
VOT 79105

THE DEVELOPMENT OF INTEGRATED PLANNING AND SCHEDULING

FRAMEWORK FOR DYNAMIC AND REACTIVE ENVIRONMENT OF COMPLEX

MANUFACTURING PROBLEM

(PEMBANGUNAN RANGKA KERJA PERANCANGAN DAN PENJADUALAN

BERSEPADU BAGI MASALAH PEMBUATAN YANG KOMPLEKS UNTUK

PERSEKITARAN DINAMIK DAN REAKTIF)

ZALMIYAH BINTI ZAKARIA

SAFAAI BIN DERIS

MUHAMAD RAZIB BIN OTHMAN

SAFIE BIN MAT YATIM

RESEARCH VOT NO:

79105

Jabatan Kejuruteraan Perisian

Fakulti Sains Komputer dan Sistem Maklumat

Universiti Teknologi Malaysia

2008

ii

ABSTRACT

Flexible manufacturing system (FMS) is a manufacturing system in which there is some amount

of flexibility which allows the system to react in the case of changes, whether predicted or

unpredicted. Two major activities in manufacturing system are process planning and production

scheduling. The current trends in present manufacturing industries require the ability to quickly

integrate process plans for new orders into the existing production schedule to best accommodate

the current load of the facility, the status of machines, and the availability of raw materials. The

goal of this project is to propose an integrated planning and scheduling system for a flexible and

complex manufacturing environment. Firstly, in Chapter 1, we give an overview of the real

problem occurred in the field of dynamic scheduling. A hybrid genetic algorithm (HGA) for

solving the dynamic job shop problem is proposed to solve the dynamic scheduling. Secondly, in

Chapter 2 we described the modeling of the real world manufacturing processes using Petri Nets.

We present two models of manufacturing process, namely machine model and process model.

The goals of these models are to understand the behavior of the machine and to demonstrate the

dynamic behavior of production processes, respectively. Next, multi-population directed genetic

algorithms (MDGA) have been used to generate a number of optimal operation sequences for a

real world manufacturing problem which is elaborated in Chapter 3. Then, in Chapter 4, a

modified particle swarm optimization (MPSO) has been used to generate a feasible operation

sequence for a real world manufacturing problem. Lastly, in Chapter 5, we investigate the

problem of integrating new rush orders into the current schedule of a real world FMS. The aim is

to introduce match up strategy with genetic algorithms (GA) that modify only part of the

schedule in order to accommodate new arriving jobs.

iii

ABSTRAK

Sistem Pembuatan Fleksibel (FMS) merupakan sistem pengeluaran yang mempunyai beberapa

fleksibiliti yang mengakibatkan sistem berubah mengikut perubahan kes sama ada dalam kes

yang boleh diramalkan atau tidak. Dua aktiviti penting dalam sistem pengeluaran adalah

perancangan proses dan penjadualan produksi. Trend masa kini dalam industri pengeluaran

memerlukan kebolehan mengendalikan perancangan untuk pesanan baru dengan jadual produksi

sedia ada serta memilih keadaan yang paling tepat untuk disesuaikan dengan beban semasa bagi

fasiliti, status mesin dan sumber bahan mentah. Tujuan utama projek ini adalah membentangkan

cadangan bagi perancangan dan sistem penjadualan untuk persekitaran pembuatan yang

kompleks dan fleksibel. Pertama sekali, kami telah memberi gambaran bagi keseluruhan masalah

sebenar yang berlaku dalam bidang penjadualan dinamik. Satu Algoritma Genetik Hibrid (HGA)

diperkenalkan untuk menyelesaikan penjadualan dinamik. Kedua, kami telah menerangkan

model proses pembuatan sebenar menggunakan Rangkaian Petri di dalam Bab 2. Kami

perkenalkan dua buah model proses pembuatan iaitu model mesin dan model proses.

Matlamatnya ialah untuk memahami kelakuan mesin dan untuk menunjukkan tingkah laku

dinamik proses pengeluaran. Seterusnya dalam Bab 3, Genetik Algoritma Pelbagai Populasi

Terarah (MDGA) digunakan untuk menghasilkan jumlah sebenar jujukan operasi yang paling

optimum bagi permasalahan sebenar sistem pengeluaran. Dalam Bab 4, Kumpulan Elemen

Pengoptimuman Diubahsuai (MPSO) digunakan untuk menghasilkan satu jujukan pengendalian

yang sesuai bagi masalah pengeluaran sebenar. Akhir sekali, dalam Bab 5, kami telah menyelidik

masalah dalam mengintegrasi pesanan baru ke dalam jadual semasa sebenar bagi FMS.

Matlamatnya ialah memperkenalkan strategi padan dengan Algoritma Genetik (GA) yang hanya

mengubahsuai sebahagian daripada jadual tersebut bagi menampung pesanan baru.

iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ABSTRACT ii

 ABSTRAK iii

 TABLE OF CONTENTS iv

1 TOWARDS IMPLEMENTING REACTIVE SCHEDULING FOR JOB

SHOP PROBLEM 1

1.1 Abstract 1

1.2 Introduction 2

1.3 Motivation 2

1.4 Definition of the JSSP 4

1.5 Related Works 6

1.6 Dynamic JSSP 7

1.7 Genetic Algorithms 8

1.8 Issues and Challenges 9

1.9 Suggestion for Further Work 10

1.10 Conclusion 10

1.11 References 11

2 MODELING THE REAL WORLD MANUFACTURING PROCESSES

USING PETRI NETS 17

2.1 Abstract 17

2.2 Introduction 18

2.3 Manufacturing Problem 19

2.4 Problem Description 20

2.5 The Scheduling Problem 22

v

2.6 Petri Nets 22

2.7 Case Study 24

 2.7.1 Machine Modeling 24

 2.7.2 Process Modeling 27

2.8 Simulation Results 31

2.9 Future Work and Conclusion 31

2.10 Acknowledgement 32

2.11 References 32

3 OPERATING SEQUENCING USING MULTI-POPULATION DIRECTED

GENETIC ALGORITHMS 34

3.1 Abstract 34

3.2 Introduction 35

3.3 Approaches and Methods 35

3.4 Sequencing Constraints 36

3.5 Operation Sequence Coding 38

3.6 Fitness Function 40

3.7 GA Operators 40

3.8 Mutation 41

3.9 Crossover 42

3.10 Multi-population Directed Genetic Algorithms 42

3.11 Results and Discussion 44

3.12 Conclusion 46

3.13 Acknowledgement 46

3.14 References 47

4 OPERATING SEQUENCING USING MODIFIED PARTICLE SWARM

OPTIMIZATION 49

4.1 Abstract 49

4.2 Introduction 50

4.3 Approaches and Methods 50

4.4 Sequencing Constraints 51

4.5 Particle Swarm Optimization 53

vi

4.6 Comparison to Genetic Algorithms 54

4.7 Operation Sequence Coding 55

4.8 Fitness Function 58

4.9 Results and Discussion 58

4.10 Conclusion 60

4.11 References 60

5 GENETIC MATCH-UP ALGORITHMS FOR DYNAMIC SCHEDULING

OF A REAL MANUFACTURING PROBLEM 63

 5.1 Abstract 63

 5.2 Introduction 63

 5.3 The Problem 64

 5.4 Current Practice in this Shop Floor 65

 5.5 Problem Description 66

 5.6 Literature Review 68

 5.7 Proposed Algorithms 74

 5.7.1 The Step in The First Phase 74

 5.7.2 The Step in The Second Phase 74

 5.7.3 The Step in The Third Phase 74

 5.8 Current Achievement and Future Plan 79

 5.9 Conclusion 79

 5.10 References 80

1

CHAPTER 1

TOWARDS IMPLEMENTING REACTIVE SCHEDULING FOR JOB SHOP PROBLEM

1.1 Abstract

Most of the research literature concerning scheduling concentrates on the static problems,

