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Graphical abstract 
 

 

Abstract 
 

Service robot is currently gaining traction, particularly in hospitality, geriatric care and 

healthcare industries. The navigation of service robots requires high adaptability, flexibility 

and reliability. Hence, map-based navigation is suitable for service robot because of the 

ease in updating changes in environment and the flexibility in determining a new optimal 

path. For map-based navigation to be robust, an accurate and precise localization 

method is necessary. Localization problem can be defined as recognizing the robot’s own 

position in a given environment and is a crucial step in any navigational process. Major 

difficulties of localization include dynamic changes of the real world, uncertainties and 

limited sensor information. This paper presents a comparative review of sensor technology 

and sensor fusion methods suitable for map-based localization, focusing on service robot 

applications.  
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Abstrak 
 

Penggunaan robot perkhidmatan kini menjadi semakin ketara, terutamanya dalam industri 

berkaitan hospitaliti, penjagaan warga tua dan penjagaan kesihatan. Navigasi robot 

perkhidmatan memerlukan penyesuaian, fleksibiliti dan kebolehpercayaan yang tinggi. 

Oleh itu, navigasi berdasarkan peta adalah lebih sesuai untuk robot perkhidmatan kerana 

kemudahan dan fleksibilitinya dalam menentukan jalan optimum yang baru dengan 

perubahan persekitaran. Untuk menghasilkan navigasi berdasarkan peta yang teguh, 

kaedah penyetempatan yang tepat adalah perlu. Masalah penyetempatan ditakrifkan 

sebagai mengiktiraf kedudukan robot sendiri dalam persekitaran yang diberikan dan 

adalah satu langkah penting dalam proses navigasi. Kesukaran utama bagi 

penyetempatan termasuk perubahan dinamik dunia sebenar, maklumat sensor yang tidak 

tentu dan terhad. Kertas kerja ini membentangkan kajian dalam perbandingan teknologi 

sensor dan kaedah sensor fusion yang sesuai digunakan untuk penyetempatan 

berdasarkan peta yang memberi tumpuan kepada aplikasi robot perkhidmatan. 

 

Kata kunci: kajian, teknologi sensor, sensor fusion, robot perkhidmatan, penyetempatan 

berdasarkan peta 
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1.0  INTRODUCTION 
 

In recent years, there has been an explosive growth 

of interest in the development of service robot. One 

of the main reasons for this is that service robots are 

able to help individuals, including people with 

special needs, in a home or workplace. The robot will 

move in an environment, inhabited by a group of 

people, and perform physical tasks, such as to fetch 

and deliver objects [1]. The common applications of 

service robot include hospitality, geriatic care and 

healthcare. In order to navigate itself, a popular 

localization technique being researched and used is 

map-based localization. The map-based localization 

method matches a virtual or electronic map with 

location information from sensors to obtain the real 

position of the robot in a workspace.  

Map-based localization highly relies on two distinct 

feedbacks. The first is the idiothetic feedback, which 

provides internal information about the robot’s 

movements. The idiothetic feedback is usually 

obtained from proprioceptive sensor such as 

odometry sensors. The quality of idiothetic feedback 

can affect the performance of local localization or 

position tracking. Local localization provides new 

position estimate given a previous position estimate 

and new idiothetic feedback [2]. The second is 

allothetic feedback, which provides external 

information about the environment. This allothetic 

feedback can be obtained from exteroceptive 

sensor such as kinect and laser scanner sensors. A 

good quality of allothetic feedback can improve the 

performance of global localization. Global 

localization is a method to estimate the position of a 

robot without knowledge of its initial location and the 

ability to self-localize if its position is lost [3]. Hence, 

the robustness and accuracy of the map-learning 

and localization processes are highly related to the 

sensor technologies used.  

The quality and reliability of local localization 

decrease over time because it involves an integral 

process which is subject to cumulative error [4]. On 

the contrary, global localization suffers from 

perceptual aliasing problem in which two distinct 

places in the environment may appear the same [5]. 

Hence, in order for robot to accurately navigate over 

a long time, both of the feedbacks must be 

combined. Allothetic feedback must compensate for 

the idiothetic feedback drift while idiothetic 

feedback must allow allothetic feedback to be 

disambiguated [6]. There are several sensor fusion 

methods being researched to fuse both feedbacks in 

order to obtain a robot position in a map, for 

example, using Extended Kalman Filter (EKF), 

Unscented Kalman Filter (UKF) and Particle Filter (PF). 

