline registers are required
to emulate n-qubit QFT. Consequently, hardware emulation
scalability is highly constrained by the available resources in
FPGA.
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FIGURE 10: Data-flow graph for 3-qubit QFT. The multipliers shown in this diagram represent the multiplication of input complex number

with constant 1/+/2.

4.3.3. Serial Processing. Although serial design requires mul-
tiple iterations to perform a complex computation, it opens
up the opportunity for resource sharing. Serial processing
is suitable for applications where resource utilization is a
critical design constraint. Figure 13(c) depicts the serial form
of the 3-qubit QFT circuit that consists of a control unit
and a datapath unit. As resources can be reused between
transformations, a serial-based n-qubit QFT consumes 2"
registers, a register utilization that is much lower than in
concurrent or pipeline architectures. However, pure serial

approach forfeits the purpose of conducting FPGA emulation
whose aim is to exploit the parallelism inherent in a quantum
system, as it would still suffer from slow sequential behaviour
as exhibited in simulation on classical computer.

4.3.4. Proposed Serial-Parallel Architecture. In this paper,
we propose a hybrid serial-parallel architecture for FPGA
emulation of quantum algorithms. The proposed approach
takes advantage of both serial and parallel design techniques.
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Applying the concepts of quantum parallelism and quantum
dynamics modelled by sequential transformations on a quan-
tum state vector, it is found that the proposed serial-parallel
architecture is suitable for efficient and accurate quantum
computing emulation on FPGA platform.

Figure 14 shows the functional block diagram of the
proposed serial-parallel FPGA emulation architecture of the
3-qubit QFT. The serial-parallel design of the datapath unit
involves a number of quantum computation units that can
perform parallel computations for each stage of unitary
transformation whereby the same computational resources
can be reused for the following stage of transformations.

For data storage and synchronization purposes, 2" reg-
isters are shared between unitary transformations. As com-
pared to the pipeline design, our proposed serial-parallel
approach achieves linear reduction on the usage of registers
to emulate the same quantum system. The arithmetic logic
unit (ALU) in the datapath unit contains multiple custom
processing elements and the allocation of resources in ALU
varies based on the target application. The number of pro-
cessing elements is basically determined based on the desired
2" parallelism in the n-qubit quantum system.

As illustrated in Figures 10 and 12, the data-flow graph of
QFT and Grover’s search algorithm exhibit similar repetitive
pattern between unitary transformations. This implies that
the proposed serial-parallel approach can be generalized for
the two case studies to achieve balance in both resource
utilization and speed performance. For the case of Grover’s
search, the ALU would be the Grover iteration module shown
in Figure 12, whereas the control unit is designed to keep track
on the number of Grover iterations required by the target
search problem.

5. Experimental Results

The proposed emulation designs are modelled in SystemVer-
ilog HDL, synthesized using Altera Quartus II software,
and implemented into target emulation platform which is
based on Altera Stratix IV EP4SGX530KF43C4 FPGA. In
Section 5.1, we discuss the verification of the hardware
emulation designs for the QFT and Grover’s search case
studies. In addition, the automated process for scaling up
the design to larger qubit size is described. In Section 5.2,
investigation is conducted to study the effects of the number
of mantissa bits used in our fixed point representation format
on resource utilization and precision error. In the section
that follows, we analyse, for different emulation architectures,
how the increase in qubit size impacts on resource growth
and maximum operating frequency allowed in the designs.
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Finally, the runtime speeds in simulation and emulation for
quantum algorithms with different qubit sizes are compared.

5.1. Design Verification. To show that the quantum algo-
rithms have been modelled accurately, design verification
of the proposed emulation hardware is performed. Golden
references based on the software simulation models (in C) are
developed and their outputs are compared with the emulation
hardware under test (which are described in SystemVerilog
HDL).