i.e problems where all input data is known and does not change over time. However, the real

world scheduling problems are very seldom static. Events like machine breakdown or bottleneck

in some situation impossible to predict. Dynamic scheduling is a research field, which take into

consideration uncertainty and dynamic changes in the real world scheduling problem. This

chapter gives an overview of the real problem occurred in the field of dynamic scheduling. Then

we propose a hybrid genetic algorithm for solving the dynamic job shop problem.

Keywords

 Dynamic scheduling, reactive scheduling, job shop scheduling, genetic algorithms

2

1.2 Introduction

Scheduling problem can be found in many different application areas, e.g. manufacturing,

logistic, transportation, communication, sports, education, administration, etc. Main task of

scheduling is the creation of schedules, which are temporal assignments of a set of activities to a

set of resources subject to a set of constraints. Examples of scheduling constraints include

deadlines (e.g., job i must be completed by time t), resource capacities (e.g., there are only two

machine for drill), precedence constraints on the order of tasks (e.g., a leaf must be painted

before it is assembled), and priorities on tasks (e.g., finish job j as soon as possible while meeting

the other deadlines).

Many scheduling problems are difficult to solve [1]. It has been shown that many

scheduling problems are NP-hard problem [2, 3, 4, 5, 6, 7, 8] - the time required to compute an

optimal schedule increases exponentially with the size of the problem, meaning that with

present-day algorithms even moderately sized problems cannot be solved to guaranteed

optimality.

The rest of this chapter is organized as follows. In section 1.3, the current issues that

motivate the research on this area are discussed. In Section 1.4, a detailed description of the Job

Shop Scheduling Problem (JSSP) is given. Section 1.5 summarizes the research done concerning

JSSP. Section 1.6 and 1.7 discussed the previous genetic algorithms research aimed at solving

the dynamic JSSP. Section 1.8 describes the current issues and challenges in this research area.

In section 1.9, summarized the future plans.

1.3 Motivation

Basically there are two kinds of scheduling problems [9]. The first problem is static

problem which related to the combinatorial nature of the problems, where it is difficult to find an

3

optimal solution because it is impossible to consider all nodes in a large search space. This

problem is also called generative in [10] and predictive in [11, 12]. The second problem is

dynamic problem which related to the dynamic nature of the problems, where variables and

constraints always change due to the development of an organization or emergence of certain

type of events. This problem is also called revisions in [11] and reactive in [10, 12]. This

problem is viewed as the reactive part of the system which monitors the execution of the

schedule and copes with unexpected events (i.e., machine breakdowns, tool failures, order

cancelation, due date changes, etc) [11].

The major criticism brought against the predictive mechanisms in practice is that the

actual events on the shop floor can be considerably different compared to the one specified in the

schedule due to the random interruptions (i.e., machine breakdowns, bottleneck, due date

changes, order cancelations, etc.) [13, 14]. Thus an appropriate corrective action (or response)

should be taken to improve the performance of the infeasible schedule [7, 10, 11, 12, 15, 16, 17].

Although reactive scheduling is of great importance in any scheduling system, most scheduling

research has mainly focused on the construction of a good generative schedule from scratch

without providing enough attention on the reactive control phase.

In industrial practice, the majority of scheduling systems address the reactive scheduling

problem by making it the responsibility of the human scheduler to evaluate the implications of

the unexpected events, and to adjust the generative schedule accordingly [10, 12]. However, the

combinatorial complexity of the scheduling problem tends to overburden the human scheduler

and may result in poor schedule performance.

Because of the dynamic environment Graves [18] stated that there is no scheduling

problem but rather a rescheduling problem. Responding to the dynamic factors immediately as

they occur is also called real-time scheduling [13]. The initial schedule will be rescheduled to

cope with the new conditions. This can also be called a time critical decision making process

since the shop waits to receive the new schedule.

4

1.4 Definition of the JSSP

A N × M job shop scheduling problem, hereafter referred to as the JSSP, consists of N

jobs and M machines [8]. A job j consists of a sequence of operations Oj = (oj1, o j2,…,ojkj). Each

operation ojl is to be processed on a specific machine and has a specific processing time τjl. Each

job has at most one operation on each machine (capacity constraint). The processing order of the

operations in job j must be the order specified in the sequence Oj. These sequences are often

called the technological constraints and also referred to as the precedence constraint. During

processing each machine can process at most one operation at a time, and no preemption can

take place; once processing of an operation has been started it must run until it has completed. In

the following Cj will denote the end of processing time of the last operation of job j in a given

schedule.

Some problems include a due date dj for each job, a time by which the processing of the

job is supposed to be finished, a release time rj for each job, prior to which no processing of the

job can be done, or a initial setup time sm for each machine, prior to which no processing can be

done on the machine.

A number of different objective functions exist for job shop problems. The most

extensively researched is the makespan Cmax = maxj∈{1..N}(Cj), the time span needed to complete

all operations of all jobs. However the makespan objective is not well-suited for scheduling on a

rolling time horizon-basis (jobs arriving continuously over time), and it does not include due

dates. More realistic objectives include total flowtime
1

N
j j

j
F C r

=
= −∑ , summed lateness

1

N
j j

j
L C dΣ

=
= −∑ , summed tardiness

1
max (,0)

N
j j

j
T C dΣ

=
= −∑ , maximum lateness Lmax =

maxj∈{1..N}(Cj - dj) and maximum tardiness Tmax = max (Lmax, 0). All of these performance

measures reflect schedule implementation cost and are to be minimised, i.e., a low performance

measure equals a good schedule.

5

Table 1.1 : A 3 × 3 problem

job
Operations routing (processing

time)

1 1 (3) 2 (3) 3 (3)

2 1 (2) 3 (3) 2 (4)

3 2 (3) 1 (2) 3 (1)

An example of a 3 × 3 JSSP is given in Table 1.1. The data includes the routing of each

job through each machine and the processing time for each operation (in parentheses). Figure 1.1

shows a solution for the problem represented by "Gantt-Chart".

