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ABSTRACT 
 
 
 
 

This study was carried out to investigate the mechanisms involved in the 

development of saturation profiles in soil.  A series of laboratory tests were 

conducted to monitor the saturation profiles in four types of soil under various 

rainfall conditions.  The understanding in saturation profile is essential to predict 

the shear strength of soil, particularly for slope stability problem. The study showed 

that the saturation profile in soil could be effectively monitored through a fabricated 

soil column model.  The effect of rainfall pattern on the saturation profile of 

coarse-grained soil is relatively insignificant. Conversely, the saturation profile in 

fine-grained soil could be significantly altered when the soil is subjected to a 

prolonged rainfall.  It is believed that the findings from the present study could lead 

to better understanding of saturation profile in soil, and subsequently contributing 

efforts in mitigating rainfall-induced slope failure.   

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



 iii

 
 
 
 

ABSTRAK 
 
 
 
 

Kajian ini dijalankan untuk mengkaji mekanisme yang terlibat dalam 

perkembangan profil ketepuan dalam tanah. Satu siri ujian makmal telah dijalankan 

untuk memantau profil ketepuan empat jenis tanah dalam pelbagai keadaan hujan. 

Kefahaman dalam profil ketepuan adalah penting untuk meramal kekuatan tanah 

terutamanya bagi masalah kestabilan cerun.  Kajian ini menunjukkan profil 

ketepuan tanah dapat dimantau dengan efektifnya dengan menggunakan satu model 

tiang tanah. Kesan corak hujan terhadap profil ketepuan tanah berbutiran kasar 

didapati kurang ternyata. Sebaliknya, profil ketepuan dalam tanah berbutiiran halus 

berubah dengan banyak apabila tanah terdedah kepada hujan yang berpanjangan. 

Adalah diharapkan bahawa penemuan daripada kajian ini dapat memberi kefahaman 

yang lebih mendalam mengenai profil ketepuan tanah, dan seterusnya memberi 

sumbangan dalam pencegahan tanah runtuh akibat hujan.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Background of the Study 
 
 

The stability of a slope is greatly affected by the saturation profile of soil 

beneath the slope.  The saturation profile, in turn, is governed by several parameters 

such as rainfall pattern, interface boundary conditions, soil types, and its hydraulic 

properties.  Effect of each parameter has been studied based on numerical simulations 

and field test. These studies were limited in term of validity and the extent of the study 

area.   
 
 
Several field studies on the saturation and suction profile can be traced. For 

instance, Gasmo et al. (1999) described the details of the instrumentation for pore 

water pressure monitoring in an unsaturated residual soil slope in Singapore. In the 

study on the infiltration characteristics of the slope, Tsaparas et al. (2002) found that 

the changes in pore water pressure were affected by the total rainfall and the initial 

conditions of the slope.  Li et al. (2005), based on a full scale field experiment on 

an instrumented slope in Hong Kong concluded that the propagation of wetting front 

was limited to the top 3 m of soil and the movements of wetting front varies with 

rainfall pattern.  Hence, it can be concluded that most of the field studies considered 

the rainfall pattern as the main variable. 
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The effect of soil type on the saturation profile has been studied numerically 

by several researchers, i.e. Tsaparas et al. (2002), Pradel and Raad (1993), Cai and 

Ugai (2004) and Gofar et al. (2007).  Most of the studies suggested that the soil 

with low permeability should contribute to higher degree of saturation compared to 

high permeable soil.  Apparently, more variables can be taken into account, owing 

to the rapid development in computing power and numerical analyzing tools.  

However, the validity of the result becomes a major concern as the soil could behave 

differently in actual condition. 
 
 
This research looked into several variables affecting the development of 

saturation profile, including rainfall pattern, soil type and boundary conditions. The 

ability to combine those parameters into a comprehensive laboratory model enhanced 

the understanding on the saturation profile beneath a soil slope. 
 
 
 
 
1.2 Objectives  
 
 
The study was carried out in fulfillment of the following objectives: 

 
 

i. To fabricate a small scale laboratory model for investigation of the 

mechanisms involved in the development of saturation profile. 

 

ii. To study the dominant factors affecting each mechanism. 

 

iii. To study the overall mechanism in the comprehensive laboratory model  
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1.3 Scope of the Study 
 
 

The study focuses mainly on laboratory modeling. A soil column model was 

fabricated to simulate the one-dimensional infiltration model.  Monitoring 

instruments with automated data acquisition system were installed on the model to 

allow continuous pore-water pressure measurements.   
 
 
Due to the constraints of the experimental apparatus and research scope, the 

study was exposed to certain assumptions and limitations:  (1) The ideal 

environment in the laboratory with controlled precipitation and room temperature 

was assumed to be representative of the actual climate condition.  (2) The 

infiltration rate was derived from the difference between rainfall and runoff rate.  

Other surface losses was assumed to be negligible.  (3) The study was valid for one 

dimensional analysis, thus only the vertical flow was concerned.  (4) The soil 

materials used in the numerical simulation and laboratory modeling are assumed to 

be homogeneous.   
 
 
 
 
1.4 Significance of the Study 
 
 

With regards to the importance of this research, the findings may be viewed 

as a fundamental research.  The benefits that would be gained from the study 

include the understanding of the saturation profile for different combinations of soil 

types, boundary conditions, and rainfall patterns, as well as the understanding of the 

relationship between saturation profile and slope stability. 



 
 
 
 

CHAPTER 2 
 
 
 
 

LITERATURE STUDY 
 
 
 
 
2.1 Introduction 
 
 

This chapter provides the basic and clinical researches on the topic of 

saturation profile in soil.  Considerable literatures relevant to the topic are available.  

Most of the literatures were directed towards determining the saturation profile under 

certain rainfall condition, development of wetting front, and studies on the hydraulic 

properties of unsaturated soils, and case studies from different parts of the world.  

The one-dimensional infiltration tests carried out by previous researchers are also 

reviewed in the latter part of this chapter. 
 
 

 
 

2.2 Hydraulic Properties of Soil 
 
 

The hydraulic properties of soil can be attributed to water retention 

characteristic (soil water characteristic curve) and water coefficient of permeability 

(hydraulic conductivity function).  
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2.2.1 Soil Water Characteristic Curve (SWCC) 
 
 
The soil water characteristic curve (SWCC), also referred to as the soil 

moisture retention curve, depicts the relationship between soil water content and soil 

water pressure potential.  A typical adsorption and desorption SWCC are shown in 

Figure 2.1. 

  

 
 
 
 

 

 

 

 

 

 

 

Figure 2.1  Typical absorption and desorption SWCC (Zhan and Ng, 2004) 
 
 
As observed in Figure 2.1, the volumetric water content at saturation of 

desorption curve (θs) is greater than that of absorption curve (θ's).  The difference 

between θs and θ's, defined as the residual air content, is caused by the entrapped air 

in the soil during absorption process.  There are two characteristic points in a 

SWCC, namely air entry value (Aev) and residual water content (θr) (Zhan and Ng, 

2004).  The Aev indicates the maximum suction required to dissipate the entrapped 

air from the soil.  Before the suction exceeds Aev, the soil is saturated or nearly 

saturated, hence the behaviour of the soil is similar to that of saturated soil with a 

compressible fluid due to the existence of occluded air bubbles.  On the other end of 

the curve, very little water exists in the soil when the soil suction is greater than θr.  
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The effect of water content on the behaviour of soil is thus negligible.  As the result, 

the soil at these two unsaturated stages is not the main concern for the behaviour of 

unsaturated soil (Bao et al., 1998).  What is of greater concern is the SWCC 

between Aev and θr, in which both air and water phases are continuous or partially 

continuous, and the soil properties are strongly related to its water content or 

negative pore-water pressure (Zhan and Ng, 2004).  The rate of changes in negative 

pore-water pressure corresponding to volumetric water content is represented by the 

slope of SWCC (mw). 
 
