

COMPILER-BASED PREFETCHING ALGORITHM FOR

RECURSIVE DATA STRUCTURE

NURULHAINI BINTI ANUAR

ystem

APRIL 2007

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information S

To my beloved mother and father

ACKN ENT OWLEDGEM

“In the name of Allah, Most Gracious, Most Merciful”

Alhamdulillah, praise to Allah S.W.T in preparing this thesis, I was in contact with

many people, researchers, academicians, and practitioners. They have contributed towards

my understanding and thoughts. In particular, I wish to express my sincere appreciation to

my main thesis supervisor, Dr. Norafida binti Ithnin, for advices, motivation,

encouragement, guidance, critics and friendship. Without her continued support and interest,

this thesis would not have been the same as presented here.

Special thankful to my beloved parents for their advices, motivation, encouragement

and support. Also for funding my Master study duration in Universiti Teknologi Malaysia

(UTM). My fellow postgraduate students should also be recognised for their support. My

sincere appreciation also extends to my best friend Hidayah and others who have provided

assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is

not possible to list all of them in this limited space. I am grateful to all my family members.

ABST ACT

Memory latency becoming an increasing important performance bottleneck as the

gap bet

R

ween processor and memory speeds continues to grow. While cache hierarchies are

an important step toward addressing the latency problem but they are not a complete

solution. To further reduce or tolerate memory latency problem, several techniques have

been proposed and evaluated which is responsible to tolerating memory latency and cache-

misses. Regarding to this problem, it has become necessary for us to have a better compiler

optimization techniques. One of the techniques has recently used was Software Prefetching.

Software prefetching relies on the programmer or compiler to insert explicit prefetch

instructions into the application code for memory references that are likely to miss in the

cache. Software prefetching has been shown to be effective in reducing memory stalls in

array-based applications but not in pointer-based applications. This project investigates

compiler-based prefetching for pointer based applications particularly those containing

Recursive Data Structures (RDS) and designs the proposed algorithm. To designs this

propose algorithm, there are two methodology used in this project that are comparative

study and lab experiments in order to generates the hypothesis and quantitatively tested to

measure the performance. There are three existing techniques that are selected for

comparative study that are Greedy Prefetching, Jump History Pointer and Prefetch Array.

The results from the comparative study and lab experiment give the best algorithm which is

guide to design the proposed algorithm. This best algorithm consists of greedy prefetching

and prefetch array algorithms. The proposed algorithm have been implemented and tested in

the same environment as existing algorithms and the results shows the better improvement

achieved compared from the best algorithm. This improvement results from the lab

experiments shows this project have achieved the main objectives and gives better

performance of compiler-based prefetching algorithm.

ABST

Kelambatan masa capaian ingatan utama menjadikan kelambatan prestasi pemproses

g at tinggi disebabkan j a kelajuan pemproses dan a.

gatan engatasi m alah i i tetap bukan

lengka Terd pat p bagai eknik telah diselidik untuk

nnya

tu tek ik pen ngan

tung

da engatu l ntuk emasu kod

aplikasi untuk rujukan kepada ingatan Pre-

ambilan ini telah enunjukkan

memory stall di dalam aplikasi y

keberkesanan di dalam untuk

menyelidik pengkompi askan

kepada penudin ert gkan.

Untuk merekab a teknik

perbandingan d spe l untuk secara

uantitatif dengan eksperimen makmal. Terdapat tiga teknik yang dicadangkan oleh penyelidik

dikaji untuk tek efetch

Array. Hasil daripada teknik perbandingan dan eksperimen telah memberikan algoritma terbaik

untuk dijadikan gai merekabentuk algoritma cadangan. Algoritma terbaik ini

terdiri daripada e tch Array a cadangan telah

diimplementasikan dan diuji dengan situasi y erti algoritma yang sedia ada. Hasil

daripada ujian tersebut encapai prestasi keb yang

lebik baik berbanding teknik seb h p i dan

memberikan prestasi yang lebih baik.