M1

M2

M3

 d

Figure 1.1: A schedule for a 3 x 3 JSSP instance

Based on the release times of jobs, JSSP can be classified as static or dynamic

scheduling. In static JSSP, all jobs are ready to start at time zero. In dynamic JSSP, job release

times are not fixed at a single point, that is, jobs arrive at various times. Dynamic JSSP can be

further classified as deterministic or stochastic based on the manner of specification of the job

release times. Deterministic JSSP assume that the job release times are known in advance. In

stochastic JSSP, job release times are random variables and some or all parameters are uncertain

[3, 5].

0 2 4 6 8 10 12 time

6

1.5 Related Works

As discussed earlier, the majority of the published literature in the scheduling area deals

with the task of schedule generation or predictive nature of the scheduling problems. The

normally employed approaches for the solution of these problems are heuristic strategies [4].

Some of the most common techniques used are branch and bound [19], dispatching rules [20,

21], tabu search [22, 23, 24, 25, 26], simulated annealing [27, 28, 29] and genetic algorithms [2,

3, 5, 7, 8, 17, 30, 31, 32, 33]. In [34] and [35] we can found an extensive study about the main

techniques that were applied since the year 1960s. The application of GA to scheduling problems

has interested many researchers due to the fact that they seem to offer the ability to cope with the

huge search spaces involved in optimizing schedules.

However, reactive scheduling is also important for the successful implementation of

scheduling systems. A review on research papers that are related to reactive scheduling was

given in [11]. This chapter gives a short classification and a brief description about the existing

studies concerning reactive scheduling.

Another popular approach to deal with reactive scheduling is knowledge-based system or

expert system [14, 32, 36, 37, 38, 39, 40, 41, 42].

As stated earlier the common practice related to reactive scheduling in industrial practice

is to assign human schedulers to repair the schedules using their knowledge and experience in

the particular domain. This scenario shows that knowledge and experience are the most

important elements to make the scheduling system become reactive because knowledge can

provide information on where jobs are, where they need to go and what machine are up or down,

etc.

A discussion on the knowledge-based reactive scheduling systems can be found in [34]

and [43]. Cowling and Johansson [14] proposed a framework to use real time information to

improve scheduling decisions, which allows the tradeoff between the quality of the revised

schedule against the production disturbance which results from changing the planned schedule.

7

Shah et al. [44] developed knowledge based dynamic scheduling for production of parts

in a steel plant. A rule base is used to handle the shared transporter, moving components and

treated in sequence stations.

1.6 Dynamic JSSP

Dynamic problems have been considered on a rolling time horizon basis, in which the

problem is solved by making a schedule for the part of the problem that is known. Processing of

the jobs according to this schedule is then started, and as soon as information about new jobs

arrive a new schedule incorporating the new jobs and the work not yet processed in the previous

schedule is created.

Most research on scheduling has been focused mainly on optimizing one particular

performance measure, like the use of resources, makespan or tardiness, normally reflecting some

kind of cost. It is assumed that all problem data are known before scheduling has to take place

and no change ever happens. However real world applications operate in dynamic environments

frequently subject to several kinds of random occurrences and perturbations, such as new job

arrivals, machine breakdowns, employees sickness, jobs cancellation and due date and time

processing changes, causing that the original schedule becomes unfeasible.

Due to their dynamic nature, real scheduling problems have an additional complexity in

relation to static ones. In many situations these problems, even for apparently simple situations,

are hard to solve, i.e. the time required to compute an optimal solution increases exponentially

with the size of the problem [6].

For such class of problems, the goal is no longer to find a single optimum [Zhang, 99],

but rather to continuously adapt the solution to the changing environment. When a change in the

environment happens rescheduling is needed, and the existence of a good near-optimal schedule,

which is easy to modify will be in some situations preferable to an optimal, which cannot be

modified.

8

The algorithms for dynamic scheduling should be able to manage any disruption of a

schedule caused by changes in scheduling environment. Such changes can be classified in three

major groups [16] :

• Activity Changes

Request for new or extended activities can result in resource contention and inconsistency

of a schedule. In long term scheduling introducing new activities can aim at improving

the schedule efficiency and degree of resource utilization (e.g. leasing out some resource

leads). In the short term scheduling activities are introduced as they arise (e.g. emergency

service). Changes in activity duration and increased level of resource usage can occur.

• Resource Changes

Primary reduction of resources (e.g. machine failure) can disrupt a schedule. Resource

changes may be also requested to reduce the cost of a schedule (e.g. machine utilization

problems). Shorter term resource changes are usually connected with resource failure.

• Temporal Changes

The most frequent form of temporal change is a contraction of schedule horizon. Long

term temporal changes (e.g. changing a schedule in public transport for regularity) and

short time changes (e.g. downstream effect of delayed aircraft or train) may also cause

schedule inconsistency.

1.7 Genetic Algorithms (GA)

GA appeared around the end of the 1960s. Since Davis proposed the first GA-based

technique to address scheduling problems in 1985 [44], GA have been widely used in the context

of job shop scheduling problems (JSSP) [3, 4, 5, 17]. However, most of the works deal with

optimisation of the scheduling problem in static environments, in which all jobs are ready to start

at time zero, with the makespan objective. In dynamic JSSP, which are more realistic, jobs can

9

arrive at some known (deterministic JSSP) or unknown (stochastic JSSP) future times. Further,

the importance of each job can be different and the objective is more complex [3].

1.8 Issues and Challenges

Although scheduling is a well researched area, and numerous articles and books have

been published, classical scheduling theory has been little used in real production environments

[45]. It is believed that scheduling research has much to offer industry and commerce, but that

more work is needed to address the ‘gap’ between scheduling theory and practice [14, 46]. One

frequent assumption of scheduling theory, which rarely holds in practice, is that the scheduling

environment is static. In recent years many authors [7, 10, 11, 12, 13, 14, 15, 16, 17, 46] have

recognized that this is unlikely scenario in many manufacturing environment. In reality,

schedules must be revised frequently in response to both instantaneous events, which occur

without warning, and anticipated events where information is given in advance by, for example,

process control computers or customers.

As a consequence, even though GA have previously been demonstrated to have an

acceptable performance on job shop problems, it is still have not been adopted in standard

manufacturing practice. For this reason, in recent years, academic research has attempted to

consider real-life scheduling problems. Standard benchmark problems do not attract the attention

of people in industry since practical scheduling problems are far more complex than the famous

benchmark problems [4] that are still used in most research.

For the comprehensive comparison and summary of results that have been published for

the Lawrence’s [47] and Fisher and Thompson’s [6] benchmark problems see [4].