 

A wide-array of methods can be used to obtain the SWCC, depending on the 

desired path (absorption or desorption) and the range of matric suction.  Laboratory 

SWCC test can be conducted by using pressure plate test (for suction less than 1500 

kPa), salt solution method (for suction greater than 1500 kPa), and capillary rise open 

tube method (for absorption SWCC), while field SWCC can be obtained by taking 

the field measurements of water content and suction by moisture probe and 

tensiometer, simultaneously.  Alternatively, the SWCC can be predicted by using 

empirical relationships, as proposed by several researchers included Fredlund and 

Xing (1994), Agus et al. (2001) and Gitirana and Fredlund (2004).  
 
 

 
 
2.2.2 Hydraulic Conductivity Function 

 
 
The water coefficient of permeability (k) represents the soil’s ability to 

transmit and drain water.  This, in turn, indicates the ability of the soil to change 

matric suction as a result of environmental changes (Fredlund and Rahardjo, 1993).  

Water coefficient of permeability of saturated soil is a function of void ratio (e) only.  

For unsaturated soil, the water coefficient of permeability is a function of void ratio 

(e) and volumetric water content (θ).  This relationship is commonly expressed by a 
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suction-dependent hydraulic conductivity function, as illustrated in Figure 2.2.  
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2.2  Typical suction-dependent hydraulic conductivity function 
 
 
The hydraulic conductivity function of unsaturated soil can be obtained 

through direct or indirect measurement.  The direct measurement of unsaturated 

flow behaviour that commonly conducted by using Instantaneous Profile Method 

(IPM) is not encouraged in practice since the test requires elaborate equipment and 

qualified personnel, which proves time consuming and expensive (Brisson et al., 

2002).  The duration of the test increases as the water content in the soil decreases 

(Leong and Rahardjo, 1997).  
 
 
The indirect prediction methods for hydraulic conductivity function have 

been proposed by several researchers.  Van Genuchten (1980) developed a close 

form equation to estimate unsaturated hydraulic conductivity through three 

independent parameters obtained by fitting the proposed soil water retention model 

to experimental data.  The unsaturated hydraulic conductivity was predicted well in 

four out of five study cases.  Fredlund et al. (1994) and Gribb et al. (2004) 

suggested that hydraulic conductivity function can be estimated through saturated 

permeability and SWCC by using fitting method.  Leong and Rahardjo (1997) 

compared the hydraulic conductivity function estimated from several empirical 

equations, macroscopic models and statistical models.  They concluded that the use 
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of newly developed empirical equations could give a good fit to the experimental 

data.  In conclusion, methods of predicting hydraulic conductivity function 

indirectly can be used with confidence when no experimental data are feasible.   
 
 
 

 
2.3 Rainfall Infiltration Model 
 
 

Studies of rainfall infiltration have been performed systematically since the 

1970s (Sung and Seung, 2002).  From the definitions, the rainfall may be separated 

into four components, i.e. runoff, infiltration, interception (rainfall that is caught on 

the vegetation surfaces), and evapotranspiration (ET).  Interception and ET are 

often disregarded when identifying rainfall components because they represent a 

small portion of the total rainfall (Joel et al. 2002).  These simplifications leave the 

approximation of rainfall is nearly equal to the infiltration and runoff.  
 
 
One of the earliest physical infiltration models was developed by Green and 

Ampt (1911).  Based on the model, the time (t) required to saturate the soil to a 

depth (Lf) is: 
 
 

⎥
⎦

⎤
⎢
⎣

⎡ +
−= )ln(

S
LS

SL
k

t f
f

w

μ       (2.1) 

 
 

Where,  μ = differences between the volumetric water content        
      before and after wetting 

   kw   = hydraulic conductivity of wetted zone 

  S = wetting front capillary suction 
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The infiltration rate (If) is the rate at which water enter the soil surface.  The 

Green-Ampt model predicts: 
 
 

 
f

f
wf L

LS
kI

+
=        (2.2) 

 
 
 In Green and Ampt’s model of infiltration, water from precipitation is 

assumed to enter the soil as a sharp wetting front.  The soil above the front is 

assumed to be saturated.  The soil below of the front is assumed at some uniform 

initial moisture.  This model gives a very reasonable prediction even when 

compared with other more rigorous approaches based on unsaturated flow (Bouwer, 

1966).  Other researchers such as Mein and Larson (1973), Neuman (1976), 

Loáiciga and Huang (2007) have produced a similar infiltration equation with some 

modifications.    
 
 

 Figure 2.3 shows the relationship between rainfall and infiltration.  Initially 

the infiltrability (Ip) is greater than the rainfall intensity (I).  Thus, the infiltration 

rate (If) is limited by the I.  After a period of constant rainfall, the Ip decreases over 

time to a rate of less than I.  At this stage, the If is controlled by the Ip, and surface 

runoff takes place.  Horton (1933) found that when there is plenty of water available 

for infiltration, the infiltration rate follows the limiting function of Ip, until a constant 

rate known as infiltration capacity is reached.  Freeze and Cherry (1979) found that 

the infiltration capacity is equal to the saturated permeability of soil (ksat).  This 

finding was supported by Mein and Larson (1973) who found that the infiltration rate 

is initially exceeded the saturated permeability of soil, but drops to a value identical 

to the saturated permeability when the soil becomes fully saturated. 
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One of the often heard questions is how long after a constant rainfall intensity 

will initiate the generation of surface runoff.  As shown in Figure 2.3, tp is the time 

when surface runoff start to occur.  Mein and Larsson (1973) found that tp can be 

predicted from an empirical equation as follows: 
 
 

)( w

w
p kII

kS
t

−
=

μ
       (2.3) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3  Relationship between rainfall and infiltration 
 
 
In actual condition, the infiltration-runoff system sustains much more 

complexity than those expressions in a simple physical or empirical model.  The 

infiltration rate could be affected by the distribution of rainfall, soil initial condition, 

rearrangement of soil particles due to the impact of raindrops, swelling of clayey 

soils, activities of worms and other soil fauna etc. (Bouwer 1966).  The simulation 

of infiltration process as result of a rainfall event is still possible.  However, the 

threshold rainfall for a slope failure could be a combination of a number of rainfall 

events or a prolonged antecedent rainfall.  Under such circumstances, the simulation 

of rainfall infiltration could be extremely time consuming if not impossible.  Ng et 
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al. (2003) who carried out their studies on the rainfall-induced slope failure in Hong 

Kong suggested that, on average, 40% of rainfall considered as surface loss.  

Rahardjo et al. (2004) made another assumption in Singapore by suggesting 60% of 

rainfall contributed to the surface loss.  Despite of the fact that such correlation 

could be vague, it is still an acceptable assumption in practice. 

 
 
 
 
2.4 Wetting Front and Redistribution 
 
 
 Wetting front and redistribution are two important phenomena in the 

saturation profile of unsaturated soil.  As mentioned earlier, the conceptual model 

based on a sharp wetting front approach was first developed by Green and Ampt 

(1911).  The studies in wetting front have been extended by numerous researchers, 

with the likes of Lumb (1962), Bouwer (1966), Mein and Farrel (1974), Pradel and 

Raad (1993), Kim et al. (2006), and Wang et al. (2003).  Recent studies attempted 

to correlate the wetting front with the redistribution in order to provide a more 

comprehensive explanation to the soil moisture movement after the infiltration 

processes (Youngs, 1958; Jury et al., 2003; Wang et al., 2003). 
 