Generally, the two major factors which can affect 

the performance of map-based localization are the 

sensor technologies and the sensor fusion method. 

Section 2.0 reviews several sensor technologies 

whereas in section 3.0, different sensor fusion 

methods are presented. A discussion and evaluation 

of both factors are presented in section 4.0. 

2.0  SENSOR TECHNOLOGIES 
 

2.1  Odometry Sensor 

 

Optical encoder is the most commonly used 

odometry sensor, also known as proprioceptive 

sensor, typically mounted on driver motor to count 

the wheel revolutions [7]. Figure 1 shows a typical 

type of optical encoder which provides idiothetic 

feedback (motion) to update the mobile robot 

position through local localization. Figure 2 shows the 

representation of the robot in the global frame.  

 

 
Figure 1 Optical encoder 

 

 

 

Figure 2 Representation of the robot in global frame 

 

 

A state of the robot can be modelled as 𝑆𝑘= 
[𝑥𝑘 𝑦𝑘 𝜃𝑘]𝑇 where [𝑥𝑘 𝑦𝑘] are the Cartesian 

coordinates, and 𝜃𝑘 is the orientation respective to 

global environment. From the output of encoders, 

the robot position is calculated by the odometry 

equation (1) - (2), 

 

𝑆𝑘+1 =  𝑆𝑘 +  [
sin(𝛿 + 𝜃𝑘) − sin(𝜃𝑘) 0

cos(𝜃𝑘) − cos(𝛿 + 𝜃𝑘) 0
0 0 𝛿

] [
𝑅
𝑅
1

] (1) 

 

𝑆𝑘 =  [

𝑥𝑘

𝑦𝑘

𝜃𝑘

] ;  𝑅 =  
𝐷 (𝑈𝑅+𝑈𝐿)

2 (𝑈𝑅−𝑈𝐿)
 ;  𝛿 =  

(𝑈𝑅−𝑈𝐿)

𝐷
  (2) 
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where 𝑈𝑅, 𝑈𝐿 are the incremental displacement from 

the right and left wheels respectively. 𝛿 is the change 

of robot rotation angle from its previous state. D is the 

tread distance between the two wheels. R is the 

radius of the arc to the centre of the robot’s axle. 

However, it is well known that using solely the data 

from odometry is not sufficient because odometry 

accumulates unbounded position error [8]. The 

position estimation accumulates errors over time due 

to different wheel diameters, wheel-slippage, wheel 

misalignment, and finite encoder resolution [9]. 

 

2.2  Laser Scanner Sensor 

 

Laser scanner sensor is an exteroceptive sensor for 

navigation and map building tasks in the robotics 

community. Figure 3 shows an example of laser 

scanner sensor which is mounted on a mobile robot. 

It obtains the data of surrounding environment 

through its laser scan and hence providing allothetic 

feedback. With the capability, it has been widely 

used in localization [10, 11], dynamic map building 

[12, 13] and collision avoidance [14]. Figure 4 shows 

the overview of the laser scanner which has a 

bearing resolution of 𝜃° between each adjacent 

scan. The output from the laser scanner also provides 

the ranges data from right to left in term of meters i.e. 

from 𝑞1, 𝑞2, …, 𝑞𝑛. 

 

 

Figure 3 Laser scanner sensor 

 

 

Figure 4 Overview of laser scanner 

 

 

The raw feedback data will go through extraction 

technique such as point-based or feature-based 

extraction [15]. Point based extraction such as spike 

extraction uses extrema to determine spikes [16]. 

Feature-based extraction are done with line 

extraction technique using Split and Merge [17, 18], 

Random Sampling Consensus RANSAC [19] or 

Expectation- Maximization (EM) [20] algorithm. Next is 

data association process which matches a map 

feature from one observation to another same 

feature found in another observation [21]. The 

techniques for data association can be Joint 

Compatibility [22], Sequential Compatibility Nearest 

Neighbour [22], or Joint Maximum Likelihood [23]. 

Compared to other sensor technologies, the laser 

scanner provides more accurate range and bearing 

measurements. It has high sampling rate, high 

angular resolution, good range distance and 

resolution with the big field of view (FOV) [15]. 

However, since the laser scanner sensor works with 

light, the main problems are reflective surface. 

Mobile robots equipped with laser scanners may 

face problems in environments having window panes 

[24]. The laser sensor produces unexpected and 

suspicious measurements as it encounters glass 

panes in office environments [25]. Additionally, the 

sensing frequency affects performance since it has to 

rotate the mirror which reflects the emitting laser 

beam. Besides, mobile robot using fixed laser scanner 

sensor can only detect obstacle on a particular 

plane level [26]. This may lead to collision during 

navigation when the obstacles appear on different 

plane level other than laser plane level. 