However, a considerable number of recently published papers address real-life

scheduling cases. Vieira et al. [48] described the development of a global scheduling system for

a semiconductor test area. Gilkinson et al. [49] tackled the scheduling problem of a company that

produces laminated paper and foil products. Hamada et al. [50] approached a complex

10

scheduling problem in a steel-making company using a hybrid system based on evolutionary

algorithms and expert systems. Shaw and Fleming [51] and Kumar and Srinivasan [52] proposed

evolutionary computation methods for the solution of scheduling problems in companies that

produce ready-chill meals and defense products, respectively. Sakawa et al. [53] considered the

scheduling problem of a machining center using an evolutionary algorithm. Shah et al. [44]

developed knowledge based dynamic scheduling for Steel Plant. Finally, Suh et al. 1998 [10]

implemented ordering strategies for constraint satisfaction in steel industry. A scheduling expert

system was developed to implement these strategies for the reactive adjustment of hot-rolling

schedules in a hot strip mill.

1.9 Suggestion for Further Work

We propose to use GA with a match-up approach to solve dynamic problem in the job

shop scheduling problem. GA was chosen since it is well suited to optimization problem and

were proved successfully solve a number of problem that were difficult to solve with other

methods [32]. We proposed to use match-up approach in order to change only a part of the initial

schedule when a disturbance occurs, in such a way as to accommodate new disturbances and

maintain both performance and stability of the shop floor. In order to make this JSSP realistic to

the real world problem, we will use the real data from automotive spring production as a case

study.

1.10 Conclusion

This chapter described the actual problem happened in the job shop scheduling problem.

It also discussed the previous work related to this area. Hybrid-GA is proposed to be developed

in order to solve the dynamic problem in the real manufacturing environment.

11

1.11 References

[1] Parker R. G. (1995) Deterministic Scheduling Theory, London, Chapman & Hall.

[2] Yamada T and Nakano R. Genetic Algorithms for Job-Shop Scheduling Problems.

Proceedings of Modern Heuristic for Decision Support, UNICOM seminar, 18-19 March

1997, London, pp. 67-81.

[3] Lin S., Goodman E.D. and Punch W. F. A Genetic Algorithm Approach to Dynamic Job

Shop Scheduling Problems. International Conference of Genetic Algorithms (ICGA)

1997.

[4] Dimopoulos C. and Zalzala A.M.S. Recent developments in evolutionary computation for

manufacturing optimization: problems, solutions, and comparisons. IEEE Transactions

on Evolutionary Computation, Vol. 4, No. 2, July 2000 pp. 93 – 113.

[5] Madureira A. M., Ramos C. and Silva S. D. C. A Genetic Approach for Dynamic Job-

Shop Scheduling Problems. 4th MetaHeuristics International Conference (MIC‘2001),

Portugal, 2001.

[6] Blazewicz J, Ecker K.H., Pesch E, Schmidt G. and Weglarz J. Scheduling Computer and

Manufacturing Processes, Springer, Berlin, 2001.

[7] Jensen M. T. Generating Robust and Flexible Job Shop Schedules using Genetic

Algorithms. IEEE Transactions on Evolutionary Computation, Vol. 7, no 3, June 2003,

pp. 275-288.

[8] Braune R., Wagner S. and Affenzeller M. Applying Genetic Algorithms to the

Optimization of Production Planning. Real-World Manufacturing Environment,

Cybernetics and Systems, 2004.

[9] Deris S., Omatu S., Ohta H. and Saad P. Incorporating constraint propagation in genetic

algorithm for university timetable planning. Journal of the Engineering Application of

Artificial Intelligence, Vol. 12, 1999, pp. 241-253.

12

[10] Suh M. S., Lee A., Lee Y. J. and Ko Y. K. Evaluation of ordering strategies for constraint

satisfaction reactive scheduling. Decision Support Systems, Vol. 22, Issue 2, Feb. 1998,

pp. 187-197.

[11] Sabuncuoglu I. and Bayiz M. Analysis of reactive scheduling problems in a job shop

environment. European Journal of Operational Research, Vol. 126, Issue 3, Nov. 2000,

pp. 567-586.

[12] Sauer J. Planning and Scheduling - An Overview. in: Hotz, L., Krebs, T. (Eds.): Planen

und Konfigurieren (PuK-2003), Proceedings des Workshops zur KI 2003, Hamburg,

2003, pp. 158-161.

[13] Akturk, M. S. and Gorgulu, E., Match-up scheduling under a machine breakdown,

European Journal of Operational Research, Vol. 112, Issue 1, Jan. 1999, pp. 81-97.

[14] Cowling P. and Johansson M., Using real time information for effective dynamic

scheduling, European Journal of Operational Research, Vol. 139, Issue 2, June 2002, pp.

230-244.

[15] Dorn, J. Case-based reactive scheduling. in Roger Kerr and Elisabeth Szelke (eds)

Artificial Intelligence in Reactive Scheduling. London: Chapman & Hall. 1995, pp. 32-

50.

[16] Kocjan W. Dynamic scheduling: State of the art report. Technical Report T2002:28,

SICS, 2002.

[17] Vazquez M. and Whitley L. D. A comparison of genetic algorithms for the dynamic job

shop scheduling problem. Proceedings of GECCO-2000, 2000, pp. 169-178.

[18] Graves S.C. A review of production scheduling, Operations Research, Vol. 29, Issue 4,

1981, pp. 646-675.

[19] Carlier J. and Pinson E. An Algorithm for Solving the Job-Shop Problem. Management

Science, Vol. 35, 1989, pp. 164-176.

[20] Baker K. R. (1974) Introduction to Sequencing and Scheduling, New York: John Wiley.

13

[21] Lodree E. J., Jang W., Klein C. M. A new rule for minimizing the number of tardy jobs in

dynamic flow shops. European Journal of Operational Research 159, 2004, 258-263.

[22] Hurink J. and Knust S., A tabu search algorithm for scheduling a single robot in a job-

shop environment, Discrete Applied Mathematics, Vol. 119, Issues 1-2, June 2002, pp.

181-203.

[23] Watson J. P., Beck J. C., Howe A. E. and Whitley L. D. Problem difficulty for tabu

search in job-shop scheduling, Artificial Intelligence, Vol. 143, Issue 2, Feb. 2003, pp.

189-217.

[24] Carotenuto P., Giordani S., Ricciardelli S. and Rismondo S., A tabu search approach for

scheduling hazmat shipments. Computers & Operations Research, In Press, Corrected

Proof, Available online 22 July 2005.

[25] Liu S.Q., Ong H.L. and Ng K.M., A fast tabu search algorithm for the group shop

scheduling problem. Advances in Engineering Software, Vol. 36, Issue 8, Aug. 2005, pp.

533-539.

[26] Xu J., Sohoni M., McCleery M., Bailey T. G., A dynamic neighborhood based tabu

search algorithm for real-world flight instructor scheduling problems. European Journal

of Operational Research, Vol. 169, 2006, pp. 978–993.

[27] Mamalis A. G. and Malagardis I. Determination of due dates in job shop scheduling by

simulated annealing. Computer Integrated Manufacturing Systems, Vol. 9, Issue 2, May

1996, pp. 65-72.

[28] Satake T., Morikawa K., Takahashi K. and Nakamura N. Simulated annealing approach

for minimizing the makespan of the general job-shop. International Journal of Production

Economics, Vol. 60-61, April 1999, pp. 515-522.