 

As illustrated in Figure 2.4, the wetting front depth (Lf) under uniform 

amount of rainfall infiltration (P) can be approximated to: 
 
 

ia
f

PL
θθ −

=         (2.4) 

 
 

Where θa is the average moisture content in the wetted zone, and θi is the 

initial moisture content (Wang et al., 2003).   
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Figure 2.4  Development of wetting front 
 
 
From the absorption and desorption SWCC shown in Figure 2.5, Wang et al. 

(2003) found that the soil below the wetting front initially takes up moisture 

following an absorption curve OA until the suction reaches the water entry value 

(Wev) at the wetting front.  Subsequently, the volumetric water content increases 

abruptly to θ’s.  Above the wetting front (soil near the ground surface), water drains 

out from the soil following the desorption curve BO.  When the suction reaches the 

air-entry value (Aev), the major pores begin to empty.  The difference between the 

Wev and Aev indicates the ability of a porous medium to entrap a zone of higher water 

content behind the wetting front (Glass et al., 1989).  Considering the inclination 

angle of slope (β), Wang et al. (2003) revised this special moisture retention ability 

and proposed a term known as the critical wetting front depth (Lcr): 
 
 

βcos
evev

cr
AW

L
−

=        (2.5) 

 
 
The term of critical wetting front depth was given because it is the limit for 

the redistribution and unstable flow to take place.  In other words, when Lf < Lcr, the 

downward flux is not possible and the corresponding suction redistribution will be as 

shown in Figure 2.6a.  Otherwise (Lf > Lcr), downward flow continues after water 
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input stops due to excessive amount of infiltration and the corresponding suction 

redistribution is as illustrated in Figure 2.6b.  It can be inferred from recent studies 

that with this type of redistribution pattern, a threshold water-entry pressure at the 

wetting front is required for the water to enter the unwetted zone (Liu et al., 1993; 

Geiger and Durnford, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Volumetric water content and suction in the development of wetting 

front  
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Figure 2.6  Redistribution of soil moisture for (a) Lf < Lcr and (b) Lf > Lcr 

 
 
 
 
2.5 One-Dimensional Infiltration Test 

 
 
Soil column has been used by several researchers to model the 

one-dimensional infiltration mechanism.  Stormont and Anderson (1999) used a soil 

column apparatus to study the infiltration behavior of layered soils.  The apparatus 

consists of an acrylic cylinder of 203 mm in diameter and 800mm in height.  

Nahlawi et al. (2007) carried out an infiltration experiment to study the 

one-dimensional unsaturated hydraulic behaviour of a layered soil-geotextile system.  

Their infiltration experiments were conducted in a clear Perspex cylinder of 138.7 

mm in diameter and 1,600 mm in height.  The column assembly comprises four-part 

cylindrical sections, with each section having a 400 mm height.  Other published 

works on infiltration testing using one-dimensional soil column include Rousseau 

and Pietro (2004), Jason and Joel (2004) and Hincapié et al. (2007).  Their studies 

(b) (a) 
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mainly focused on the investigation of the transportation of contaminants, chemical 

solutes and leachate in soil. 
 
 

The modeling of infiltration mechanism by the soil column infiltration test 

can be traced from the studies conducted by Yang et al. (2004b) and Yang et al. 

(2006).  Yang et al. (2006) investigated the effect of rainfall intensity and duration 

on infiltration mechanism through a large scale soil column apparatus, and provide 

experimental evidence for soil water redistribution and hysteresis.  The details and 

the performance of the apparatus are described by Yang et al. (2004b).  
 
 
 Figure 2.7 shows the schematic diagram of the soil column apparatus 

developed by Yang et al. (2004b).  The soil column was made of acrylic and 

supported by a steel frame.  The soil column was 1.5m in height with the internal 

diameter of 190mm.  Two types of instruments were installed on the soil column 

model, i.e. tensiometer for suction measurement, and TDR for volumetric water 

content measurement.  The measurements were logged automatically into a data 

logger.  Water circulation system was installed to circulate the water discharged 

during the tests. 
 
 

A few criteria should be considered in the design of soil column model to 

accommodate the requirements of specific research, i.e. the dimension, the material 

and the boundary conditions of the model.  Generally, it is recommended that the 

diameter of the soil column is ten times greater than the soil particle size in order to 

minimize the boundary effect on the test results.  Lim et al. (1996) measured the 

pore-water pressure changes during rainfall in a slope in Singapore and concluded 

that the pore-water pressure changes occurred within the depths of 1.5m.  It is thus 

essential to use a soil column with sufficient length and dimensions for pore-water 

pressure monitoring.  Besides, the boundary conditions of the soil column should 

also be properly defined to represent the desired condition. 
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Figure 2.7  Schematic diagram of soil column developed by Yang et al. (2004) 
 

 

 
 

2.6 Concluding Remarks 
 
 
 In this chapter, the basic theories and the clinical researches relevant to the 

topic of saturation profile in soil were discussed in details.  Besides, the published 

works related to the one-dimensional infiltration test were reviewed to provide 

supportive information for the methodology employed in the present study. 
 
 

Despite of the fact that the theory of soil infiltration has been well established, 

the factor affecting the saturation profile in soil is still unclear. Both soil properties 

and rainfall characteristics could govern the saturation profile. However, which 

factors are dominating the mechanism is still a matter of debate.  Besides, the actual 
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behavior of different types of soil under various rainfall patterns has attracted the 

interest of researchers.  It is the research gaps such as this that provoked this study 

to be carried out. 
 



 
 
 
 

CHAPTER 3 
 
 
 
 

METHODOLOGY 
 
 
 
 
3.1 Introduction 
 
 

The main objective of this research is to investigate the mechanisms involved 

in the development of saturation profile. To achieve these objectives, five phases of 

research activities were undertaken, i.e. research initialization, preliminary 

preparation, experiments, analysis, and generalization.  Figure 3.1 shows the flow 

chart of the research activities.    
 
 
The study was initiated by critically reviewing published works related to the 

topic of rainfall-induced slope failure in order to develop a strong background of the 

research.  The knowledge on the state of the art of the research topic was gained 

through consultation with several well-known experts such as Professor Harianto 

Rahardjo from Nanyang Technological University Singapore, Dr. David Toll from 

University of Durham, Professor Faisal Ali from University of Malaya, Professor 

Roslan Zainal Abidin from University Technology Mara, and Mr. Law Tien Huat 

from Mohd. Asby Consultant Sdn. Bhd.  Problem statement and hypothesis were 

formed based on the literature reviews and the professional opinions from experts.  
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Figure 3.1  Research framework 
 

 
The second stage of the research involves the preliminary preparation of 

experimental apparatus.  Numerical analysis was performed to facilitate the 

preliminary design of the laboratory model.  
 
 
Investigation on the dominant factors affecting saturation profile and the 

threshold rainfall patterns for different types of soil were carried out during the third 

stage of research through numerical simulation.  A series of laboratory experiments 

on a physical soil column model were performed to provide laboratory evidence for 

the results of numerical simulation.   
 
 
In the analysis stage, the data obtained from the laboratory tests were 

analyzed and compared with the results of numerical simulation. Subsequently, 

discussions were made to explain the dominant factors affecting the saturation profile 

and its correlation with slope stability. 
 
