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Abstract 
Nonionic surfactants are always good candidates for surfactant enhanced aquifer remediation (SEAR), enhanced oil 
recover (EOR) and insitu/ex-situ soil washing. Their wide application is based on their high solubilization capacities 
and their low bio-toxicity. However, surfactant loss due to adsorption and/or partitioning on adsorbents impairs their 
effectiveness to solubilize/mobilize and reduce the oil–water interfacial tension (IFT) which renders contaminant 
remediation process economically unfeasible. In this research anionic (SDS) and nonionic (TX100) surfactants and their 
mixtures (1:2, 1:1, 2:1; TX100:SDS mass ratios) were evaluated for their ability to reduce surfactant CMCs, partitioning 
losses to an organic phase and/or adsorption to shale. Result showed that all mixtures behave similarly and have 
superior properties than both single surfactants. Partitioning and adsorption of TX100 into organic phase (Sarapar147) 
and shale were decreased by mixing with anionic surfactant (SDS). The data showed a 40% reduction in surfactant 
losses due to adsorption to shale and around 60% reduction due to both partitioning and adsorption. 
Keywords: Surfactant, CMC, Surface tension, Interfacial tension, Adsorption, Partition, Mixed surfactants 
1. Introduction 
The use of surfactants to decontaminate groundwater aquifers, facilitate/enhance residual oil recovery and in soil-clean 
up operations is well established, and both anionic and nonionic surfactants have been used to remediate land polluted 
with oils and hydrocarbons as well as many other organic contaminants. The most important parameter in terms of the 
ability of a surfactant to mobilize or solubilize hydrophobic contaminants in contaminated soil is the surfactant critical 
micelle concentration (CMC). In general, concentrations of surfactant in soil-water below the CMC have little or no 
effect on solubilization of hydrophobic materials. Only when micelles are present does significant desorption of such 
pollutants from soil surfaces occur (Haigh, 1996). 
Nonionic surfactants are often used because of their lower CMCs as compared to ionic surfactants, their higher degree 
of surface-tension reduction, and their relatively constant properties in the presence of salt, which result in better 
performance and lower concentration requirements. In particular, the non-ionic ethoxylate surfactants have been 
suggested for the removal of organic contaminants from soil because of their high solubilization capacity and 
biodegradability (Kile and Chiou, 1989; Zhou and Rhue, 2000; Paria and Yuet, 2007). However, some concerns with 
these surfactants are their significant loss to soil and partitioning to organic phase during practical applications (Butler 
and Hayes, 1998; Zimmerman et al., 1999; Cowell et al., 2000; Zhao et al., 2006; Zhao et al., 2007). Nevertheless, 
under some conditions, usually at concentration well below CMC, the adsorption of these surfactants to soil can 
enhance the adsorption of hydrophobic contaminants to soil. This has been attributed to partition of hydrophobic 
contaminants into surfactant hemi-micelle formed on soil surface (Edwards et al., 1994; Sun et al., 1995; Haigh, 1996). 
Anionic surfactant on the other hand, sorb less to soil but they form micelles at higher concentrations in aqueous 
solutions than nonionic surfactants with an equivalent hydrophobic group (Rosen, 2004) and are more prone to 
precipitate in presence of multivalent cations (Ca++, Mg++). Substantial loss of surfactant by such mechanisms will 
definitely reduce their active concentration in aqueous solution, which would greatly reduce the surfactant solubilization 
and flushing efficiency. 
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Use of well designed surfactant mixtures may greatly alleviate those problems. A typical feature of ionic 
(anionic/cationic)-nonionic mixtures is the synergy or anti-synergism (antagonism) at interfaces. For example, the 
adsorption of one surfactant is either enhanced or retarded by the addition of a small amount of the other surfactant. 
Furthermore, mixing ionic and nonionic surfactants may raise or lower the CMC from that obtained by ideal mixing. 