[29] Aydin M. E. and Fogarty T. C. Simulated annealing with evolutionary processes in job

shop scheduling. Evolutionary Methods for Design, Optimisation and Control, (Proc. of

EUROGEN 2001, Athens, 19-21 September) CIMNE, Barcelona, 2002

14

[30] Fang H.L., Ross P., Corne D., A promising genetic algorithm approach to job-shop

scheduling, rescheduling, and open-shop scheduling problems. Proceedings of the Fifth

International Conference on Genetic Algorithms, 1993, pp. 375–382.

[31] Bierwirth C. and Mattfeld D.C. Production scheduling and rescheduling with genetic

algorithms, Evolutionary Computation, Vol. 7, Issue 1, 1999, pp. 1–17.

[32] Varela R., Vela C.R., Puente J. and Gomez A. A knowledge-based evolutionary strategy

for scheduling problems with bottlenecks. European Journal of Operational Research,

Vol. 145, 2003, pp. 57–71.

[33] Goncalves J. F, de Magalhaes Mendes J. J., Resende M. G. C. A hybrid genetic algorithm

for the job shop scheduling problem. European Journal of Operational Research, Vol.

167, 2005, pp. 77–95.

[34] Blazewicz J., Domschke W. and Pesch E. The job shop scheduling problem:

Conventional and new solution techniques. European Journal of Operational Research,

Vol. 93, 1996, pp. 1–33.

[35] Jain A.S., Meeran S., Deterministic job-shop scheduling: Past, present and future,

European Journal of Operational Research, Vol. 113, 1999, pp. 390–434.

[36] Shah V. C., Madey G. R. and Mehrez A. A methodology for knowledge-based

scheduling decision support, Omega, Vol. 20, Issues 5-6, Sept.-Nov. 1992, pp. 679-703.

[37] Collinot A. and Le Pape C. Adapting the behavior of a job-shop scheduling system.

Decision Support Systems, Vol. 7, Issue 4, Nov. 1991, pp. 341-353.

[38] Ress D. A. and Currie K. R. Development of an expert system for scheduling work

content in a job shop environment. Computers & Industrial Engineering, Vol. 25, Issue 1-

4, Sept. 1993, pp. 131-134.

[39] Charalambous O. and Hindi K. S. A knowledge based job-shop scheduling system with

controlled backtracking. Computers & Industrial Engineering, Vol. 24, Issue 3, July

1993, pp. 391-400.

15

[40] Miyashita K. and Sycara K. CABINS: a framework of knowledge acquisition and

iterative revision for schedule improvement and reactive repair. Artificial Intelligence,

Vol. 76, Issues 1-2, July 1995, pp. 377-426.

[41] Zhang Y. and Chen H. A knowledge-based dynamic job-scheduling in low-volume /

high-variety manufacturing. Artificial Intelligence in Engineering, Vol. 13, Issue 3, July

1999, pp. 241-249.

[42] Henning G. P. and Cerda J. Knowledge-based predictive and reactive scheduling in

industrial environments. Computers & Chemical Engineering, Vol. 24, Issues 9-10, Oct.

2000, pp. 2315-2338.

[43] Szelke E. and Kerr R.M. Knowledge-based reactive scheduling, Production Planning and

Control, Vol. 5, Issue 2, 1994, pp. 124-145.

[44] Shah M.J., Damian R., Silverman J. Knowledge Based Dynamic Scheduling in a Steel

Plant. Proceedings of the 6th International Conference on Artificial Intelligence for

Industrial Applications, St. Barbara, 1990, pp. 108-113.

[45] Stoop P. and Wiers V. The complexity of scheduling in practice. International Journal of

Operations & Production Management, Vol. 16 No. 10, 1996, pp. 37-53.

[46] Aytug H., Lawley M. A., McKay K., Mohan S. and Uzsoy R. Executing production

schedules in the face of uncertainties: A review and some future directions. European

Journal of Operational Research, Vol. 161, Issue 1, Feb. 2005, pp. 86-110.

[47] Lawrence S., Resource Constrained Project Scheduling: An Experimental Investigation

of Heuristic Scheduling Techniques. Pittsburgh, PA: GSIA, Carnegie Mellon Univ.,

1984.

[48] Vieira G.E., Herrmann J.W. and Lin E., Rescheduling manufacturing systems: a

framework of strategies, policies, and methods, Journal of Scheduling, Vol. 6, No. 1, pp.

35-58, 2003.

16

[49] Gilkinson J. C., Rabelo L. C., and Bush B. O., A real-world scheduling problem using

genetic algorithms. Computers & Industrial Engineering, Vol. 29, Issue 1–4, 1995, pp.

177–181.

[50] Hamada K., Baba T., Sato K., and Yufu M. Hybridizing a genetic algorithm with rule-

based reasoning for production planning. IEEE Expert, Vol. 10, No. 5, 1995, pp. 60–67.

[51] Shaw K. J. and Flemming P. J. Including real-life preferences in genetic algorithms to

improve optimization of production schedules. Proc. Conf. Genetic Algorithms Eng.

Syst.: Innovations and Appl.. Stevenage, U.K.: IEE, 1997, pp. 239–244. IEE Conf. Publ.

446.

[52] Kumar N. S. H. and Srinivasan G. A genetic algorithm for job-shop scheduling - A case

study. Computer Industry, Vol. 31, no. 2, 1996, pp. 155–160.

[53] Sakawa M., Kato K. and Mori T. Flexible scheduling in a machining center through

genetic algorithms. Computers & Industrial Engineering, Vol. 30, No. 4, September

1996, pp. 931-940.

[54] Ovacik I. M, Uzsoy R. Exploiting shop floor status information to schedule complex job

shops. Journal of Manufacturing Systems. Dearborn, Vol. 13, Issue 2, 1994, pp. 73-84.

17

CHAPTER 2

MODELING THE REAL WORLD MANUFACTURING PROCESSES USING PETRI NETS

2.1 Abstract

The real world manufacturing processes are hard to model and analyze. Petri Nets

(PN) have been widely used at this aim and the reasons are their formal semantics, graphical

nature, expressiveness, the availability of analysis techniques to prove logical properties

(invariance properties, deadlock, liveliness, etc.) and the possibility to define and evaluate

performance indices (throughput, occupation rates, etc.). The goal of this chapter is to

describe the modeling of the real world manufacturing processes using Petri Nets. This

chapter begins with a brief description of Petri nets and manufacturing behaviors, with a

focus on flexible productions. We highlight the power of Petri nets in modeling the dynamic

behavior of manufacturing system compared to several other approaches such as state

diagrams, event trace diagrams, state transition diagrams and interaction diagrams which

commonly used as the dynamic modeling tools in object-oriented methodology. Then we

present two models of manufacturing process, namely machine model and process model.

The goals of these models are to understand the behavior of the machine and to demonstrate

the dynamic behavior of production processes, respectively. Our case study is automotive

spring production processes. We found that these models are useful for us to get better

understanding on the behavior of manufacturing processes in order to solve the scheduling

problem in manufacturing environment. The simulation result shown that the complexity of

the models are depends on the flexibility of the system – the more flexible the system, the

more complex the model.