 
The last stage of the study was report writing and documentation of research 

findings.     
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3.2 Setup of Soil Column Model 
 
 

The soil column model designed for this study consisted of four main parts, 

i.e.: acrylic soil column, water flow system, instrumentation, and data acquisition 

system. A three-dimensional diagram of the soil column model is illustrated in Figure 

3.2, while the photograph of the apparatus is shown in Figure 3.3.  

 

 

Figure 3.2  Three-dimensional diagram of the laboratory model setup 
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Figure 3.3  Photograph of the laboratory model setup 
 
 
 
 
3.2.1 Soil Column 
 
 

The soil column was made of acrylic transparent tube with a 5 mm-thick wall 

and 190-mm internal diameter. The soil column consisted of two separated tubes 

(900 mm high each) connected securely by clamp system and rubber O- ring. This 

arrangement was necessary for the ease of compaction and removal of soil sample.   
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Two types of threaded holes were fabricated on the soil column model wall. 

One type was used for the installation of tensiometer probes (ceramic cups), while 

the other was fabricated to install gypsum moisture block. Both threaded holes were 

spaced at 200 mm along the length of the soil column. The holes that were not in use 

during an experiment were sealed with threaded plugs.   
 
 
Screw clamp system was employed to prevent water leakage at the joint 

between two separated cylinders, and the joint between the cylinder and base plate 

(Figure 3.4).  An O-ring was placed in groove, and fastened with bolts and nuts. 

The silicon grease was used to improve the resistance to water leakage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Components of the soil column model 
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3.2.2 Water Flow System 
 
 

The water flow system of the infiltration column comprises three parts, i.e. 

inflow/rainfall control, overflow/runoff discharge, and percolation discharge (Figure 

3.2) 
 
 

The inflow/rainfall control consisted of a water storage tank, a constant head 

tank, a flow regulator (ball valve), and a rainfall distributor. The water storage tank 

with storage capacity of 216 L was placed 2.8 m from the ground surface. The 

function of the water storage tank is to provide continuous water flow into the 

constant head tank. The constant head tank, which was placed immediately below the 

water storage tank, had a storage capacity of 216L and a constant head of 0.3 m. 

Water in the storage tank flowed into the constant head tank through a control valve. 

An overflow outlet was placed at the same level with the inlet flow of constant head 

tank to create the constant head condition during the test. Beneath the constant head 

tank was a flow regulator, by which simulated rainfall rate was precisely controlled. 

Note that this system could only produce flow rate greater than 5mL/min (q = 2.94 

×10-6 m/s). 
 
 

A perforated aluminum plate was placed on top of the soil column to avoid 

excessive raindrop energy that may cause erosion on the surface of soils. When a 

rainfall was applied, the water flowed through the holes of the plate and dripped onto 

a piece of filter paper that was placed in contact with the surface of the soil column. 

Through these arrangements, water was delivered to the soil surface in a relatively 

uniform pattern.  
 
 

The second component of the water flow system is the overflow / runoff 

discharge. The overflow discharge system was used to create the no-ponding upper 
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boundary condition for the soil column. The overflow was discharged as runoff 

through the outlet located at the soil surface. The runoff was then directed to a load 

cell that has the capacity of 2 kg, to quantify the runoff rate. Alternatively, the 

ponding condition can be created by sealing the runoff outlet with a threaded plug. 
 
 
The last component of the water flow system is the outlet for the discharge of 

percolated flow. A constant head tank was placed on the floor to maintain the water 

table at the bottom of the soil column. This was intended to form a clear lower 

boundary condition. The constant head tank with large open area helped to produce a 

constant water table with a minimum fluctuation and to allow percolated water in the 

soil column to drain out freely. The constant head tank was connected to the soil 

column through a flexible tube. Gravels with the average size of 5mm and a filter 

paper were placed at the bottom of the soil column to avoid turbulent discharge flow. 

When water percolated through the soil column, the water flow into the constant 

head tank and drain out through an overflow outlet placed at the tank. The overflow 

was directed to a load cell to quantify the rate of percolated flow. 
 
 
 
 
3.2.3 Instrumentations 
 
 

Two types of soil suction measurement instruments were used in the study, i.e. 

tensiometer and gypsum block. The tensiometer (Soil Moisture Corp. Model 2100F) 

is equipped with pressure transducer (Soil Moisture Corp. Model 5301-B1).  

Attempts to measure soil suction higher than 70 kPa during calibration was 

unsuccessful. Therefore, the gypsum block (Soil Moisture Corp. model 5201F1L06 

G-Block) with measurement capacity of 10 kPa to 1500 kPa was introduced. In this 

study, tensiometer was used to measure soil suction at low range of 0 kPa to 70 kpa 

(valid for most of the suctions measured in this study), whereas gypsum block was 
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used to ensure that any suction higher than 70kPa could be traced during the process 

of setting up initial condition and redistribution. Figure 3.5a and 3.5b show an 

assembled tensiometer-transducer and gypsum block, respectively.   

 

(a)                (b) 

 

 

 

 

 

 

 

Figure 3.5  (a) An assembled tensiometer-transducer, (b) Gypsum block 
 
 

A ceramic cup was installed into the soil column through a predrilled hole 

after compacting the soil column. The method offers the advantages of protecting the 

ceramic cup from damage during soil compaction, but care should be taken to ensure 

that the ceramic cup was closely contacted with the soil particles. To mount the 

ceramic cup and the tube assembly on the wall of the acrylic column, holes with 

threaded housing were fabricated on the column wall. A specially designed connector 

that fit well into the threaded housing, O-ring, and sealing tape were used to form a 

good seal at the connection. The details of the connector are shown in Figure 3.6.  
 
 

The connection of gypsum block to soil column consisted of two parts 

(Figure 3.7). The first part was fitted into the housing, while the second part, 

facilitated by an “O” Ring, was used to seal the wire fitting to the connector. Since 

the gypsum block sensor was connected to the data logger via two wires, it was 

essential to use a wire fitting to provide a cylindrical shape for the ease of sealing. 

The silicon grout sealer was injected into the space in between the wire fitting and 
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wires to provide a good seal.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6  (a) Photograph, (b) Three-dimensional diagram, and (c) Cross-sectional 

view of the tensiometer connector 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7  (a) Photograph, (b) Three-dimensional diagram, and (c) Cross-sectional 

view of the gypsum block 

(c) 

(a) (b) 

(c) 

(a) (b) 
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3.2.4 Data Acquisition System 
 
 

The data acquisition system used in the study comprises two units of data 

logger, a solid state relay, an external power supply, and a personal computer, as 

shown in Figure 3.8.  The tensiometers and gypsum blocks were connected to the 

Campbell Scientific Data Logger, model CR10x (Campbell Scientific Inc.), while the 

load cells were connected to the GDS 8 Channel Serial Data Acquisition Pad.   
 
 

The CR10x data logger consisted of two units of 32 single-ended channels 

multiplexer (model MUX AM416).  A program was written to set up 

communication and data collection between the data logger and instruments, as 

presented in Appendix A.  Besides, a controlling software named PC208W version 

2.3 was used to execute the data logger.  
 
 
The CR10x data logger was powered up by an internal 12 V battery but the 

optimum power requirement for the tensiometer transducer system was 24 V. 

Therefore, the tensiometer transducer system was connected to an external 24 V 

power supply via a solid state relay.  The functions of the solid state relay are to 

protect the data logger circuit and to switch on the power only when the triggering 

signal from data logger was received.  These functions are essential to protect the 

tensiometer transducer system from over-heated due to long operating durations. 
 