Generally, several studies had investigated surfactant mixtures of nonionic and anionic surfactants. Most of these 
studies focused on synergism in critical micelle concentration obtained upon mixing (Janczuk et al., 1995; Owoyomi, 
2005; Joshi et al., 2005; Zhang et al., 2005; Mata, 2006; Zhao and Zhu, 2006; Zhao et al., 2006). Other studies deal with 
solubilization of organic compounds in anionic-nonionic surfactant mixtures (Zhu and Feng, 2003; Zhou and Zhu, 2004; 
Zhao et al., 2005; Zhou and Zhu, 2005; Zhao and Zhu, 2006; Zhao et al., 2006; Zhao et al., 2007). Several studies deal 
also with remediation of soil contaminated with specific contaminants (Lee et al., 2004; Zhou and Zhu, 2007; Yu et al., 
2007).  
Although the adsorption of single surfactants at the solid-liquid interface has been studied intensively, far fewer studies 
exist for the case of adsorption from mixed surfactant solutions. Adsorption of anionic-nonionic surfactant mixtures on 
positively and negatively charged surfaces were reported (Wang and Kwak, 1999 [TX100-SDS to positively charged 
alumina]; Porcel et al., 2001 [TX100-SDS to positively and negatively charged polystyrene latexes]; Yang et al., 2005 
[TX100-SDBS to Ca-montmorillonite]; Rao and He, 2006 [SDBS-A12E9 to natural soil]). Accordingly, it is not 
surprising that only a very few studies have been reported for adsorption of anionic-nonionic surfactant in natural soils 
and in presence of oil phase. 
Generally, researchers found that the CMCs of mixed anionic-nonionic surfactants were lower than those of sole anionic 
surfactants. Furthermore, with the increase in mole fraction of the nonionic surfactant, the CMCs decrease continuously 
from the CMC of pure anionic surfactant down to the CMC of pure nonionic surfactant. The experimental CMCs were 
found lower than the ideal mixing CMCs (Janczuk et al., 1995; Zhu and Feng, 2003; Zhou and Zhu, 2004; Owoyomi, 
2005; Zaho et al., 2005; Joshi et al., 2005; Yang et al., 2005; Zhang et al., 2005; Zhao et al., 2006; Zhao et al., 2007).  
For the adsorption case of anionic-nonionic surfactant mixtures, which surfactant is adsorbed preferentially depends on 
the nature and charge of mineral surface. For positively charged surfaces to which anionic surfactants are heavily 
adsorbed, presence of nonionic surfactant decreases adsorption of anionic surfactant and the adsorption of nonionic 
surfactant is enhanced where nonionic alone shows trace adsorption (Wang and Kwak, 1999; Paria and Khilar, 2004). 
On the other hand, for clay minerals that shows affinity to nonionic surfactant, presence of anionic surfactant retard 
nonionic surfactant adsorption (Paria and Khilar, 2004; Yang et al., 2005).  
Recently, mixed nonionic and anionic surfactants were investigated for their abilities to retard non-ionic surfactant 
sorption and partition to soil and organic phase, respectively. Researchers found mixtures superior to the relevant single 
ones mainly due to the reduction in nonionic surfactant partition and/or sorption to soil as well as the high solubilization 
capacity of the mixture. Yang et al. (2005) showed that the amounts of both Triton X100 (TX100) and sodium 
dodecylbenzene sulfonate (SDBS) sorbed to Ca-montmorillonite are significant. However, the amount of either 
surfactant sorbed can be decreased and minimized when they are mixed with each other.  Furthermore, the extent of 
the nonionic surfactant (TX100) which partition into the organic phase was found to decrease if the amount of the 
anionic surfactant (SDBS) increased (Zhao et al., 2006; Zhao et al., 2007). Decreasing loss of surfactant due to 
partitioning and/or sorption and the greater apparent solubilization of the mixture will reduce surfactants volumes 
needed and thus the capital expenditure and operation cost (Zhao and Zhu, 2006).  