RAK

semakin menin k urang diantar ingatan utam

In cache merupakan satu langkah untuk m as n i ianya

merupakan satu penyelesaian p. a el t

mengurangkan masalah ini yang telah dicadangkan oleh penyelidik dan dinilai keberkesana

terhadap kehilangan cache. Merujuk kepada masalah ini, adalah perlu untuk kita mempunyai

sa n goptimum pengkompil. Salah satu teknik yang telah digunakan ialah de

menggunakan Perisian Pre-ambilan arahan atau Software Prefetching. Perisian ini bergan

kepa p rcara atau pengkompi u m kkan arahan pre-ambil ke dalam

yang kebiasaannya hilang di dalam cache. Perisian

m keberkesannanya mengurangkan penghentian ingatan atau

ang berasaskan kepada tatasusunan tetapi tidak menunjukkan

 aplikasi berasaskan kepada penuding. Projek ini dijalankan

l yang berasaskan kepada penuding untuk aplikasi yang beras

g sep i struktur data rekursif dan merekabentuk algoritma yang dicadan

entuk lgoritma ini, terdapat dua metodologi yang digunakan iaitu

an ek rimen makma menjanakan hipotesis dan menilai prestasi

k

nik perbandingan iaitu Greedy Prefetching, Jump History Pointer dan Pr

 seba panduan untuk

Gre dy Prefetching dan Prefe . Algoritm

ang sama sep

 mendapati algoritma cadangan m erkesanan

elumnya. Oleh itu, objektif utama projek tela un tercapa

TABLE OF CONTENTS

CHAPTER

 ACKNOWLEDGEM

 ABSTRACT v

 LIST OF TABLES xi

 LIST OF FIG

 1 INTRO T

1.1

1.2

1.3

1.5

1.6

1.7

2

2.1 Introduction 9

2.2.1 Types of Superscalar 11

tatica Sche uled S persca r

s r

lly S hedule Supe calar

r

elism LP)