 

The GDS 8 Channel Serial Data Acquisition Pad is a data logger with eight 

channels of 16-bit data acquisition.  The configuration of the data logger was 

originally designed to log the data for shearing machine.  Some modifications have 

been made to allow the logging of four load cells concurrently.  A controlling 

software named GDSLAB v2 was used to communicate with the GDS data logger. 
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The data from the data logger units were transferred to the personal computer 

periodically through the serial ports.  The data stored in the personal computer were 

normally set in a format of pressure versus real time at a desired interval.  An 

interval of 15-min was used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8  Data acquisition system 
 
 
 

 



 
 
 
 

CHAPTER 4 
 
 
 
 

DATA AND DISCUSSIONS 
 
 
 
 
4.1 Introduction 
 
 

This chapter presents the results of one-dimensional infiltration tests carried 

out in the laboratory.  A total of ten tests were carried out for different combinations 

of rainfall patterns and soil types. 
 
 
 
 
4.2 Soil Materials 
 
 

Four types of soil were employed in the study, i.e. sand-gravel, silty gravel, 

sandy silt, and silt (kaolin).  These soil types were chosen to simulate a maximum, a 

minimum, and the intermediate conditions with respect to the hydraulic properties 

and particle sizes of soils.  A series of laboratory tests were conducted to determine 

the soil properties.  Figure 4.1, 4.2, 4.3, and 4.4 shows the particle size distribution 

(PSD), soil water characteristic curve (SWCC), hydraulic conductivity functions and 

scanning electron micrograph (SEM) images of the soils, respectively. The physical 

properties of the soils are tabulated in Table 4.1. 
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Figure 4.1  Particle size distributions of the soils 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2  SWCC of the soils 
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Figure 4.3  Hydraulic conductivity function of the soils 
 
(a)      (b) 
 

 

 

 

 

 

 

(c)      (d)   

 

 

 

 

 

 

 

Figure 4.4  SEM images of (a) sand-gravel, (b) silty gravel, (c) sandy silt, and (d) 

silt (kaolin) 
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Table 4.1: Physical properties of the soils 

 

 

 

 

 

 Sand- 
Gravel 

Silty 
Gravel 

Sandy 
Silt 

Silt 
(Kaolin) 

Composition     

Gravel (%) 50 48 0 0 

Sand (%) 50 15 33 11 

Silt (%) 0 20 34 81 

Clay (%) 0 17 33 8 

LL (%) - 53.2 59.3 44.8 

PL (%) - 35.5 31.9 30.6 

PI - 17.7 27.4 14.2 

Soil Classification BSCS S-GP GMH MHS MI 

Gs 2.65 2.65 2.63 2.52 

ρb (kg/m3) - 1805 - - 

ρd (kg/m3) - 1366 - - 

MDD (kg/m3) - - 1415 1587 

OMC (%) - - 31.0 19.3 

Density @ emax (kg/m3) 1856 - - - 

Ksat (m/s) 3.44 x 10-4 3.68 x 10-6 5.00 x 10-7 6.78 x 10-8

CU Test     

c' (kPa) - - 7.6 9.2 

φ'(o) - - 32.1 17.6 

Direct Shear     

c' (kPa) 1.2 3.3 - - 

φ' (o) 38.7 39.5 - - 
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4.3 Experimental Design 
 
 

Table 4.2 summarizes the description of infiltration test performed in this 

study. The initial conditions for sand, silty gravel and sandy silt were set at residual 

volumetric water content, while the initial condition for kaolin was simulated from 

the field measurement (Gofar et al., 2007).  These initial conditions were created by 

mixing the dry soil with the corresponding volumetric water content during the 

compaction.  Note that the ponding condition for tests no. 7 and 10 were created by 

maintaining a water level of 10 mm above the soil surface. 
 
 

Table 4.2: Experimental design for infiltration tests 
 

 
 

Figure 4.5 (a-d) shows the setup of the soil column models for the four types 

of soil.  From the laboratory measurements, the initial suction for sand-gravel 

(approximately 8 kPa) was slightly lower than that of estimated from the SWCC (10 

kPa).  The differences were probably caused by the inefficiency in the tensiometer 

to measure the suction in granular soil since the contact between ceramic sensor and 

Test Soil Type 
Rainfall 
duration 
(hour) 

Rainfall 
intensity 

(m/s) 

Top Boundary 
Condition Remark

1 Sand-Gravel 1 1.84 × 10-5 q < ksat  

2 Sand-Gravel 24 3.35 × 10-6 q < ksat  

3 Silty Gravel 1 1.84 × 10-5 q > ksat Runoff 

4 Silty Gravel 24 3.35 × 10-6 q < ksat Runoff 

5 Sandy Silt 1 1.84 × 10-5 q > ksat Runoff 

6 Sandy Silt 24 3.35 × 10-6 q > ksat Runoff 

7 Sandy Silt 120 - Ponding  

8 Silt (Kaolin) 1 1.84 × 10-5 q > ksat Runoff 

9 Silt (Kaolin) 24 3.35 × 10-6 q > ksat Runoff 

10 Silt (Kaolin) 120 - Ponding  
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soil particles were poor.  For the silty gravel, sandy silt and silt (kaolin) which 

contained considerable amount of cohesive particles, the contact between ceramic 

sensor and soil particles were significantly improved, hence the suction 

measurements showed good agreement with the value predicted from SWCC.  The 

measured initial suctions for silty gravel, sandy silt and silt (kaolin) were 17 to 23 

kPa, 26 to 32 kPa, and 46 to 50 kPa, respectively.           
 
 
(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5  The setup of soil column models for (a) sand-gravel, (b) silty gravel, (c) 

sandy silt, and (d) silt (kaolin) 
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4.4 Relationships between Infiltration and Runoff 
 
 
 Figure 4.6 (a-c) illustrates the relationships between infiltration and runoff for 

silty gravel, sandy silt and silt (kaolin).  It should be noted that the runoff was not 

generated throughout the experiments of sand-gravel column.  This was because the 

applied rainfall has an intensity lower than the saturated permeability of soil. 
 

(a) 

 

 

 

 

 

(b) 

 

 

 

 
 
 

 
(c) 

 

 

 

 

 

 

 

Figure 4.6  Relationships between rainfall and surface runoff for (a) silty gravel, (b) 

sandy silt, and (c) silt (kaolin) 
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As shown in Figure 4.6a, the rainfall infiltrated effectively into the silty 

gravel for the first 10 minutes.  Subsequently, the surface runoff was generated and 

the rate of infiltration and runoff became constant after 20 minutes.  The measured 

runoff rate was 1.52 × 10-5 m/s indicating large portion of rainfall has contributed to 

the surface runoff (the applied rainfall = 1.84 × 10-5 m/s).  Subtracting the surface 

runoff from the applied rainfall, the effective infiltration rate was 3.2 × 10-6 m/s.  

This value was very close to the saturated permeability of silty gravel (ksat = 3.68 × 

10-6 m/s). 
 
 

The amount of surface runoff was greater for the soils with lower saturated 

permeability.  For instances, the runoff rate of sandy silt (ksat = 5.00 × 10-7 m/s) 

constant at 1.81 × 10-5 m/s, indicating the infiltration rate was 3.0 × 10-7 m/s.  As 

for the silt (ksat = 6.78 × 10-8 m/s), the runoff rate constant at 1.83 × 10-5 m/s with the 

infiltration rate approximated to 1.0 × 10-7 m/s.  This infiltration rate, however, was 

almost twice the magnitude of saturated permeability of silt (kaolin) obtained from 

the falling head permeability test.  It was thought that the tendencies of silt (kaolin) 

to shrink and crack have caused the infiltration capacities far in exceedance of the 

expected saturated permeability.  This finding was supported by the observation of 

the desiccated surface and cracks at the silt (kaolin) column. (Figure 4.7). 