Accordingly, it becomes impressive to investigate the ability of nonionic-anionic surfactants mixtures to reduce CMCs 
and surfactant losses either by reducing partition to organic phase or adsorption to soil or sediments at different 
experimental conditions, i.e. different sorbent and different organic phase. This study is intended to investigate the 
simultaneous losses of sodium dodecyl sulfate (SDS), TX100 and their mixtures by partitioning, adsorption and 
abstraction. The study will investigate the adsorption of SDS, TX100 and their mixtures to Batu Arang’s shale.  
Surface tensions of surfactants and their mixtures are studied to determine adsorption and micellization properties. 
Interfacial tensions of surfactants and their mixtures with an oil phase, Sarapar147 are also studied to investigate 
simultaneous surfactant partitioning, adsorption and micellization. 
SDS and TX100 have been selected mainly because they are frequently used by the industry and are then readily 
available and well priced. Furthermore, both surfactants have been the most extensively studied surfactants from the 
anionic and nonionic classes, respectively (Mata, 2006). Both surfactants were found successful in the extraction of 
organic contaminants from soils (Chou et al., 1998; Deshpande et al., 1999; Sanchez-Camazano et al. 2000; Chang et al., 
2000; Jada and Hamieh, 2001; Zhang et al., 2001; Chu and Chan, 2003; Sanchez-Camazano et al., 2003; 
Sanchez-Martin et al., 2003; Rodriguez-Cruz et al., 2004; Saichek and Reddy, 2004; Smith et al., 2004; Urum et al., 
2004; Urum and Pekdemir, 2004; Rodriguez-Cruz et al., 2006; Urum et al., 2006). 
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2. Materials 
2.1 Surfactants 
Triton X-100 (TX100) extra pure, was purchased from Scharlau Chemie, Spain. Sodium dodecyl sulfate (SDS) was 
obtained from Merck with a high grade of purity (99%). The oil, Sarapar147, was supplied by Kota Minerals and 
Chemical Sdn. Bhd. (KMC). Sarapar147 is a colourless mineral oil ranging from C14 to C17 and is derived from 
petroleum crude oil. All chemicals were used as received without further purification. Selected physicochemical 
properties of the compounds are presented in Table 1. 
2.2 Shale Samples 
Samples were collected from an outcrop of a local shale formation (Batu Arang, Selangor, Malaysia). Rock samples 
were disintegrated into small pieces by a jaw crusher and then ground using rock pulverizer (Fritsch, Germany). Rock 
samples were air dried for 24hrs followed by oven drying at 105ºC for 24hrs. Density of shale was determined to be 
1.94g/cc. Dried rock samples were sieved to obtain particles less than 2mm and larger than 1mm in all experiments. 
3. Methods 
3.1 Preparation of Surfactant Solutions 
The surfactant solutions were prepared in a standard 1000mL volumetric flasks. Surfactants were weighed on mass 
basis and emptied into the volumetric flask and then double distilled water was used to complete the solution to the final 
weight (1Kg). After the preparation of the stock solution, it was diluted to obtain desired concentration. 
TX100 and SDS solutions were prepared at concentrations ranges from 0.0025wt% to 1wt% corresponding to molar 
concentrations of 0.039-15.47mM for TX100 and 0.0867-34.68mM for SDS. Mixed surfactant solutions were prepared 
by mixing SDS and TX100 solutions of the same weight concentrations with different volume ratios (2:1, 1:1, and 1:2 
SDS:TX100). This results in a mole fraction of SDS in the total mixtures of 0.82, 0.69 and 0.53, respectively. Mixed 
surfactant solutions were allowed to equilibrate for at least 5hrs before any measurements were made. 