 TITLE PAGE

ENT iv

TABLE OF CONTENTS vii

URES xii

LIST OF APPENDICES xv

DUC ION 1

Introduction 1

Problem Background 4

Problem Statement 5

1.4 Project Objectives 6

Project Scopes 7

Project Contributions 7

Conclusion 8

LITERATURE REVIEW 9

2.2 Superscalar Architecture 9

2.2.1.1 S lly d u la 11

Proces o

2.2.1.2 Dynamica c d rs 11

Processo

2.2.2 Instruction Level Parall (I 12

2.2.2.1 Limitations of IL H r el 12 P by ardwa e Mod

2.3 r

 Cach Misse

ss ate R ductio

refe hing

2.4 Improving Mem

.1 refetc ng

2.5 Software Prefetching 20

 21

2.5.3 Pointer-chasing Problem 24

iler

2.6.2 Prefetching 30

2.8

2.9

 3 H

 Architecture 40

r ework

Memo y Hierarchy 13

2.3.1 Cache Memory 14

2.3.1.1 Classification of e s 16

2.3.1.2 Miss Penalty and Mi R e n 17

by Compiler-Controlled P tc

Technique

ory Performance 18

2.4.1 Tolerating Latency 19

2.4.1 P hi 19

2.5.1 Recursive Data Structure (RDS)

2.5.2 Pointer-Chasing Memory Access Patterns 23

2.5.4 Comp 25

2.6 Existing Prefetching-based Pointer Techniques 27

2.6.1 Greedy Prefetching 28

Jump History

2.6.3 Prefetch Array 33

2.7 Simics Version 3.0 36

Olden Benchmarks 38

Conclusion 39

 MET ODOLOGY 40

3.1 Introduction 40

3.2 System

3.3 Operational F am 41

3.4 Project Methodology 44

3.4.1 Qualitative Approach 45

3.4.2 Quantitative Approach 46

3.4.3

3.4.4

3.4.5

 Process

3.4.6.3 Implementations of the Algorithm 56

ents 56

3.6 Conclusion 57

4 -A

4.2 The Pre-Algorithm Comparative Study Findings 58

Techniques

4.3 The Pre-Algorithm Lab Experimental Findings 63

4.3.1 Types of RDS programs 64

4.3.2 Performance Metrics 65

4.3.3 Pre-Algorithm Lab Experiment Findings 68

4.4 Conclusion 74

 DESIGN, IMPLEMENTATION AND TESTING 76

5.1 Introduction 76

5.2 Design GPA Algorithm 76

5.3 The GPA Algorithm 77

5.3.1 Analysis Phase 79

5.3.1.1 Identifying RDS Types 79

Comparative Study Method 48

Experimental Method 50

Pre-Algorithm Process 53

3.4.6 Propose Algorithm 54

3.4.6.1 Design the Algorithm 54

3.4.6.2 Tests and Experiments the Algorithm 55

3.5 Hardware and Software Requirem

 PRE LGORITHM COMPARATIVE STUDY

AND LAB EXPERIMENTS 58

4.1 Introduction 58

4.2.1 The Strengths and Weaknesses of Existing 59

4.2.2 Critical Latency Variables 61

5

5.3.1.2 Recognizes RDS Accesses 80

5.3.1.3 Recurrent Pointer Updates 84

5.3.2 Scheduling Phase 88

5.4 Results of GPA Algorithm 90

5.5 Conclusion 95

6 DISCUSSIONS AND CONCLUSION 96

 102

 104-107

6.1 Introduction 96

6.2 Results and Achievements 96

6.3 Limitations of Project 101

6.4 Future Works

6.5 Conclusion 102

REFERENCES

APPENDICES 108-133

LIST OF TABLES

ABLE TITTLE PAGE

 2.1 Summary of Olden benchmark programs 38

 62

 65

 70

 87

 88

 99

6.4

 100

T

 3.1 The comparative of two cases 49

 4.1 The Strengths and Weaknesses of Existing Techniques 60

 4.2 Comparative of Critical Latency Variables of

 Existing Techniques

 4.3 Details descriptions each type of RDS input programs in

 benchmark library

 4.4 The performance metric for prefetching techniques 66

 4.5 Scale of Metrics 67

 4.6 Metric1 –Full Coverage 68

 4.7 Metric2 –Partial Coverage 69

 4.8 Metric3 –Execution Time

 4.9 Summary of all metrics performance 74

 5.1 Metric1 –Full Coverage 86

 5.2 Metric2 –Partial Coverage

 5.3 Metric3 –Execution Time

 6.1 Percent Improvement of the GPA algorithm 97

 6.2 Percent Improvement for full coverage metric

 for the GPA algorithm versus best algorithm 98

6.3 Percent Improvement for partial coverage metric

 for the GPA algorithm versus best algorithm

Percent Improvement for execution time metric

 for the GPA algorithm versus best algorithm

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 1.1 Processor-DRAM Memory Gap (latency) by Moore’s Law 2

 2.1 A superscalar processor with five functional units 10

 2.2 A system with two levels of cache 15

 2.3 Examples of whether type declarations are recognized

 as being RDS types 21

 2.4 Example of list traversals, both with and

 without temporal data locality 22

rns 23

 24

 27

 28

d

 29

 31

ing

 uses a history pointer array to set the prefetch pointers 34

 2.5 Examples of pointer-chasing memory access patte

 2.6 Code example of creating and traversing a singly-linked list

 2.7 Illustration of the pointer-chasing problem 25

 2.8 Compiler Overview (source: Structures Computer

 Organization by Andrew S. Tanenbaum)