 

 

 

 

 

 

 

 

Figure 4.7  Cracks formed at the surface of silt (kaolin) 
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4.5 Saturation Profiles 
 
 

The saturation profiles for the prescribed test combinations were measured as 

shown in Figure 4.8. In the sand-gravel column (Figure 4.8a), the short and intense 

1-hour major rainfall has resulted in the lowest minimum suction value, but limited 

to a very shallow depth of 0.3 m.  Conversely, the wetting front resulted from the 

long and less intense 24-hour major rainfall has advanced beyond the entire length of 

the soil column (1.5m).  This was revealed through the measurement of percolated 

flow at the bottom of the soil column after eight hours of rainfall.  Whilst the 

wetting front was much deeper, the minimum suction value induced by the 24-hour 

major rainfall was just slightly higher than that of 1-hour major rainfall.   
 
 
The silty gravel column exhibited similar trend as the sand-gravel (Figure 

4.8b).  It should be noted that the intensity of 1-hour rainfall (1.84 × 10-5 m/s) was 

greater than the saturated permeability of silty gravel (ksat = 3.68 × 10-6 m/s).  Under 

such circumstances, the effective infiltration of silty gravel was controlled by the 

saturated permeability, hence the minimum suction value induced by the 1-hour 

rainfall was almost identical to that of 24-hour rainfall (i = 3.35 × 10-6 m/s).  

Nonetheless, the 24-hour rainfall still resulted in deeper wetting front than the 1-hour 

rainfall.  The results implied that for q/ksat < 1, the minimum suction value is 

governed by the rainfall intensity, while the wetting front depth was influenced by 

the total amount of rainfall infiltrated into the soil.  As for q/ksat > 1, the infiltration 

and minimum suction value was controlled by the saturated permeability, while the 

wetting front depth was only influenced by the rainfall duration. 
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(a) (b) 

(c) (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  Saturation profiles in (a) sand-gravel, (b) silty gravel, (c) sandy silt, and 

(d) silt (kaolin) 
 

 
The wetting front measured in the laboratory was only 0.3 m.  The 

inhomogeneity in the compacted soils, and the inconsistency between the measured 

and actual SWCC as well as the predicted hydraulic conductivity function could be 

the reason for these deviations.  
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In addition to the 1-hour and 24-hour major rainfalls, a ponding condition 

was created in the sandy silt column to study the response of suction distribution to 

the infiltration of longer duration (5 days).  Whilst the minimum suction value was 

the same as the 24-hour major rainfall, the 5-day infiltration has resulted in a deeper 

wetting front.   
 
 

The mechanism of suction loss in sandy silt under rainfall infiltration 

condition is as follows: (1) the low saturated permeability of sandy silt limits the 

infiltrated rainfall amount, hence large amount of rainfall contributes to runoff, (2) 

the infiltrated rainfall reduces the soil suction gradually until a minimum suction 

value is achieved, (3) beyond this point, the rainfall infiltration will cause deeper 

propagation of wetting front.  Apparently, the long duration rainfall appears to be a 

more critical rainfall for sandy silt. 
 
 

For the silt (kaolin) column, the suction distribution measured in the 

laboratory was generally lower than that of numerical prediction (Figure 4.8d).  The 

results indicated that more water was actually infiltrating into the soil due to the 

cracks and desiccated surfaces.  Besides, the capillary rise effect was found very 

significant in kaolin.  The upward flow from the simulated water table has caused 

the suction loss at the bottom of the soil column.  
 
 
 In conclusion, the initial suction of coarse-grained soil is lower than 

fine-grained soil.  In fact, the suctions of 2 to 4 kPa were very common for 

sand-gravel soil under typical rainfall condition.  While the initial suction of 

fine-grained soil was higher, the capillary rise effect from the water table was 

comparatively significant.  It is thus essential to consider the effect of water table on 

the suction distribution of fine-grained soil slope if the water table is high.   
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4.6 Suction Redistributions 
 
 

The redistribution pattern for each laboratory test was observed until the 

initial suction condition was obtained.  Figure 4.9 (a-d) illustrates the redistribution 

pattern after the 24-hour rainfall for sand-gravel, silty gravel, sandy silt and silt 

(kaolin), respectively. 
 

 
(a)      (b) 

 

 

 

 

 

 

 

(c)      (d) 

  

 

 

 

 

 

 

 

Figure 4.9  Suction redistributions in (a) sand-gravel, (b) silty gravel, (c) sandy silt, 

and (d) silt (kaolin) 
 
 

In general, the water content in coarse-grained soil redistributed quicker than 

that of fine-grained soil.  Three days was required for the sand-gravel to regain its 
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initial condition after the 24-hour rainfall event.  However, 16 days and 32 days 

were required for silty gravel and sandy silt, respectively.  As for silt (kaolin), the 

initial condition was not recovered after 32 days of drying.  The phenomena can be 

explained by the low saturated permeability of fine-grained soil.  However, as 

observed in the SWCC and hydraulic conductivity function (refer to Figure 4.2 and 

4.3), the permeability of coarse-grained soil decreased in tandem with the increase of 

suction, until a stage where the permeability of coarse-grained soil could be lower 

than that of fine-grained soil.  This behaviour of soil has caused the redistribution 

rate of coarse-grained soil decrease in exponential fashion towards the higher suction.  

As for the fine-grained soil (i.e. silt), the redistribution rate was more consistent over 

the suction range concerned. 
 
 
 
 
4.7 Concluding Remarks 
 
 

In the laboratory soil column tests, the behaviours of four types of soil (i.e. 

sand, silty gravel, sandy silt and kaolin) under various rainfall conditions were 

investigated.  In general, the responses of suction distribution and redistribution to 

the rainfall infiltration were governed by the SWCC and hydraulic conductivity of 

soil. 
 
 
The suction existed in the soil with high saturated permeability (i.e. sand) was 

very low (typically in between 2 to 4 kPa).  The short and intense major rainfall (i.e. 

1-hour rainfall) has resulted in the lowest minimum suction value, but limited to a 

very shallow depth (i.e. 0.3 m)   
 
 
For soil with moderate saturated permeability (i.e. silty gravel and sandy silt), 

both major rainfall and antecedent rainfall could govern the suction distribution.  
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The initial suctions existed in these types of soil were relatively high (18 to 33 kPa).  

However, the redistribution rate was significantly reduced by the existence of the 

fine particles. 
 
 
For soil with low saturated permeability (i.e. silt), the suction distribution was 

more influenced by the duration of rainfall.  The longer the duration of rainfall, the 

lower the suction generated.  At the initial condition, the suction in silt (kaolin) can 

be as high as 50kPa.  However, the suction decreased gradually when the soil 

column was subjected to rainfall infiltration.  The lowest suction measured in the 

laboratory test was 0kPa, indicating q/ksat > 1.  Despite of the fact that the 

infiltration was limited by the soil’s saturated permeability, the suction can be altered 

significantly with little changes in the water content.  Besides, the shrink and crack 

behaviours of clayey soil permitted more water to infiltrate into the soil through the 

desiccated surface. 
 