3.2 Surface Tension Measurements 
The surface tension technique was applied to determine the CMC in various combinations of shale and/or surfactant 
systems. The surface tension measurements were carried out with Krüss tensiometer (Krüss GmbH, Hamburg, 
Instrument Nr, K6) using a platinum-iridium ring at constant temperature (25±1ºC). The tensiometer was calibrated 
using method described in ASTM Designation: D1331-89. Surface and interfacial tension measurements were 
undertaken according to the method described in ASTM Designation: D1331-89.  
Krüss tensiometer operates on the Du Nouy principle, in which a platinum-iridium ring is suspended from a torsion 
balance, and the force (in mN/m) necessary to pull the ring free from the surface film is measured. Surface tension 
value was taken when stable reading was obtained for a given surfactant concentration, as indicated by at least three 
consecutive measurements having nearly the same value. The average of a series of consistent readings for each sample 
was then corrected to account for the tensiometer configuration, yielding a corrected surface tension value (Zuidema 
and Waters, 1941). A correction factor, F, is multiplied by the average dial reading in order to obtain the corrected value 
for surface/interfacial tension (ST/IFT). Zuidema and Waters (1941) proposed the following empirical correlation to 
calculate the correction factor:  
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Where F = the correction factor; R =the radius of the ring, cm; r = the radius of the wire of the ring, cm; ST/IFT = the 
apparent value or dial reading, dyne/cm (mN/m); ∆ρ = the density difference between the lower and upper phases, g/cc; 
g = acceleration due to gravity, 980 cm/sec2. The Equation is applicable only when 0.045 ≤ ∆ρgR3/(ST or IFT) ≤ 7.5 
3.3 Interfacial Tension Measurements 
Equal volume (15mL) of Sarapar147 and surfactant solution was poured into a glass beaker of 6cm diameter and the 
resulting mixture used for the interfacial tension studies. The same procedure used for the surface tension measurement 
was used for the interfacial tension study except that the balance of the tensiometer reading for zero was checked with 
the platinum-iridium ring completely immersed in the surfactant solution phase and not in the surface or interface of 
Sarapar147–surfactant. Hence, the platinum ring must be completely immersed in the surfactant phase before the 
platform is gradually adjusted until a force necessary to detach the platinum ring upward from the surfactant-oil 
interface is exerted.  
3.4 CMC Measurements 
The CMC values were obtained through a conventional plot of the surface/interfacial tension versus the surfactant 
concentration. The CMC concentration corresponds to the point where the surfactant first shows the lowest 
surface/interfacial tension. The surface/interfacial tension remains relatively constant after this point. 
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3.5 Adsorption to Shale 
Adsorption isotherms were determined by batch equilibrium adsorption procedures. 10g of shale were added to a set of 
60mL surfactant solutions (surfactant initial concentrations spans from 0.0025wt% to 1wt%) in a 100mL glass vials (1:6 
w/v ratio) and allowed to equilibrate at 25±1 ºC. The surfactant solution-to-soil ratio was designated as 6:1 (v/w) to 
reach the optimal washing performance (Chu and Chan, 2003; Urum and Pekdemir, 2004). The vials were then agitated 
on a gyratory shaker at 100rpm (wrist orbital shaker) for 3 hrs and allowed to rest for 16hrs. Surfactant sample aliquots 
were taken for surfactant concentration determination before and after adsorption. All experiments were conducted with 
3 replicates at 25±1ºC. To determine the maximum sorption of surfactants into shale, a surface/interfacial tension 
method was used. Each adsorption experiment involved 10 batch test samples in 100mL glass vials. The amount of 
surfactant adsorbed and/or abstracted was computed from the difference of CMC values before and after adsorption, 
and means of three replicates were used. 