18

2.2 Introduction

Every company strives to increase their profits. One of the key factors in ensuring the

profits is effective utilization of manufacturing resources through application of efficient

planning and scheduling approaches. These two main approaches are closely related to the

manufacturing processes in a flexible manufacturing system (FMS) which are formally

known as process planning and production scheduling.

Process planning is refers to a process plan which is generated for each part to be

manufactured in a manufacturing system [16]. The process plan specifies operations to be

performed and their sequence, required resources and process parameters of each operation.

On the other hand, production scheduling determines the most appropriate moment to execute

each operation for the planned production, taking into account the due date, a maximum

resource utilization, etc., in order to achieve high productivity in a manufacturing system [6].

One of the objectives of this work is to develop the process models, to help the

definition of production processes. These models allow focusing on the second objective,

which is to implement an integrated process planning, to specify the operations to be

performed in manufacturing a product; and production scheduling, to estimate a start time for

the particular operations to be performed in the case of manufacturing an automotive spring

product. This chapter concentrates on the modeling of production processes using Petri Nets

(PN) in order to understand the dynamic behavior of machine and production processes. Our

case study is automotive spring production.

The rest of this chapter is organized as follows. In section 2.3, the manufacturing

issues that motivate the research on this area are discussed. In Section 2.5, a detailed

description of the scheduling problem is given. Section 2.6 summarizes the theory behind the

Petri nets. Section 2.7 and 2.8 discussed the developed model and simulation results aimed at

solving the scheduling problem. Section 2.9 summarized the future works and conclusion.

19

2.3 Manufacturing Problem

In essence, a manufacturing system can be viewed as a sequence of discrete events [4]

or a discrete event dynamic system (DEDS) [7], i.e. a system with concurrency, mutual

exclusions, decisions and synchronizations. In a typical time history of event, we would

observe that more than one event could be occurring at the same time. From this time history

we can identify the following characteristics [3]:

Concurrency or parallelism. In a manufacturing system many operations take place

simultaneously.

Asynchronous operations. The evolution of system events is aperiodic. This may be due to

variable process completion times, e.g., the time to machine a part may vary from one part to

another. In the case of the assembly of two different parts, one may be ready to be assembled

before the other. Hence the two parts are being produced asynchronously.

Event driven. The completion of one operation may initiate more than one new operation.

Also, since there are other processes in the system, the order of occurrence of events is not

necessarily unique.

As a result of these dynamic characteristics there are two other situations that can

occur:

Deadlock. In this case, a state can be reached where none of the processes can continue. This

can happen with the sharing of two resources between two processes. This situation is

undesirable and is usually the result of the system design. An important feature of a good

model is that it can detect deadlock, permitting time for correction and redesign prior to

system implementation.

Conflict. This may occur when two or more processes require a common resource at the same

time. For example, two machines might share a common transport system. Note that one of

the processes may proceed if the conflict can be resolved while in the deadlock case nothing

can be done to get the system going again. One simple way to resolve the conflict is to assign

a priority level to each of the processes.

20

There are many combinations of sequences of events that can occur in these systems.

As a result, this can lead to a large state space. In order to solve this complexity, a modeling

technique which able to contend with, and manage, the size of this state space is needed.

Hence a modeling tool should model in detail the concurrency and synchronization in the

system with respect to time. Furthermore, such a tool should help to analyze the system

behavior to check for aspects such as deadlocks. Since it is very common in FMS to share

certain resources (e.g. an operator is shared by more than one machine to load/unload), a

modeling tool should represent these aspects to analyze the conflicts during the system

execution.

Petri nets (PN) have all these capabilities and hence are suitable as dynamic modeling

tool irrespective of the various methods used for modeling the dynamic behavior of FMS

such as state diagrams [12], as well as state transition diagrams and interaction diagrams [2].

In object-oriented design, state diagrams or state transition diagrams are used to represent

how objects respond to the internal and external events in the system. Interaction diagrams

are used to study the synchronization aspects and to trace the execution of events in the

system. Also, unlike previous works which use two different kinds of diagrams for

representing system states and tracing events [2],[12], PN can be used as a single tool to

represent both the system states and to trace the events in the system when time durations of

activities are associated with transitions.

2.4 Problem Description

Automotive spring production is one of the discrete manufacturing which produces

high variety of automotive spring products. Most of the automotive spring productions

involve the difference product models that also need different processes.

The production of automotive spring consists of three stages: forming, heat treatment

and assembly. Under each of these stages, there are several processes, each with very distinct

characteristics. For instance, forming processes include all activities that involve material-

shaping processes such as cutting, drilling, punching and tapering. Each of them carried out

on separate machines or on a single machine center. Heat treatment is a group of

manufacturing techniques used to alter the hardness and toughness of a material i.e.,

21

quenching, and tempering. Likewise, assembly could be carried out through a sequence of

operations include the part finishing processes such as bushing, painting, marking, and

reverting; and then assembling the machined parts to form the required products. In this

section the scheduling problems for manufacturing processes is defined.

2.5 The Scheduling Problem

There are m dedicated machines at forming, heating and assembly stations. Thus, the

problem is composed of m machines {M1, M2, …, Mm} and has n jobs (parts to be produced)

{J1, J2, …, Jn}. Each job Ji requires a sequence of operations {Oi1, Oi2…Oik}. The processing

time pik of each operation Oik is given. The objective of the scheduling is to determine the

operation sequences, determine the optimal route (machine) to process the parts, and estimate

the start time of production activities, so that the makespan (Cmax), i.e., the maximum

completion time, is minimized, in the way that minimize machine idle time and balance

machine load.

In this chapter, the process sequence of a product refers to the order in which parts or

subassemblies are process by the machines. Here, the process sequence of a product to be

produced is represented by a Petri nets which referred to as process model, which being

discussed in details in next section.

Figure 2.1: An Example of Product Structure

22

Table 2.1: Precedence constraints and processing time

Id Operation Precedes t(sec)

O1 Shearing O2 15

O2
Center Hole

Punching

O3, O4 ,O5

,O6 ,O7
15

O3
Berlin Eye

Forming
nil 20

O4 Short tapering O5 ,O6 ,O7 10

O5 End punching O4 ,O6 ,O7 15

O6
Bevel hole

punch
O4 ,O5 ,O7 15

O7 Diamond cut O4 ,O5 ,O6 20

For example, there is one model of product to be produced. This product consists of

three main part components, namely leaf 1, leaf 2 and leaf 3, which involve distinct

operations. In order to solve this scheduling problem, the processes related to this problem

needs to be defined, as well as constraints. Each product consists of parts, and there are a

number of operations to be performed on each part (see for example Figure 2.1).

The sequence of operations is bounded to the precedence constraints. Table 2.1 shows

the precedence constraints for the forming processes. O04,…, O07 is a set of flexible-route

operations which can be performed in any order. These precedence constraints can be clearly

viewed through the developed process model in the next section.