In our QFT case study, FFTW3 [42], a widely applied fast
Fourier transform library in C, is used to perform Fourier
transform computations on the signal samples that are used
in this work. The outputs of the classical Fourier transform
then serve as the golden reference model in verification of the
proposed emulation model. Furthermore, since the discrete
Fourier transform (DFT) is a linear transformation that can
be defined in unitary matrix form, the functional correctness
of our QFT hardware emulation model can be conveniently
verified against the DFT matrix. The expression of an n-qubit
DFT matrix is shown in

[ 1 1 1 1 ]
1 o w? W
1 2 4 2(2"-1)
DFTZW 1 w w .o , (27)
1 wz”—l c02(2”—1) w(z"—l)(z"—l)

where w is the 2"th root of unity; that is, = 212" The

. 2mif2t . _amif2"
choice of &2/ i/

both the term e
are equal to 1.

On the other hand, the design of Grover’s search FPGA
emulation model is verified against the mathematical model
provided in literature. The simulation model of Grover’s
search algorithm also serves as the golden reference model
for verification purposes.

For the development of FPGA emulation models for
practical quantum computing applications, it is important
that the emulation hardware can be scaled up to larger qubit
size architectures. In this work, the designs are scaled up with
the aid of software program developed in-house. HDL codes
of the two case studies are autogenerated by the software
program based on the proposed modelling techniques (as
discussed in Section 4). The generated HDL code produces
efficient hardware emulation model based on the proposed
serial-parallel architecture.

ore
2mi/2"

is purely a matter of convention as

—2mif2"

and the term e to the power of 2"

5.2. Fixed Point Representation. As defined in (2), a quantum
state vector is represented by complex floating point numbers.
To ensure effective resource utilization in our FPGA emula-
tion hardware, floating point numbers are replaced by fixed
point representations. In this work, a fixed point format with
1 sign bit, 1 integer bit, and N mantissa bits (as shown in
Figure 15) is used. Since the amplitudes of a quantum state,
that is, the probabilities of collapsing into computational basis
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FIGURE 15: Fixed point representation format.

states after measurement, are constrained in the range of 0 to
1, only one bit is required to represent the integer part.

Due to the limitations of the classical digital computing
platform, representation of qubit amplitudes with infinite
precision is infeasible. In the context of quantum computer
modelling, particularly for quantum systems with large qubit
sizes, minimising precision loss is critical to preserve the
consistency of the quantum state during the modelling
process [43]. Here, we investigate how precision error is

affected by the number of mantissa bits used in our fixed
point representation format. The corresponding experimen-
tal results are given in Figure 16.

Precision error shown in Figure 16 is computed based on
the following equations:

B 21 |emulate_r,, — simulate_r,,|
error_r = mZ::O |simulateJ’m| ,
. °J|emulate i, — simulatei,|  (28)
error_i = mZ:O |simulateiml )

- 1 )
precision_error = —-— (CITOI'J’ + error,z) N
2n+1
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where simulate_r and simulate_i are the floating point real
and imaginary amplitudes of the reference output state gen-
erated from simulation, whereas emulate_r and emulate_i are
the amplitudes extracted from the output state of proposed
FPGA emulator (converted from original fixed point format
to floating point for verification purposes).

Figure 16 shows that 16-bit fixed point format (14 mantissa
bits) incurs significant precision error for 5-qubit emulations
in both case studies. However, the error produced by 2-qubit
emulations is insignificant. This behaviour is because the
amplification of the fixed point truncation errors grows with
the size of quantum system. For FPGA emulation purposes,
precision error due to fixed point representation can be
reduced by increasing the number of mantissa bits with trade-
off on resource utilization. By expanding the number of
mantissa bits up to 24-bit (which results in 26, total number
of bits), negligible precision error for 5-qubit emulations is
attained. It is important to note that the proposed FPGA
emulator is parameterizable in terms of the number of
mantissa bits for fixed point representation. This is crucial to
ensure different fixed point formats can be applied to emulate
quantum circuit of various sizes based on the demanded
precision error tolerance and resource constraint.