 

2.3  Vision Sensor: Kinect 

 

Low-cost range or vision sensor is an alternative to 

the expensive laser scanner sensor for indoor 

mapping and robotics. Currently, the Kinect sensor 

has become a popular choice in mobile robot 

navigation due to its low cost. Figure 5 shows the 

Kinect sensor mounted on a mobile robot. It is also 

RGB-D camera providing RGB and Depth images 

[26]. It is another exteroceptive sensor which can be 

used to extract data in indoor environments to 

provide allothetic feedback.  

It provides a 640x480 pixel colour image from an 

RGB camera and a depth image provided by an 

infrared (IR) camera supported by an IR emitter and 

an IR depth sensor, capturing at 30 frames per 

second (fps) [27]. The RGB image first undergoes 

feature extraction and matching algorithm. Features 

are extracted from the RGB image of the current 

frame and then, are matched back to those features 

in the previous frame [27]. The feature matching 

algorithm can be Oriented FAST and Rotated BRIEF 

(ORB) [28] and Speeded-Up Robust Features (SURF) 

[29]. After the detection of the features, feature 

locations from the images are projected to 3D space 

using the depth measurement through the Random 

Sample and Consensus (RANSAC) algorithm [19]. The 

3D coloured point cloud produced contains about 

300,000 points in every frame [30]. 3D point cloud 

can be processed to get useful information such as 

object detection, and laser scan data [26].  

Kinect offers significant advantages over 

conventional laser scanners, such as 3D model 
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building at considerably lower price, and the 

inclusion of colour into the maps [31]. A 

demonstration of the potential of Kinect for 3D 

modelling of indoor environments can be seen in the 

work of Henry et al. [32]. It is able to detect obstacles 

that went undetected by a normal laser scan system 

[26]. It can provide fast real time scanning frequency, 

at about 30 frame per second. The implementation 

of Kinect camera lowers the computing power 

compared with using other depth sensors. More 

expensive sensors typically need more computing 

power due to the use of high end equipment that 

generated much details and large amount of data 

[33]. However, the kinect sensor has lower precision 

and accuracy in terms of 2D mapping [30]. It has 

small field of view (FOV) and detects object only at 

close range [29]. Similar to laser range scanner, glare 

and light reflection may cause wrong measurements 

[33]. From a research work, Kinect cannot replace 

laser scanner for robotic applications due to small 

monitoring angle [34]. 

 

 

Figure 5 Kinect sensor 

 

 

2.4  Laser Scanner with Stereo Camera 

 

Another approach that provides allothetic feedback 

is to use laser scanner combined with stereo camera. 

Figure 6 shows a robot installed with stereo camera 

and laser scanner. In the work of Labayrade et al., 

the laser scanner and stereo camera are fused 

together for on-board road obstacle detection [35]. 

The use of this method leads to a robust and 

accurate detection and improves the results 

provided by a single sensor [35]. Besides, this method 

is also used for building the 3D environment map in 

another research [36]. Besides, 2D laser scanner and 

a stereo camera are used for accomplishing 

simultaneous localization and mapping (SLAM) in 3D 

indoor environments, in which the 2D laser scanner is 

used for SLAM and the stereo camera is used for 3D 

mapping [37]. Their results show that fused sensors 

have higher obstacle detection rate than using only 

either one sensor.  

For this technique, the inputs of laser scanner and 

stereo camera are first collected. Then laser scanner 

performs scan matching and stereo camera 

performs depth noise filtering to update both their 

occupancy maps. Both these occupancy maps are 

then fused to obtain one single map, which is more 

accurate, to be used for localization. 

With this combination of sensor technologies, it 

solves the plane level problem by using only laser 

scanner and also improves the accuracy in building 

the map. However, the depth measurement from 

stereo camera is uncertain and inaccurate [37] 

which may lead to poor map building. It also will 

consume high computational power due to the use 

of both stereo camera and laser scanner sensors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Stereo camera 

 

 

3.0  SENSOR FUSION METHODS 
 

3.1  Extended Kalman Filter (EKF) 

 

EKF is a non-linear version of the Kalman filter which 

linearizes around the estimate of current mean and 

covariance. This filter has the common prediction - 

correction cycle of recursive state estimators to 

approximate the optimality of Bayes’ rule through 

linearization [38]. The process algorithms for EKF are 

shown in Figure 7.  