 2.9 Illustration of greedy prefetching

 2.10 The implementation of the software approaches using

 Greedy Prefetching Technique in an example of a tree an

 a list traversal

 2.11 Example showing the update of history-pointers

 2.12 Traversal codes with Jump-pointer prefetching 31

 2.13 The implementation of the software approaches us

 Jump History Prefetching Technique in an example of a tree

 and a list traversal 32

 2.14 Illustrates the addition of a prologue loop that performs

 prefetching through a prefetch array 33

 2.15 Example of prefetch pointer initialization code which

 2.16 The implementation of the software approaches using

 a tree and a list traversal 35

 2.17

 2.18 A booted window 37

 3.1 System Architecture 41

 42

 3.3 Overall Project Methodology 44

 3

 g ph

 ing,

 71

 g,

 72

 73

 77

 5.2 Phases and sub functions 78

 A pseudo code for identifying RDS types 80

.6 Algorithm for recognizing RDS accesses 83

5.7 A pseudo code algorithm for propagating RDS pointer values 84

 Prefetch Array Prefetching Technique in an example of

 The initial simics window 37

 3.2 Operational Framework

 3.4 Pre-Algorithm process 5

 4.1 Metric1 –Full Coverage performance graph 69

 4.2 Metric2 –Partial Coverage performance ra 70

 4.3 The execution time of the MST benchmark normalized

 to the execution time without prefetching. ’B’ is

 the base case without prefetching, ’G’ is greedy prefetch

 ’J’ is jump pointer prefetching, PA is the prefetch array

 4.4 The execution time of the Health benchmark normalized

 to the execution time without prefetching. ’B’ is

 the base case without prefetching, ’G’ is greedy prefetchin

 ’J’ is jump pointer prefetching, PA is the prefetch array

 4.5 The execution time of the MST benchmark normalized

 to the execution time without prefetching. ’B’ is

 the base case without prefetching, ’G’ is greedy prefetching,

 ’J’ is jump pointer prefetching, PA is the prefetch array

 5.1 The process of designing the proposed algorithm

 5.3

 5.4 Algorithm for identifying RDS types 80

 5.5 A pseudo code for recognizing RDS accesses 82

 5

5.8 A pseudo code algorithm for assigning new values

to RDS pointer 85

5.9 Algorithm for propagating RDS pointer values 86

5.10 Algorithm for assigning new values to RDS pointer 87

5.11 Schedule pref n RDS object is being

 88

5.12 A pseudo code for generate prefetch instructions 89

Generate pre etch in

5.14 The creation of artificial jump pointers 90

5.15

 graph 92

5.17

 to the execution time without prefetching. ’Base’ is the

 base case without prefetching, ’Best’ is the best algorithm,

 and ’GPA’ is the proposed algorithm. 95

6.1 Percent Improvement graph for full coverage metric 98

6.2 Percent Improvement graph for partial coverage metric 99

6.3 Percent Improvement graph for execution time metric 100

etches were invoked when a

traversed

5.13 f structions in scheduling prefetches 89

Metric1 –Full Coverage performance graph 91

5.16 Metric2 –Partial Coverage performance

The execution time of the MST benchmark normalized

 to the execution time without prefetching. ’Base’ is the

 base case without prefetching, ’Best’ is the best algorithm,

 and ’GPA’ is the proposed algorithm. 93

5.18 The execution time of the Health benchmark normalized

 to the execution time without prefetching. ’Base’ is the

 base case without prefetching, ’Best’ is the best algorithm,

 and ’GPA’ is the proposed algorithm. 94

5.19 The execution time of the Perimeter benchmark normalized

LIST OF APPENDICES

APPENDIX TITLE PAGE

A1 Example of prefetching types address 109

A2 Possible extension to the ISA and the CPU

pipelines for instruction prefetches 110

enchmark program 112

2 Mst benchmark program 120

B3

B1 Health b

B

 Perimeter benchmark program 122

C1 Flow chart for identifying RDS types 128

C2 Flow chart for recognizing RDS accesses 129

C3 Flow chart for propagating RDS pointer values 130

C4 Flow chart for assigning new values to RDS pointer values 132

C5 Flow chart for generate prefetch instructions 133

CHAPTER 1

INTRODUCTION

1.1 Introduction

The performance of modern microprocessors is increasingly dependent on their

ability to execute multiple instructions per cycle. Such rapid, dramatic increases in

hardware parallelism have placed tremendous pressure on compiler technology. For

years, a steadily growing clock speed has been relied upon to consistently deliver

increased performance for a wide range of applications. Recently, however, this trend

has changed, as the microprocessor industry can no longer increase clock speed because

of difficulties related to power consumption, heat dissipation, and other factors.

Meanwhile, the exponential growth in transi ajor

icroprocessor companies to add value by producing chips that incorporate multiple

stor count remains strong, causing m

m

processors.[4] To achieve very high-performance of processors the computer architects

must concern on cost, time, speed variables to follow the micro-processors trends. Thus

to achieve low time computation with high speed performance and with low cost

processor, the computer architects need to deal with cache memory hierarchies and

exploit instruction level parallelism.[5]

The continuing trend of microprocessors, the increasing gap between memory

speed and the processor speed necessitates new techniques for memory latency

tolerance. To develop these techniques, a high-level understanding of the memory

characteristics of programs is required. This is to understand how programmer intended

to use the memory, not just how the individual load/store operations in the program

behave. [3] Current microprocessors spend a large percentage of execution time on

memory access stalls, even with large on-chip caches. Since processor speeds are

rowing at a greater rate than memory speeds, the expectation of memory access costs to

ecome

g

b even more important in the future. Figure 1.1 shows the graph performance vs.

time of Processor and DRAM by Moore’s Law and the gap between processor-memory

speeds grows 50% per year from year 1980 until 2000.