The size of our fixed point number format also affects
resource utilization. The corresponding experimental results
for QFT case study are shown in Figure 17. Since the resources
available on FPGA device are mostly in blocks or multiples of
8 bits, the choice of 26-bit fixed point format is not suitable.
Hence, we apply 22-mantissa-bit size (i.e., total number of bits
is 24) in our fixed point representation formats. Note that,
for Grover’s search emulations, the experiment on resource
utilization of DSP blocks is not relevant because FPGA
emulation model developed here (as depicted in Figure 12)
does not involve multiplication.

5.3. Efficiency of Proposed FPGA Emulation Architecture. In
this subsection, we investigate how the increase in qubit size

13

impacts resource growth and maximum allowable operating
frequency in different emulation architectures (i.e., concur-
rent, pipeline, and serial-parallel). In the case of QFT emu-
lation model, we have two versions of serial-parallel archi-
tectures. Type 1 serial-parallel uses DSP blocks to perform
multiplications, whereas type 2 replaces the multiplications
(required in Hadamard gate operations, U1, U4, and U6, in
the 3-qubit QFT case) with shift-add operations. Although
conventional hardware design methods encourage the usage
of shift-add operation instead of multiplication to reduce
resource utilization, the case is now different with FPGA
devices containing efficient built-in DSP blocks. Figures 18
and 19 show the results of the experiments conducted on QFT
and Grover’s search algorithms, respectively.

Based on the experimental results shown in Figure 18,
when comparing to type 1, type 2 method consumes less
DSP blocks but more logic elements due to the construction
of adders needed in shift-add operations. As the number of
qubits increases, resource utilization of logic elements for
type 1 emulation grows rapidly when available DSP blocks are
used up and it ends up with similar resource utilization as
the type 2 approach. Hence, we can conclude that, for large-
scale FPGA emulations, both methods would lead to similar
resource utilization. Thus, the first approach is preferred due
to the ease of design process where DSP blocks are utilized by
default when implementing the design with the FPGA design
automation tool.

In contrast to the concurrent and pipeline designs, the
experimental results for QFT and Grover’s search show that
the proposed serial-parallel architecture achieves balance on
both resource utilization and operating frequency. The pro-
posed architecture has significantly reduced resource growth
in the application of logic elements, dedicated logic regis-
ters, and DSP block, yet maintaining reasonable operating
frequency. With the concurrent and pipeline architectures,
5-qubit QFT emulation completely used up the resources
available in the Altera Stratix IV FPGA device used in this
work. However, the same device can support up to 7-qubit
QFT emulation with the proposed serial-parallel architecture.
It is important to note that the processing power of 7-qubit
QFT is far higher than the 5-qubit implementation as an n-
qubit QFT can process up to 2" samples in one evaluation.

For scalability, software simulation would depend on
resources available on the computer servers. The scalability
of the FPGA emulation framework would depend on the
resources available on target FPGA devices. As there have
been rapid advances in FPGA technology in recent years, by
designing an efficient architecture that is implemented in a
high-density FPGA device (such as the Altera Stratix 10 that
contains up to 5.5 million logic elements), one can actually
emulate large qubit size quantum circuit on a single FPGA
chip. Furthermore, new approach to FPGA emulation may
be made through the exploration of efficient data structures
and modelling methods. Thus, the proposed work contributes
to the formulation of a proof-of-concept baseline FPGA
emulation framework with optimization on datapath designs
that can be extended to emulate practical large-scale quantum
circuits.
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5.4. Benchmarking between Simulation and Emulation. Here, TaBLE 1: Comparison of runtime between simulation and emulation.

our emulation models are benchmarked against the equiv-
alent software simulations. The simulation models used are
based on an open source quantum library, libquantum [28]. Simulation Emulation  Simulation Emulation
Software simulation is performed on an Intel Core i7-4790 2-qubit 155 x 10° 358 x 107 296 x 10° 4.6 x 107
eight-core processor with 3.6 GHz clock rate running on a  3-qubit 46.6 x 10°°  80.5x 10  74.0 x 10°°  12.0 x 10

QFT runtime (s) Grover’s search runtime (s)