4. Results and Discussion 
4.1 Surfactant Partition into Sarapar147 
Figures 1 and 2 illustrate a typical graph of surface/interfacial tensions against the logarithm of the surfactant dose for 
fresh solutions. Figure 1 shows surface tensions (STs) while Figure 2 shows interfacial tensions (IFTs). The Figures 
depict the surface/interfacial tension curves as total surfactant concentration for the mixed SDS-TX100 system in which 
the molar fractions of SDS are 1, 0.82, 0.69, 0.53 and 0, respectively. Surface tension between water and air was 
measured as 72.57 mN/m while interfacial tension between water and Sarapar147 was found as 29.64 mN/m. As the 
surfactant solution is introduced, this value was reduced. As shown in Figures 1 and 2, surface/interfacial tension is 
concentration dependent. As the surfactant concentration increases, surface/interfacial tension decreases until the 
surfactant CMC value is reached and remains relatively constant there after wards.  
CMC of pure surfactants obtained were compared with those in literature. CMC values of SDS obtained from both 
surface/interfacial tensions vs. concentration are similar at 0.1wt% (3.468mM/L or 1000mg/L) indicating minor losses 
of this surfactant to oil phase (Sarapar147). CMC of SDS compares well with those reported in Zhu and Feng (2003), 
Zhou and Zhu (2004), Zhao et al., (2005) and Zhou and Zhu (2007). 
The CMC values of TX100 obtained by surface tension measurements (Figure 1) were much lower than that obtained 
by interfacial tension measurements (Figure 2). The first value (0.025wt%) was comparable well with values reported in 
previous published studies (Zhu and Feng, 2003; Zhou and Zhu, 2004; Zhao et al., 2005; Zhou and Zhu, 2007). The 
second value (0.07wt%), however, was not reported in literature. This is because surface tension technique is often used 
to determine surfactant CMCs and hence the effect of oil in micellization is ignored. It is rather noteworthy that it is the 
interfacial tension which is valuable to practical processes and not surface tension. Hence, reporting CMCs using 
surface tension technique may lead to misleading results. The difference in CMCs (0.045wt% or 
0.45g-TX100/L-Sarapar147) may be due to partitioning of TX100 into Sarapar147 which result in loss of some active 
monomers of TX100.  
Zhao et al. (2006 and 2007) reported extensive losses of TX100 due to partitioning into the organic phase, however no 
SDBS partitioning was found. Losses of TX100 with an initial concentration of 10g/L (1wt%) into Trichloroethene, 
Chlorobenzene, 1,2-Dichlorobenzene and Tetrachloroethene phases were more than 99%, 97%, 97%, and 15%, 
respectively when single TX100 was used. They attributed this behavior to the formation of reverse micelles (nonpolar 
exterior, polar interior) at lower IFTs. The affinity of TX100 to partition increased if the organic phase is polar.  
As shown in Figures 1 and 2, the surface/interfacial tensions of mixed surfactants at a given molar ratio decreased with 
increasing total surfactant concentration. Each surface/interfacial tension curve had a breaking point that was taken as a 
mixed CMC. The CMCs of the mixtures as determined by surface tension curves are similar and very close to that of 
pure TX100 determined by surface tension curves (Figure 1). This is generally in agreement with other studies (Zhao et 
al., 2005; Mata, 2006). The CMCs of surfactants mixtures as determined by interfacial curves (Figure 2) are also nearly 
similar to pure TX100’s CMC determined by surface tension curves, however, they are much lower than that of pure 
TX100 (0.07wt%) determined by interfacial curves. Therefore, mixtures have eliminated surfactant loss through 
partitioning. Zhao et al. (2006 and 2007) reported similar findings and found that partitioning of TX100 into 
nonaqueous phase liquids decreased by mixing with anionic surfactant (SDBS). This trend was attributed to the less 
affinity of anionic surfactant to partition into the organic phase and the formation of mixed micelles.  
4.2 Surfactant Adsorption to Shale  
Surfactant adsorption to solid surfaces is a process of transfer of surfactant molecules from bulk solution phase to the 
surface of the solid surface (Paria and Khilar, 2004). Adsorption can also be considered as a partitioning of the 
surfactant monomers between the solid surface and the bulk, and can occur if the solid surface is energetically favored 
by the surfactant in comparison to the bulk solution. Generally, adsorption of surfactants and their mixtures at 
solid/solution interface is a complex process. The driving force for adsorption is a combination of the electrostatic 
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interaction, the chemical interaction, the lateral chain–chain associative interaction, the hydrogen bonding and 
desolvation of the adsorbate species (Zhang and Somasundaran, 2006). 