Figure 1.1: Processor-DRAM Memory Gap (latency) by Moore’s Law

Refer to the graph, the microprocessor performance increase 60% per year while

memory performance increase only 9% per year. Computer architects have been battling

this memory latency problem by designing ever larger and more sophisticated caches.

Although caches are extremely effective, they are not the complete solution. Other

techniques are required to fully address the memory latency problem. [2] Memory

latency problem is a problem due to the gap between CPU speed and memory speed,

where CPU speed continue to growth while memory doesn’t. This problem happens

hen CPU access to the main memory, where CPU speed is high contrast with memory

peed is slow. Then CPU need to deals with cache memory, but it is still have a problem

at will cause cache-miss problem. This is why cache memory is not a complete

w

s

th

solution for tolerating memory latency problems. As the performance difference

etween the CPU and the main memory increases, reduction of the cache misses and

penalti

or a cache miss

 initiate a memory fetch, data prefetching anticipates such misses and issues a fetch to

e memory system in advance of the actual memory reference. To be effective,

prefetc

b

es become more severe.

One of the techniques to reduce cache misses is to prefetch data or instruction.

Prefetch by definition is to fetch data or instruction before they are requested by the

processor. This prefetch can be done by prefetching techniques. Prefetching techniques

can be performed either by hardware and/or by software. Hardware can be designed to

prefetch instructions and data, either directly into the cache or into an external buffer

that can be more quickly accessed than main memory. On the other hand, software

prefetching is implemented by including fetch instructions in processor instruction set.

Fetch instructions can be coded explicitly by the programmer or added by the compiler

during the optimization. [6] In both software and hardware prefetching, the mechanisms

is based on overlapping execution by the prefetching of instructions or data.

Instruction prefetching speculatively brings the instructions needed in the future

close to the microprocessor and, hence, reduces the transfer delay due to the relatively

slow memory system. If instruction prefetching can predict future instructions accurately

and bring them in advance, most of the delay due to the memory system can be

eliminated. [1] Data prefetching is a technique for hiding the access latency of data

referencing patterns that defeat caching strategies. Rather than waiting f

to

th

hing must be implemented in such a way that prefetches are timely, useful, and

introduce little overhead. Secondary effects such as cache pollution and increased

memory bandwidth requirements must also be taken into consideration. Despite these

obstacles prefetching has the potential to significantly improve overall program

execution time by overlapping computation with memory accesses. [17]

1.2 Problem Background

Memory latency becoming an increasing important performance bottleneck as

the gap between processor and memory speeds continues to grow. While cache

hierarchies are an important step toward addressing the latency problem but they are not

a comp

ntific programs making regular memory

ccesses. This make prefetching has enjoyed considerable success for array-based

pplications but its potential in pointer-based applications has remained largely

unexpl

Recursive Data Structures (RDSs) include familiar objects such as linked lists,

ees, graphs, etc., where individual nodes are dynamically allocated from the heap, and

odes are linked together through pointers to form the overall structure. Recursive data

tu rpreted to include most pointer-linked data structures (e.g.,

utually-recursive data structures, or even a graph of heterogeneous objects). Recursive

data str

performance perspective, these pointer-based data structures are

lete solution. To further reduce or tolerate memory latency problem, several

techniques have been proposed and evaluated which is responsible to reducing memory

latency by cache-misses. Regarding to this problem, it has become necessary for us to

have a better compiler optimization techniques. One of the techniques has recently used

was Software Prefetching. Software prefetching relies on the programmer or compiler to

insert explicit prefetch instructions into the application code for memory references that

are likely to miss in the cache. At run time, the inserted prefetch instructions bring the

data into the processor’s cache in advance of its use, thus overlapping the cost of the

memory access with useful work in the processor. Software prefetching has been shown

to be effective in reducing memory stalls in array-based applications for both sequential

and parallel applications, particularly for scie

a

a

ored [7]. Most of the commercial applications, such as database engines, of-ten

use hash tables and to trees represents and store data. These structures used pointer-

based such as linked-list data structure that are often traversed in loops or by recursion.