2.6 Petri Nets

Petri Nets (PN) have been widely used in modeling the manufacturing processes

[4],[7] for the reasons of their formal semantics, graphical nature, expressiveness, the

availability of analysis techniques to prove logical properties and the possibility to define and

evaluate performance indices. The major advantage of PN is that the same model is used for

the analysis of behavioral properties and performance evaluation, as well as for discrete-event

simulators. As discussed earlier, PN have its’ own strength compared to some other

approaches.

23

A Petri net is a graphical and mathematical modeling tool for describing and studying

systems that are characterized as being concurrent, asynchronous, distributed, parallel,

stochastic and/or nondeterministic. Petri nets can be used as a visual-communication aid

similar to flow charts, block diagrams, and networks. In addition, tokens are used in these

nets to simulate the dynamic and concurrent activities of systems [8].

In PN modeling, there are two nodes [17], places and transitions, represented by

circles and bars, respectively. The places are used to represent the status of a resource, e.g.,

its availability; a process, e.g., its undergoing; or condition, e.g., its satisfaction. The bars are

used to model the events, e.g., start and end of an operation. A token is represented by a dot

located in a place indicates weather a resource is available, a process is undergoing, or a

condition is true. Multiple tokens often imply availability of multiple resources or the

undergoing of operations of several parts. When the conditions for an event become all true,

the corresponding transition is enabled and thus can fire. Firing enables the flow of tokens

from places to places, implying the change of system status.

Formally, a Petri net can be defined as follows:

A Petri Net (PN) is a 5-tuple, PN = (P, T, I, O, M0) where [18]:

P = {p1, p2 … pm} is a finite set of places.

T = {t1, t2 … tn} is a finite set of transitions.

I : (P × T) → N is an input function that defines the directed arcs from places to transitions,

where N is a set of non-negative integers.

O : (P × T) → N is an output function that defines the directed arcs from transitions to places

M0 : P → N is the initial marking.

In order to simulate the dynamic behavior of the model, a state or marking

represented by a token is changed according to the enabling and firing or transition rules [17]:

– Enabling Rule: A transition t is enabled if each input places have enough tokens : m(p) ≥

I(p,t), ∀ p ∈ P.

– Firing Rule: Enabled m allow firing t will result m’ : m’(p) = m(p) - I(p,t) + O(p,t), ∀ p ∈

P.

24

Firing happens by changing distribution of tokens on places, which reflect the

occurrence of events or execution of operations. There are two stages of firing. First, remove

the required number of tokens from each input place I and the number of tokens equals to the

number of directed arc connecting p to t, which reflected by - I(p,t) in the equation above.

Second, deposit tokens into each of output place p and the number of tokens equals to the

number of directed arc connecting t to p, which represented by + O(p,t) in the equation.

2.7 Case Study

In order to assist us to understand the behavior of manufacturing process, we

developed two PN models namely machine model and process model.

2.7.1 Machine Modeling

The goal of machine model is to understand the behavior of the machine in the

manufacturing environment. In FMS, normally each operation needs a machine and an

operator to (un)load the parts and setup the machine. Buffer is used to store the partially

completed products between two consecutive operations. Buffer is also important in order to

absorb random event like machine breakdowns, unexpected demand etc. Buffer-in used to

keep parts waiting for the next operation. Buffer-out used to keep finished parts from the

current operation and waiting for the next operation.

25

Figure 2.2: Machine modeling

 Table 2.2: Detail Descriptions of Places for Machine Model

Place State

p1 Raw part are ready in buffer-in

p2 Machine available

p3 Operator available

p4 Part loaded ready for machining

p5 Part machining

p6 Finished part for unloading

p7 Finished part are ready in buffer-out

Figure 2.2 shows a machine model to illustrate this behavior. This model contains

seven places denoted by p1, p2, p3, p4, p5, p6 and p7 and five transitions denoted by t1, t2, t3, t4

and t5. Its initial marking is the vector M0 = [1,1,1,0,0,0,0] represents the number of token in

the places. The time θ associated with timed transition t2 represents the processing time for

the machining operation. The tokens in place p1, p2 and p3 represent the availability of raw

material (part) waiting for operations, the machine and the operator waiting for serving the

machine, respectively.

In this model, place p2 contains one token, which prevents t1 being fired twice

simultaneously. From a practical point of view, this means that the related machine cannot

perform more than one operation at one time. This condition is also referred to as capacity

constraints.

θθθθ

26

Table 2.2 and Table 2.3 show the detail descriptions of the places and transitions in

this machine model, respectively.

Table 2.3: Detail Descriptions of Transitions for Machine Model

Trans

ition
Event

Pre-

Condit

ion

Post-Condition

t1 Start loading
p1, p2,

p3

p4 (part loading on machine, operator and machine

are busy)

t2
Complete loading, start

machining
p4

p3 (part on machining, machine are busy), p5

(operator released)

t3
Complete machining, start

unloading
p3, p5 p6 (finished part unloading, operator is busy)

t4 Complete unloading p6
p2 , p3 (machine/operator released), p7 (finished part

ready in buffer-out)

t5
Transition between finished

and new part
p7 p1 (new part ready for operation)

The dynamic behavior of the system can be observed through this model.

• Transition t1 represents the model of the start of loading a part by the operator. Initially

only transition t1 is enabled since only t1's enabled condition are met. Three arcs link from

p1, p2 and p3 to t1 meaning that three condition in p1, p2 and p3 have to be met before the

event in t1 can happen. Firing t1, removes three tokens from p1, p2 and p3, and deposits a

token to p4. Now, places p1, p2 and p3 hold no token and transition t1 is disabled. The

occurrence of event t1 allows the machine (operator) to enter the status of “being loading

with a part” (loading a part) modeled by place p2 (p3), respectively. Then, the loaded part

at p4 is ready for machining.

• Transition t2 model both “completion of operator’s loading” and “start of machining”.

One arc from p4 to t2 represents that t2’s being enabled if one conditions met. Now, only

transition t2 is enabled and firing t2, removes a token from p4 and deposits a token to p3

and p5 , respectively.

• Now, only transition t3 is enabled and firing t3, removes two tokens from p2 and p5 and

deposits a token to p6.

• Then, only transition t4 is enabled and firing t4, removes a token from p6 and deposits a

token to p2 and p7, respectively.

27

• Finally, only transition t5 is enabled and firing t5, removes a token from p7 and deposits a

token to p1. Now the system returns to the initial condition and ready to repeat the above

processes.

 The machine model helps us to understand the behavior of the machine, served by the

operator in order to process the parts. From this model, we develop the process model for the

overall production processes.

2.7.2 Process Modeling

The process of manufacturing a product can be viewed as a sequence of operations, to

be carried on a different machine. We have been developed a process model to represent the

sequence of operations to be performed. A process model includes a set of activities or

processes arranged in a specific order, with the clearly identified inputs and outputs. The

input may be either a raw material or semi-finished part. Meanwhile the output maybe either

a semi-finished part, sub-assembled or assembled product. Each activity in a process takes an

input and transforms it into an output with some value added.