As seen in Figure 3, surface tensions for SDS have not been changed before and after equilibration with shale (SDS=b 
& SDS=a, respectively). However, surface tensions for TX100 were increased significantly after equilibration with 
shale (TX=a). Similarly, the CMC of both SDS and TX100 as determined by surface tension technique are different at 
0.1wt% and 1.5wt%, respectively. Hence, the CMC of SDS has not been notably changed before and after equilibration 
with shale. This indicates a minor loss of this surfactant to shale. In contrast, the CMC value of TX100 has been shifted 
to higher concentrations, i.e., the surfactant was adsorbed heavily to shale. This is a result of less surfactant monomer 
concentration in surfactant solutions after equilibration with shale. This significant loss of TX100 monomers is 
attributed to their adsorption to organic matter/clay minerals in shale.  
Figure 4 depicts surface tension curves of individual surfactants and their mixtures after equilibration with shale. It is 
obvious that mixtures at all SDS molar fractions do improve behavior of individual surfactants at air-water interface. All 
CMCs of SDS-TX100 mixtures are similar to that of pure SDS at 0.1wt% and lower than that of pure TX100 
(0.15wt%). 
At the CMC values, the concentration of the bulk solutions will be saturated with surfactant monomers. As the fresh 
surfactant solution start to form micelles at a specific monomer concentration, it is assumed that surfactant/shale 
supernatant would form micelles at the same monomer concentration indicating the same surface/interfacial tension but 
at different CMCs. Hence, the amount of surfactant adsorbed to shale can be calculated from difference between CMC 
obtained after equilibration with shale and/or presence of oil phase and the original CMC. From Figure 3, the difference 
in pure TX100’s CMCs as determined from surface tension curves was found to be 0.125wt% (0.15-0.025wt%). This 
concentration can be normalized to shale mass by dividing it by sorbent mass and multiplying by solution mass to yield 
g-TX100 to g-Shale (0.00125×60/10g = 0.0075g-TX100/g-shale or 7.5g-TX100/Kg-shale). Similar values have been 
reported in literature for natural soil (Zheng and Obbard, 2002; Zhou and Zhu, 2007). Zheng and Obbard (2003) found a 
maximum loss of 5mmole-TX100/Kg-soil (3.14g-TX100/Kg-soil). Similarly, Zhou and Zhu (2007) reported a 
maximum loss of about 12mmole-TX100/Kg soil (7.536g-TX100/Kg-soil) to an uncontaminated soil collected from 
Hangzhou City, China. 
Considering the surface tension trends (Figures 1 & 4), CMCs of mixtures were close to TX100 CMC before 
equilibration with shale and closer to SDS’s CMC after equilibration with shale. Hence, the maximum adsorption for 
mixtures (∆CMC= 0.1-0.025= 0.075wt%) are lower than that of pure TX100 (∆CMC= 0.15-0.025= 0.125wt%), i.e. 
40% reduction. Accordingly, it can be said that the presence of SDS (at molar ratios used in this work) did reduce 
sorption of TX100 to shale. This is in agreement with the observation made by other researchers (Zhou and Zhu, 2007; 
Yu et al., 2007). Zhou and Zhu (2007) found a 45-71% (from 11.6 to 6.41 and 3.33 mM/Kg) decrease in the maximum 
sorption amount of TX100 while using approximately comparable SDS molar ratios as this study (1:2 and 2:1 
SDS:TX100 mass ratio, respectively). Yu et al. (2007) results showed 47-70% (from 15 to 8 and 4.5 mM/Kg) reduction 
with 1:2 and 2:1 SDS:TX100 mole ratios, respectively.  