 

 

Figure 7 EKF algorithm 

 

 

During the prediction step, 𝑋𝑘
− is computed which is 

the prediction of the state in term of robot position 

and orientation. The 𝑓 function is related to the 

odometry model used to obtain the idiothetic 

feedback with the odometry system. 𝑋𝑘−1
+  is the 

correction of the pose state predicted value in the 
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previous time step and 𝑈𝑘 is the process noise. 𝑍𝑘 is 

the estimation of measure from 𝑔 function taking 𝑋𝑘−1
+  

and the measurement model based on the allothetic 

sensor. 𝑃𝑘
− is the prediction of error covariance matrix, 

using the corrected value of error covariance matrix 

from the previous time step 𝑃𝑘−1
+ , as well as the noise 

covariance matrix 𝑄𝑘−1 of the odometry 

measurements’ model, and the Jacobian 𝐹. And in 

the correction step, 𝐾𝑘 is the Kalman gain computed 

by using noise covariance matrix 𝑅𝑘 of allothetic 

sensor model, Jacobian  𝐻𝑘 and 𝑃𝑘
−. And also 𝑋𝑘

+ and 

𝑃𝑘
+ are updated. 

The EKF is fairly easy to implement, works very well 

in practical estimation problems and is 

computationally efficient [39]. However, there is 

tendency for EKF to diverge due to the fact that EKF 

is based on the linearization about the current 

estimate. If the preceding estimates are poor or if 

subsequent estimates should take the filter out of the 

linear region, the estimate often diverge [40]. 

Linearization can only be applied if the Jacobian 

matrix exists according to Julier et al. [41]. 

Calculating Jacobian matrices can be a very difficult 

and error-prone process [41]. In term of consistency, 

the true noise covariance matrices 𝑄 and 𝑅 tend to 

be underestimated and result in inconsistencies [42]. 

The noise covariance matrices must be accurately 

obtained to produce optimal solution, but it is hard to 

obtain in non-linear system [43]. There are research 

works solved the divergence problem by integrating 

adaptive system [44, 45]. Besides, other research 

works also have integrated fuzzy logic to adjust the 

noise covariance of EKF in order to improve the 

performance [46 - 48]. 

 

3.2  Unscented Kalman Filter (UKF) 

 

UKF is another version of Kalman Filter. It addresses 

the approximation issues of the EKF i.e. the poor 

approximating properties of the first order 

approximation, and the requirement for the noises to 

be Gaussian [41, 49]. It is more suitable for cases 

where prediction and correction functions are highly 

non-linear [50]. The concept of the UKF is that of 

finding a transformation that allows approximating 

the mean and covariance of a random vector of 

length when it is transformed by a nonlinear map 

[51]. Instead of using Taylor series expansion as 

linearization algorithm for non-linear function, 

Unscented Transform (UT) is used [41]. UT estimates 

the result of a probability distribution by computing a 

finite set of weighted sigma points and transforms 

each of those sigma points through a nonlinear 

function [52]. The comparison between linearization 

of EKF and UT of UKF can be seen in Figure 8. 

UKF has better approximation than EKF to obtain 

the position of robot [51, 54]. However, UKF requires 

multiple integrations to propagate the sigma points 

through time, resulting in high computational cost, 

while the EKF perform integration only once. Besides, 

performance of UKF differs with different values of the 

UKF parameters. Thus, the UKF parameters need to 

be determined correctly [55] and the trade-off 

between computational cost and performance has 

to be carefully considered. Besides, UKF has 

advantage over EKF when using laser scanner as 

idiothetic sensor due to problem in getting the laser 

scanner Jacobian matrix [56]. There is also a research 

work, integrating adaptive capability on UKF on the 

basis of the innovation covariance matrix and the 

MIT adaptive law [57]. The result shows that adaptive 

UKF outperforms the conventional UKF in terms of fast 

convergence and estimation accuracy. 

 

Figure 8 Comparison of EKF and UKF [53] 

 

 

3.3  Particle Filter (PF) 

 

Particle filter is used to track a variable of interest as it 

evolves over time, typically with non-Gaussian and 

potentially multi-modal probability density function 

[58]. It approximates the exact probability distribution 

through a set of state samples [59]. Figure 9 depicts 

the overview of particle filter processes.  