 
In general, the water content in the coarse-grained soil redistributed quicker 

than the fine-grained soil.  The initial suctions were regained in sand-gravel, silty 

gravel and sandy silt after 3 day, 16 days, and 32 days, respectively.  However, the 

initial condition of 50 kPa in silt (kaolin) was not recovered after 32 days of drying. 

The slow redistribution rate can be attributed to the high water retention ability and 

low saturated permeability of fine-grained soil. 
 
 



 
 
 
 

CHAPTER 5 
 
 
 
 

CONCLUSIONS AND SUGGESTIONS 
 
 
 
 
5.1 Introduction 
 
 
 A study on the saturation profile for various combinations of rainfall pattern 

and soil type is reported in this thesis.  The specific objectives of the study were 

stated in the Chapter 1, as the ultimate goal of the study is to investigate the 

mechanisms involved in the development of saturation profile.  In this Chapter, the 

conclusions of the study are presented after which the recommendations for further 

research are presented. 
 
 
 
 
5.2 Conclusions 
 
 

The main outcomes and conclusions of the study are drawn in view of the 

objectives as formulated on page 2. 
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5.2.1 Laboratory Model for Saturation Profile Study 
 
 

A soil column model was fabricated to study the saturation profile in four 

types of soil under various rainfall conditions.  The model was found to be function 

properly to quantify the rainfall intensity, surface runoff rate, pore-water pressure, 

and percolated flow rate. 

 
 
 
 

5.2.2 Dominant Factors Affecting Saturation Profile  
 
 

The rainfall patterns and soil properties are two important parameters 

affecting the saturation profile developed in the soil.  Generally, the coarse-grained 

soil is characterized by high permeability and low water retention ability.  As such, 

the suction existed in the coarse-grained soil is generally low, typically within 2 to 

4kPa.  Under these circumstances, the effect of rainfall pattern on the saturation 

profile of coarse-grained soil is relatively insignificant compared to fine-grained soil.  
 
 

Conversely, the fine-grained soil is characterized by low permeability and 

high water retention ability.  Whilst the response of suction variation to the rainfall 

infiltration is considerably slow, the variation of suction can be very significant due 

to the wide differences of suction between dry condition and wet condition.  The 

prolonged rainfall could induce greater changes in saturation profile of this type of 

soil.  The shrink and crack nature of the fine-grained soil has not helped the 

problem but allow more water to infiltrate into the surficial soil through the 

desiccated surface.   
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5.2.3 Development of Saturation Profile  
 

The mechanism of the development of saturation profile in soil can be 

explained as follows: (1) the saturated permeability of soil controls the infiltrated 

rainfall amount if the rainfall intensity is higher than the soil’s permeability, (2) the 

infiltrated rainfall retains near the soil surface and saturate the soil gradually until a 

minimum suction value is achieved, (3) beyond this point, the rainfall infiltration will 

cause deeper propagation of wetting front.  Apparently, the longer rainfall duration 

would cause deeper wetting front in soil.  In general, the saturation profile observed 

in the laboratory model showed good agreement with the results from numerical 

simulation.  Nonetheless, the accuracy of the numerical predictions is governed by 

the consistency of the soil properties input parameters e.g. SWCC and hydraulic 

conductivity between numerical simulation and actual soil behaviour. 
 
 
 
 
5.3 Suggestions for Future Researches 
 
 
 In light of the limitations of the present study, a few areas were identified 

where further research were required: 
 
 

i. The study on a full scale model constructed under natural environment.  

From the field measurement, it was found that the changes in ambient 

environment (i.e. solar radiation, humidity, temperature etc.) could also alter 

the soil suction.  It would enhance the findings from the present study by 

accounting more surface boundary conditions. 

 

ii. The numerical simulation and laboratory modeling by using two 

dimensional slope model.  The two dimensional analysis is required to 

consider for the horizontal flow in the soil slope.  
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iii. The study on the behaviour of layered soil.  The behaviour of 

homogeneous soil has been investigated in the present study.  It is believed 

that the findings from the present study could provide the fundamental 

knowledge for the study in the behaviour of layered soil which sustained 

much more complexity.  

 

iv. The improvement on the laboratory modeling technique, particularly for 

the rainfall simulator.  An advanced rainfall simulator should be used to 

enable the simulation of low rainfall intensity for longer duration of 

antecedent rainfall.  Besides, the installation of Time-Domain Reflectometry 

(TDR) probe that provides the measurement of volumetric water content 

would allow the inferences of the suction measurements from tensiometer. 

 

v. The study on the mitigation measures of rainfall-induced slope failure.  

The mechanisms of the rainfall-induced slope failure for different types of 

soil have been identified in this study.  The further study may look into the 

possible mitigation measures. 
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APPENDIX A 

Program for CR10X Data Logger 
 
 

;{CR10X} 
;Program Name: cr10x_program 
;Date: 29th January 2007 
; 
;This program will monitor 
;32 x 5301 Pressure Transducers (connected to Jetfill Tensiometer) 4-20mA output. 
0-100kPa (0-1 bar) range 
;32 x 5201f1L06 Gypsum Moisture Block 
;------------------------------------------------------------------------- 
;Wiring for 5301 Pressure Transducers (qty 32) 
; CR10X - AM416#1 
;----------------- 
; C1    - RES 
; C2    - CLK 
; 12V   - 12V 
; G     - G 
 
; SE1   - COM H1 
; SE2   - COM L1 
; SE3   - COM H2 
; SE4   - COM L2 
 
;SE2 loop to G 
;SE4 loop to G 
;100 Ohm precision resistor needs to be wired between SE1 and SE2 
;100 Ohm precision resistor needs to be wired between SE3 and SE4 
 
;Channel 1 on AM416 
;------------------- 
;Sensor#1  - AM416#1 
; White    - H1 
; Green    - L1 
;Sensor#2 - AM416#1 
; White    - H2 
; Green    - L2 
;Repeat the above for each of the 16 channels on the AM416. 
; Relay 
; C8 
; G 
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;Note: The Pressure Transducers require a independent 24V power supply. The 
power supply is to be connected to the sensors via a relay (see wiring above) 
; The ground for the sensor power supply and the CR10X power supply need to be 
linked. 
 
;------------------------------------------------------------------------- 
;Wiring for the 5201f1L106 Gyspsum Blocks (qty 32) 
; CR10X - AM416#2 
;------------------------------------ 
; C3    - RES 
; C4    - CLK 
; 12V   - 12V 
; G     - G 
 
; SE5   - COM H1 
; AG    - COM L1 
; SE6   - COM H2 
; AG    - COM L2 
 
;Channel 1 on AM416 
;------------------- 
;Sensor#1  - AM416#1 
; Wire1    - H1 
; Wire2    - L1 
;Sensor#2  - AM416#1 
; Wire1    - H2 
; Wire2    - L2 
;Repeat the above for each of the 16 channels on the AM416 
 
; 1k Ohm resistor needs to be wired between E1 and SE5 
; 1k Ohm resistor needs to be wired between E1 and SE6 
 
;------------------------------------------------------------------------- 
*Table 1 Program 
  01: 10        Execution Interval (seconds) ; 
;------------------------------------------------------------- 
 
; Every minute, set Flag 1 to measure the sensors. Flag 1 can be set manually at any 
time to make measurements. 
32:  If time is (P92) 
 1: 0        Minutes (Seconds --) into a 
 2: 1        Interval (same units as above) 
 3: 11       Set Flag 1 High 
;------------------------------------------------------------- 
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; If Flag 1 is high, make measurements. 
4:  If Flag/Port (P91) 
 1: 11       Do if Flag 1 is High 
 2: 30       Then Do 
 