Generally, the nature of solid surface whether hydrophobic or hydrophilic and the electrical interactions play an 
important role in the kinetics of adsorption of surfactant at the solid–liquid interface. Electrostatic interactions are most 
important for anionic SDS surfactant. Most natural surfaces are negatively charged under naturally occurring conditions. 
As a result, anionic surfactant will experience a repulsive electrostatic interaction with most natural surface; this serves 
to make them adsorb to a lesser extent than nonionic surfactants for most applications. Adsorption of a nonionic 
surfactant such as TX-100 has proposed to involve hydrogen bonding. Hydrogen bonding is weaker than electrostatic 
interactions. It should be noted that for adsorption due to hydrogen bonding to take place, the bond formed between the 
surfactant functional groups and mineral surfaces should be stronger than that formed between the mineral and 
interfacial water molecules (Zhang and Somasundaran, 2006). Hydrophobic bonding can also be important for 
adsorption on solids that possess a fully or partially hydrophobic surface. In this case, surfactant molecules can adsorb 
flat on the hydrophobic sites on the solid. Such adsorption can also take place on other types of solids that are originally 
hydrophilic, but that have acquired some hydrophobicity owing to reaction with organic species in solutions 
(Somasundaran and Huang, 2000). 
More importantly, surfactant adsorption is related to the chemical potential of the surfactant molecules (monomers) in 
solution and the nature of the solid. Under mixed micellization conditions the chemical potential of monomers will be 
lower than that for the single surfactant system and this in turn can reduce adsorption at the solid-liquid interface. 
Beyond the CMC, the aqueous monomer concentration will not increase with any further addition of surfactant since 
the additional surfactant will form micelles. Sorption of TX100 surfactant as well as SDS-TX100 mixtures to shale is 
limited by their critical micelle concentrations and reaches a plateau at their CMCs. The CMC-limited sorption of 
surfactants reflects the significant effects in reducing the CMC of surfactant system; in other words, a reduction in their 
CMCs reduces their sorption to shale. 
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4.3 Surfactant Losses to Both Shale and Oil 
After equilibration with shale and in presence of oil phase, SDS interfacial tension (SDS=a+) has been slightly 
increased particularly for sub-micellar concentrations (Figure 5). Meanwhile, Interfacial tensions for TX100 were 
increased significantly (TX=a+). This significant loss of TX100 is attributed to adsorption to organic matter/clay 
minerals in shale and partitioning into Sarapar147.  
CMC of TX100 was attained at 0.25wt% in presence of Sarapar147. This is a perceptible detrimental change in TX100 
behavior in presence of both shale and oil. The result shows that both shale and Sarapar147 are responsible for loss of 
TX100. As shown in Figure 5, the difference in CMCs of pure TX100 as determined from interfacial tension curves was 
found to be 0.225wt% (0.25-0.025). When normalized to mass of shale and solution a value of 22.5g-TX100/Kg-shale 
can be estimated. This tremendous loss of TX100 surfactant concentration is due to interaction of TX100 with both 
shale and Sarapar147. 
As shown in Figure 6, surfactant mixtures performed better in presence of both shale and oil. Though the CMCs and 
interfacial tensions are not lower than those of pure SDS’ CMC (0.1wt%), they are however, much lower than that of 
pure TX100 (2.5wt%). Mixtures result in about 60% reduction in surfactant losses. Hence, it can be said that the 
presence of SDS significantly reduced adsorption and partitioning of TX100 to shale and Sarapar147, respectively. 
It is clear that the addition of SDS has reduced the amount of TX100 adsorbed to shale or partitioned into the oil phase. 