This linked-list data structure also known as Recursive Data Structures.

tr

n

struc res can be broadly inte

m

uctures are one of the most common and convenient methods of building large

data structures (e.g, B-trees in database applications, octrees in graphics applications,

etc.). From a memory

expected to be suffer a large memory penalty due to data replacement misses, temporal

lity

 consecutively-accessed nodes in an RDS. Therefore, techniques for coping with

e latency of accessing these pointer-based data structures are essential. [3,7,9,10]

y

lements can be referenced independently. At worst, pairs of array references are

erialized in the case of indexed array traversal. But even in that case, separate indexed

array r ence

for pointer traversal must dereference a series of pointers sequentially. [2,7] The

memor rial

from o app

effectiveness. associated memory references to be sequentialized,

nd is known as the pointer-chasing problem.

ons usually exist in programs solving complex problems

here the amount and organization of data is unknown at compile time, requiring the

use of storage and linkage. They may also arise from

igh-le pro

Because memo

very irregular and lack locality, resulting in poor cache performance. [2]

1.3

Previous techniques of software prefetching for pointer based codes influence the

rocessor performance and accuracy of prediction prefetch instructions. This project

xamines the question

locality may be poor when traversal a large RDS and little inherent spatial loca

between

th

Prefetching for pointer-based data structures is challenging due to the memory

serialization effects associated with traversing pointer structures. The memory

operations performed for array traversal can issue in parallel because individual arra

e

s

efer s can perform in parallel. In contrast, the memory operations performed

y se ization in pointer chasing prevents conventional prefetching techniques

verl ing cache misses suffered along a pointer chain, thus limiting their

This property forces

a

Pointer-chasing applicati

w

pointers to manage both dynamic

h vel gramming language constructs such as object-oriented programming.

ry is allocated and accessed dynamically, the access pattern tends to be

Problem Statement

p

e

How to reduce or tolerate memory latency by using L1-cache-miss in pointer-based

odes?

Today’ ry to

achieve highes ost of today’s applications are very complex

and the oces to the pointer-based data

structu ed ns that are:

 prefetch

ii. critical?

iii. s of pointer-based codes that makes memory performance

1.4 Project Objectives

ject are:

i. To investigate, experiment, compare and choose the best critical latency

c

s microprocessor performance deals with ILP and cache memo

t performance. However, m

 pr sor performance becomes slow. This may due

re us in the applications. This project also explores the sub questio

i. How to exploit parallelism in processor? Is that by fetch all the

instructions?

What are the latency variables that make prefetching algorithms

What type

becomes very slow?

The objectives of the pro

variables from the existing software prefetching techniques of pointer

based codes.

ii. To design and develop the propose pointer prefetching algorithm using

the chosen critical latency variables.

iii. To test and implement the propose pointer prefetching algorithm applying

to the compiler for program containing RDS.

1.5 Project Scopes

rent types of Recursive Data

Structure.

vi. Simulation of these compiler techniques will be simulate on dynamically-

scheduled, superscalar processor similar to SPARC using Simics version

3.0.

1.6 Project Contributions

This project will give better insights and idea or solution to expand the

compiler’s scope to include another important class of applications: those containing

pointer-based data structures also known as Recursive Data Structures. Proposing a

better algorithm for pointer-based codes will give another opportunity for compiler

technology to develop an effective and optimize for today compiler. The comparative

study on previous techniques will help the understanding on the compiler improvements

and problems.

The scopes of the project are:

i. The comparative study of previous Prefetching techniques only for

Greedy Prefetching technique, Jump History Pointer technique and

Prefetch Array technique.

ii. Focus only the cache misses in Level-1 cache.

iii. Develop the prefetching algorithm using C programming.

iv. Using data library from benchmark suite those containing pointer-based

data structures also known as Recursive Data Structures.

v. Using three Olden benchmark programs that are mst, health and

perimeter that classified as tree and list traversal to evaluate the compiler

performance where it contents diffe

1.7 Conclusion

Nowadays, the applications becomes larger compared than recent years where

only consists of small programs and execute lly is necessary. Compared than

larger applications such as B-trees in database applications, oc-trees in graphic

applications where it suffered for large mem ry penalty due to data replacement misses

and consecutive elements is not at contiguous address. One of the most common and

convenient methods of buildin cursive Data Structures. Due

to these large applications, the execution speed is low because of pointer-chased

oblem and the disparity gap between the CPU speed and memory speed. To overcome

ea roject will propose new algorithm for compiler-based Prefetching

chnique and compare with previous technique to give the best result for improvement

executi

sequentia

o

g large data structures is Re

pr

the r d latency, this p

te

on speed in superscalar microprocessor.