 

 

Figure 9 Visualization of particle filter [60] 

 

 

The particle filter consists of several steps. The first 

step is initial distribution of unweighted particles with 

initial state value. And then the filter enters a 

recursive process where it starts from prediction step 

which involves acquiring idiothetic feedback from 
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proprioceptive sensor and predicts the position of 

robot [61]. The next step is updating, which computes 

and updates the weights of the each particle 

accordingly based on the allothetic feedback from 

exteroceptive sensor. The following step is resampling 

and move particles in which it duplicates and rejects 

the particles according to their weights [61]. The filter 

then goes back to the prediction step again. 

Particles which are consistent with the allothetic 

feedback are more likely to be chosen and particles 

which are inconsistent are seldom selected. With 

that, particles tend to converge towards a better 

estimate of the robot's state. This is expected since a 

robot becomes increasingly sure of its position as it 

senses its environment.  

PF is good in robot localization because robot 

localization is a state estimation problem for non-

linear system with non-Gaussian noise [62]. Neither 

EKF nor UKF can handle the non-Gaussian noise, but 

particle filter can deal with the state estimation 

problem of nonlinear system with non-Gaussian noise 

[63]. From a research work, PF has better 

performance than EKF and UKF for nonlinear 

estimation [64]. Besides, a better localization 

performance can be obtained with high number of 

particles [65], but with high computational cost [66]. 

According to Fox, a method of KLD-sampling 

adaptive particle filter is proposed which adapts the 

number of samples over time because the 

complexity of the posterior distribution can vary 

drastically over time [67]. An unscented particle filter 

is also proposed by Van Der Merwe to solve the 

problem of particle degeneracy and improve the 

accuracy of PF [68].  

 

 

4.0  DISCUSSION 
 

The laser scan based localization has better 

accuracy and wide range of field of view (FOV) but 

slow response time. The Kinect based localization has 

better update frequency and object detection in 3D 

but poorer accuracy and FOV compared to laser 

sensor. Stereo camera combined into laser scanning 

has the best localization performance but high 

computational cost. However, the depth 

measurement from stereo camera is poor. Therefore, 

the proposed approach is to combine Kinect sensor 

in laser scanner localization instead of using stereo 

camera for depth perception. Kinect sensor has 

better depth measurement than stereo camera and 

this combination is worth investigating. 

For sensor fusion method, EKF has issues with the 

divergence, inconsistency and complex Jacobian 

matrix problems. An adaptive system can be 

integrated to solve the divergence problem and also 

adjusting the noise covariance for better 

performance. UKF is superior to EKF but requires 

multiple integration processes that translate into 

higher computational costs. PF outperforms the 

Kalman filters (UKF and EKF) in terms of position 

estimate in robot localization, which is a non-linear 

system with non-Gaussian noise. However, only the 

model with high number of particles can produce 

good performance. The drawback of this method is 

the requirement for high computational resources, 

which reduces the efficiency of real time localization. 

An adaptive system can be integrated to adapt the 

number of particles over time to improve the 

efficiency. In short, the main considerations for 

selecting of sensor fusion method is the estimation 

accuracy, timing and computational costs. The 

enhancement of the methods can be investigated 

for better performance in robot localization.  

Generally, for service robots in the medical care or 

elderly care sectors, robot navigational speed is 

typically slow due to safety reasons. Hence, 

computational speed is not a major problem. The 

main consideration for service robots in these sectors 

should be localization accuracy, obstacle detection 

and collision avoidance. The higher accuracy can 

be obtained with better sensor fusion methods (UKF 

or PF), at the expense of computational speed and 

hardware costs. In the hospitality sector, the variety 

of applications will need to consider variety of 

performance requirements. A food delivery robot in a 

restaurant may want to move at a higher speed to 

preserve freshness and reduce customer waiting 

time, thus, computational speed may become a 

major issue. Hardware costs to accommodate such 

performance could also play a role in determining 

the type of sensors and fusion methods to be used for 

this food delivery robot.  

 

 

5.0  CONCLUSION 
 

The selection of sensor technology and sensor 

fusion method should be carefully considered 

depending on specific applications and resources 

available. For a service robot with the focus of 

localization accuracy, obstacle detection and 

collision avoidance, the laser – Kinect based 

localization is proposed to be used because it can 

produce a higher accuracy and obstacle detection 

for map-based localization. Besides, the combined 

sensors will require an optimal sensor fusion method 

to fuse idiothetic and allothetic feedbacks for map-

based localization. The adaptive PF is also proposed 

to be integrated into the system because it can 

produce better localization accuracy than Kalman 

filters.  
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