It is widely accepted among researchers that SDS surfactant is less likely to adsorb to shale and far less likely to 
partition into an oil phase. However, TX100 surfactant is more liable to sorb onto shale and partition into oil phase 
(Harusawa et al., 1980; Butler and Hayes, 1998; Zimmerman et al., 1999; Cowell et al., 2000; Zhao et al., 2006; Zhao et 
al., 2007). Mixing SDS with TX100 may therefore retard the affinity of TX100 to sorb onto shale or partition into oil 
phase. It is needed to point out that sorption and/or partitioning of any surfactant proceeds through the sorption and/or 
partitioning of surfactant monomers and micelle formation limits surfactant adsorption and partitioning, i.e., the 
micelles are not directly sorbed or partitioned (Harusawa et al., 1980; Zhu et al., 2003; Paria and Khilar, 2004). In 
mixed surfactant solution, the formation of mixed micelles affect the CMC, i.e. mixing will result in a lower CMC. This 
will reduce the monomer concentration of component surfactant in mixed solution and hence their sorption onto shale 
and partition to oil phase (Zhou and. Zhu, 2007). 
5. Conclusion 
The choice of a successful surfactant to enhance remediation must goes beyond selection of surfactant system that 
efficiently solubilize or mobilizes specific oil contaminants. The surfactant must also be matched to the subsurface soil 
matrix and salinity conditions. Similarly, surfactant partition tendencies into the specific oil contaminants must be 
addressed. This may ensure that the surfactant system remains at an active concentration. Surfactants losses to soils 
and/or oil phase will, through various chemical interactions such as sorption, precipitation and partitioning retard 
contaminant removal. Surfactant sorption to soil will increase soil/sediment organic carbon content favoring the 
adsorption of hydrophobic organic compounds, escalate cost of the operation by increasing surfactant doses let alone 
surfactant pollution to soil/ground water and their effect on contaminant biodegradation.  
Attempts made in this work to minimize losses of nonionic surfactant (TX100) to local shale and/or partitioning to oil, 
Sarapar147, through use of anionic-nonionic (SDS-TX100) surfactant mixture was successful. SDS-TX100 surfactant 
mixtures were able to maintain their active concentrations in presence of shale and oil while using low initial surfactant 
concentration as low as 0.1wt%. The experimental data from surface tensions of solutions before equilibration with 
shale showed that CMCs of mixed surfactants are much lower than that of individual SDS but closer to that of pure 
TX100. However, data from interfacial tensions showed that CMCs of mixed surfactants are lower than both surfactants. 
After equilibration with shale the CMCs of mixtures as obtained from surface and interfacial tension data are close to 
that of pure SDS (0.1wt%) but are much lower than that of pure TX100 (1.5 and 0.25wt%, respectively). Results 
showed that all mixtures behave similarly and have superior properties than both single surfactants. Partitioning and 
adsorption of TX100 into organic phase (Sarapar147) and shale were decreased by mixing with anionic surfactant 
(SDS). The data showed a 40% reduction in surfactant losses due to adsorption to shale and around 60% reduction due 
to both partitioning and adsorption. 
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Table 1. Physicochemical properties of chemicals 

Chemical 
Structure/ 

Composition 
MWa 
g/mol 

CMCb, mg/L 
(mM/L) 

HLBc Dd, g/mL BPe, ºC 

TX100 C34H62Ox(x-11) 646.37
130-200 

(0.2-0.31) 
13.5$ 1.070# 270# 

SDS C12H24NaSO4 288.4 
963-2420 
(3.32-8.4) 

40$ 0.400# - 

Sarapar147 

95wt% 
n-paraffin 
and 5wt% 

iso-paraffin 

NA - - 0.773# 258-293#

a Molecular Weight; b Critical micelle Concentration; c Hydrophile-lipophile balance; d Density;  
e Boiling Point; $ Zhou and Zhu (2004); #  Provided by company; NA=Not Available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Surface Tension Curves for Pure Surfactants and Mixtures before Equilibration with Shale 
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Figure 2. Interfacial Tension Curves for Pure Surfactants and Mixtures before Equilibration with Shale 
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