Linux-based Ubuntu 14.04 kernel, whereas hardware emu-  4-qubit 51.0 x 107 134.4 x 10° 2207 x 10°® 214 x 107
lation is based on the Altera Stratix IV EP4SGX530KF43C4 5-qubit 56.5 x 107° 2193 x 1077 398.8 x 10° 36.7 x 107
FPGA. Table 1 shows the runtime comparison between 6-qubit _ _ 1069.6 X 107 62.7 x 10°°

simulation and our emulation. 7-qubit _ _ 27714 x 10°°  96.8 x 10™°

Figure 20 illustrates the runtime speed-up (simula-
tion/emulation) of Grover’s search case study. It is important
to note that the proposed hardware emulation isimplemented ~ based on the experimental work presented in Section 5.2)
based on 24-bit fixed point format (which is determined  whereas 32-bit single precision float is used in the software
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FIGURE 18: Resource utilization and maximum operating frequency for different emulation architectures of QFT (based on 24-bit fixed point

format).

simulation to describe the quantum state. For a larger qubit
size quantum circuit, the number of mantissa bits for fixed
point representation has to be increased accordingly to ensure
similar precision as in software simulation can be achieved
with trade-offs on resource utilization and execution speed
[44].

From Figure 20, it can be observed that the proposed
hardware emulation provides significant speed-up over soft-
ware simulation using libquantum. It is important to note
that the achieved speed-up increases drastically as the num-
ber of qubits increases. This result further supports the notion
that hardware emulation has significant potential in the
modelling of a large-scale quantum system on the classical
computing platform based on FPGA.

As the number of required I/O pins for emulating QFT
and Grover’s search algorithms with parallel read-outs is
too much to fit in the existing FPGA devices, board-level
verification is infeasible. Although the usage of multiplexers
reduces the number of output pins, resource consumption
rises significantly with the increase in the number of qubits,
and this affects the analysis of the overall experiment. Thus,
the estimated runtime of the proposed FPGA emulation
architecture is obtained based on the hardware clock cycle
and the operating frequency that is acquired from the FPGA
development tool. This is not a critical issue in future practical
deployment as the selected case studies are meant to work as
core modules within other quantum applications that might
not require parallel read-out.
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6. Conclusion and Future Work

Efficient resource utilization is critical for FPGA-based
implementations especially for emulating quantum comput-
ing applications as they typically exhibit exponential resource
requirement with increasing number of qubits. In this paper,
we proposed a baseline FPGA emulation framework with
focus on the datapath design optimization based on the
conventional state vector model as well as an effective
methodology that facilitates accurate modelling of quantum
algorithms for FPGA emulation. A serial-parallel architecture

with efficient resource utilization for FPGA-based emulation
of quantum computing is presented. The proposed emulation
architecture achieves linear reduction in resource utilization
compared to pipeline implementations as found in previous
works. This work has also demonstrated the advantage of
FPGA emulation over software simulation where hardware
emulation of 7-qubit Grover’s search is about 3 x 10* times
faster than the software simulation performed on Intel Core
i7-4790 eight-core processor running at 3.6 GHz clock rate.
However, experimental results obtained in this work
show that it is difficult to realize a scalable and flexible
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emulation platform for large qubit size real-world quantum
system using the approach that applies existing state vector
quantum models. This concurs with [45] that states that the
practical limit on the size of the quantum system that can
be modelled on classical computing platform can hardly be
overcome due to exponentially large memory requirements
for storing the entire state vector. Hence, this suggests that
a model with a more effective data structure to represent
quantum systems is required. Recently, the work on stabi-
lizer frames [30] has shown promise in providing a more
suitable data structure for quantum models targeted for
FPGA emulation. This is the subject of future work in our
research in applying FPGA emulation in modelling of large-
scale quantum systems. In addition, the error-correction
structure available with stabilizer frames will be considered
for application in practical quantum computations. With a
more efficient modelling technique, FPGA can represent a
more efficient emulation strategy of quantum systems.
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