;Switch relay ON to power the pressure transducers 
     5:  Do (P86) 
      1: 48       Set Port 8 High 
 
 ; Turn the multiplexer#1 ON. 
     6:  Do (P86) 
      1: 41       Set Port 1 High 
 
     ; Loop of 16 (w/2 reps) for 32 pressure transducer sensors. 
     7:  Beginning of Loop (P87) 
      1: 0        Delay 
      2: 16       Loop Count 
 
          ; Switch the multiplexer to the next channel. 
          8:  Do (P86) 
           1: 72       Pulse Port 2 
 
          ; Allow a delay for switch bounce and for the sensor output to stabilize. 
          9:  Excitation with Delay (P22) 
           1: 3        Ex Channel 
           2: 0        Delay W/Ex (0.01 sec units) 
           3: 5        Delay After Ex (0.01 sec units) 
           4: 0        mV Excitation 
 
          10:  Step Loop Index (P90) 
           1: 2        Step 
 
          ;Take measurement 
          11:  Volt (Diff) (P2) 
           1: 2        Reps 
           2: 5        2500 mV Slow Range 
           3: 1        DIFF Channel 
           4: 1     -- Loc [ PresKPa_1 ] 
           5: 0.0625   Multiplier 
           6: -25      Offset 
 
     12:  End (P95) ; End of Loop. 
 
     ; Turn the multiplexer#1 OFF. 
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     13:  Do (P86) 
      1: 51       Set Port 1 Low 
 
     ;Switch relay OFF. 
     14:  Do (P86) 
      1: 58       Set Port 8 Low 
 
;Convert KPa to bar 
     15:  Beginning of Loop (P87) 
      1: 0        Delay 
      2: 32       Loop Count 
 
          16:  Z=X/Y (P38) 
           1: 1     -- X Loc [ PresKPa_1 ] 
           2: 488      Y Loc [ BarConver ] 
           3: 33    -- Z Loc [ PresBar_1 ] 
 
     17:  End (P95) 
 
 
 ; Turn the multiplexer#2 ON. 
     18:  Do (P86) 
      1: 43       Set Port 3 High 
 
     ; Loop of 16 (w/2 reps) for 32 pressure transducer sensors. 
     19:  Beginning of Loop (P87) 
      1: 0        Delay 
      2: 16       Loop Count 
 
          20:  Step Loop Index (P90) 
           1: 2        Step 
 
          ; Switch the multiplexer to the next channel. 
          21:  Do (P86) 
           1: 74       Pulse Port 4 
 
          ; Allow a delay for switch bounce and for the sensor output to stabilize. 
          22:  Excitation with Delay (P22) 
           1: 1        Ex Channel 
           2: 0        Delay W/Ex (0.01 sec units) 
           3: 5        Delay After Ex (0.01 sec units) 
           4: 0        mV Excitation 
 
          ;Take measurement 



 56

          23:  AC Half Bridge (P5) 
           1: 2        Reps 
           2: 14       250 mV Fast Range 
           3: 5        SE Channel 
           4: 1        Excite all reps w/Exchan 1 
           5: 250      mV Excitation 
           6: 65    -- Loc [ Ohm_1     ] 
           7: 1.0      Multiplier 
           8: 0.0      Offset 
 
          24:  BR Transform Rf[X/(1-X)] (P59) 
           1: 2        Reps 
           2: 65    -- Loc [ Ohm_1     ] 
           3: 1        Multiplier (Rf) 
 
     25:  End (P95) ; End of Loop. 
 
     ; Turn the multiplexer#2 OFF. 
     26:  Do (P86) 
      1: 53       Set Port 3 Low 
 
   ;Turn Switch 12V on for AVW1 
     27:  Do (P86) 
      1: 47       Set Port 7 High 
 
;------------------------------------------------------- 
;Set Output flag high and store data 
 
28:  If time is (P92) 
 1: 0        Minutes (Seconds --) into a 
 2: 5        Interval (same units as above) 
 3: 10       Set Output Flag High (Flag 0) 
 
 
29:  Set Active Storage Area (P80)^21267 
 1: 1        Final Storage Area 1 
 2: 100      Array ID 
 
30:  Sample (P70)^13475 
 1: 20       Reps 
 2: 1        Loc [ PresKPa_1 ] 
 
31:  Sample (P70)^4633 
 1: 20       Reps 
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 2: 65       Loc [ Ohm_1     ] 
 
32:  Sample (P70)^27719 
 1: 20       Reps 
 2: 456      Loc [ SucKPA_1  ] 
 
*Table 2 Program 
  02: 0.0000    Execution Interval (seconds) 
 
*Table 3 Subroutines 
 
End Program 
 
-Input Locations- 
1 PresKPa_1 7 2 1 
2 PresKPa_2 27 1 1 
3 PresKPa_3 11 1 0 
4 PresKPa_4 3 1 0 
5 PresKPa_5 3 1 0 
6 PresKPa_6 3 1 0 
7 PresKPa_7 3 1 0 
8 PresKPa_8 3 1 0 
9 PresKPa_9 3 1 0 
10 PresKP_10 3 1 0 
11 PresKP_11 3 1 0 
12 PresKP_12 3 1 0 
13 PresKP_13 3 1 0 
14 PresKP_14 3 1 0 
15 PresKP_15 3 1 0 
16 PresKP_16 3 1 0 
17 PresKP_17 3 1 0 
18 PresKP_18 3 1 0 
19 PresKP_19 3 1 0 
20 PresKP_20 3 1 0 
21 PresKP_21 3 0 0 
22 PresKP_22 3 0 0 
23 PresKP_23 3 0 0 
24 PresKP_24 3 0 0 
25 PresKP_25 3 0 0 
26 PresKP_26 3 0 0 
27 PresKP_27 3 0 0 
28 PresKP_28 3 0 0 
29 PresKP_29 3 0 0 
30 PresKP_30 3 0 0 
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31 PresKP_31 3 0 0 
32 PresKP_32 19 0 0 
33 Ohm_1     7 3 2 
34 Ohm_2     27 2 2 
35 Ohm_3     11 1 0 
36 Ohm_4     11 1 0 
37 Ohm_5     11 1 0 
38 Ohm_6     11 1 0 
39 Ohm_7     11 1 0 
40 Ohm_8     11 1 0 
41 Ohm_9     11 1 0 
42 Ohm_10    11 1 0 
43 Ohm_11    11 1 0 
44 Ohm_12    11 1 0 
45 Ohm_13    11 1 0 
46 Ohm_14    11 1 0 
47 Ohm_15    11 1 0 
48 Ohm_16    11 1 0 
49 Ohm_17    11 1 0 
50 Ohm_18    11 1 0 
51 Ohm_19    11 1 0 
52 Ohm_20    11 1 0 
53 Ohm_21    11 0 0 
54 Ohm_22    11 0 0 
55 Ohm_23    11 0 0 
56 Ohm_24    11 0 0 
57 Ohm_25    11 0 0 
58 Ohm_26    11 0 0 
59 Ohm_27    11 0 0 
60 Ohm_28    11 0 0 
61 Ohm_29    11 0 0 
62 Ohm_30    11 0 0 
63 Ohm_31    11 0 0 
64 Ohm_32    19 0 0 
-Program Security- 
0000 
0000 
0000 
-Mode 4- 
-Final Storage Area 2-0 
-CR10X ID-0 
-CR10X Power Up-3 
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