Figure 2.3 shows the process model for the previous example. In this model, each

place represents the input and output buffer of the machine, each transition represents the

operation performed by the machine, an arc represents a precedence relationship between two

operations and a token represents the availability of a part.

 The goal of process model is to demonstrate the dynamic behavior of production

processes. The process model for the previous example contains sixteen places (p1, p2, …,

p16) and thirty one transitions (t1, t2, …, t31). The initial marking M0 =

[3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. The three tokens in p1 represent three raw materials (parts) to

be manufactured.

 This process model is closely related to the previous machine model. The places p in

this process model represents the operation Oi performed on a particular machine Mi. So the

behavior of this machine Mi can be observed from the previous machine model.

28

Figure 2.3: Process modeling

The dynamic behavior of the system can be observed through this model:

• Initially, t1, t2, t3 are enabled. Firing t1, t2, t3 (shearing), removes three tokens from p1

and deposits a token to p2, p3, p4, respectively. Consequently, now p1 hold no token and

p2, p3, p4 hold one token, respectively.

• Now, M1 = [0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0], the three parts at p2, p3, p4 are on shearing.

• Then t4, t5, t6 are enabled. Firing t4, t5, t6 (start of punching) removes a token from p2,

p3, p4, respectively, and deposits a token to p5, p7, p8, respectively. Now, p5, p7, p8 hold

one token, respectively.

• Now, M2 = [0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0], then 3 parts at p5, p7, p8 are on punching.

Then this simulation will be executed accordingly until the end of the process.

The arcs associated with p12 to p15 represent the most complex part of this model. The

complexity is due to the flexibility of the system. Thus, this complexity reflects the fact that

the more flexible the route the more complex the model. In essence, p12 to p15 represent a set

of operations which can be performed in any orders. In other words, there are no precedence

constraints between them. The detail descriptions of places and transitions for this process

model are shown in Table 2.4 and Table 2.5, respectively.

29

Table 2.4: Detail Descriptions of Places for Process Model.

Place State

p1 Raw part are ready in buffer-in

p2 Shearing Oi1 on machine M11

p3 Shearing Oi1 on machine M12

p4 Shearing Oi1 on machine M13

p5 Center punching Oi2 on machine M21

p6 Center punching Oi2 on machine M22

p7 Center punching Oi2 on machine M23

p8 Eye forming Oi3 on machine M31

p9 Diamond cutting Oi6 on machine M61

p10 Diamond cutting Oi6 on machine M62

p11 Tapering Oi4 on machine M41

p12 End punching Oi5 on machine M51

p13 Bevel hole punching Oi7 on machine M71

p14 Bevel hole punching Oi7 on machine M72

p15 End punching Oi5 or bevel hole punching Oi7 on machine Mij

p16 Finished part are ready in buffer-out

30

Table 2.5: Detail Descriptions of Transitions for Process Model

Transition Event
Pre-

Condition

Post-

Condition

t1, t2, t3 Start shearing p1 p2, p3, p4

t4, t5, t6
Finish shearing and start center

punching
p2, p3, p4 p5, p6, p7

t7
Finish center punching and start

eye forming
p5 p8

t8, t12
Finish center punching and start

diamond cutting
p5, p7 p9, p10

t9, t11
Finish diamond cutting and start

tapering
p9, p10 p11

t10
Finish center punching and start

tapering
p6 p11

t13
Finish eye forming and start

unloading
p8 p16

t14
Finish tapering and start end
punching

p11 p12

t15
Finish end punching and start

unloading
p12 p16

t16, t20, t21,

t24, t29

Finish end punching and start

bevel hole punching
p12, p15 p13, p14, p15

t17, t22, t23,

t25, t28

Finish bevel hole punching and

start end punching
p13, p14, p15 p12, p15

t18, t26
Finish tapering and start bevel

hole punching
p11 p13, p14

t19, t27
Finish bevel hole punching and

start unloading
p13, p14 p16

t30
Finish tapering and start end

punching or bevel hole punching
p11 p15

t31
Finish end punching or bevel
hole punching and start

unloading

p15 p16

31

2.8 Simulation Results

To verify the proposed models we used PIPE2 (Platform Independent Petri Net Editor)

[19] to edit, animate and analyze our models. Figure 2.4 shows some of the simulation results for

the proposed models. The result shows the feasibility of our models.

Figure 2.4: Simulation Results using PIPE2

2.9 Future Work and Conclusion

This chapter described the modeling of production processes in the real world

manufacturing environment. It also discussed the previous work related to this area. Petri nets is

used to develop the models due to the fact that the behavior of elementary nets and

manufacturing system are similar made it possible to propose new algorithms for the planning

32

and the scheduling of manufacturing system. We used the proposed models to help the definition

of production processes. These models allow focusing on implementing an integrated process

planning and production scheduling in the case of manufacturing the automotive spring product.

2.10 Acknowledgement

Special thanks are due to APM Automotive Holdings Bhd and Zilun System Sdn Bhd for

the provided data.

2.11 Reference

[1] Aytug H., Lawley M. A., McKay K., Mohan S. and Uzsoy R. Executing production

schedules in the face of uncertainties: A review and some future directions. European

Journal of Operational Research, Vol. 161, Issue 1, Feb. 2005, pp. 86-110.

[2] Booch, G., Object-oriented analysis and design with applications. 1994 Reading, Mass. :

Addison-Wesley.

[3] Cowling P. and Johansson M., Using real time information for effective dynamic

scheduling, European Journal of Operational Research, Vol. 139, Issue 2, June 2002, pp.

230-244.

[4] Desrochers, A.A. and R.Y. Al-Jaar, Applications of petri nets in manufacturing systems :

modeling, control, and performance analysis. 1995: Piscataway, N.J. : IEEE.

[5] Hestermann, C. and Wolber, M. (1997). A comparison between Operations Research-

models and real world scheduling problems. The European Conference on Intelligent

Management Systems in Operations, pp. 29-36. 25-26 March 1997. University of Salford,

U.K.

[6] Kempenaers, J., J. Pinte, et al. (1996). "A collaborative process planning and scheduling

system." Advances in Engineering Software 25(1): 3-8.

33

[7] Malo-Tamayo, A., D. Gaviño-Contreras, and A. Ramíerez-Traviño, Petri net based control

for the dynamic scheduling of a flexible manufacturing cell. IEEE International

Conference on Systems, Man and Cybernetics 1998 1: p. 553-557.

[8] Murata, T., Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

1989. 77(4): p. 541-580.

[9] Parker R. G. (1995) Deterministic Scheduling Theory, London, Chapman & Hall.

[10] Pinedo, M., (2002), Scheduling: Theory, Algorithms, and Systems, 2
nd

 Edition, Prentice

Hall.

[11] Proth, J.-M. and X. Xie (1996). Petri nets : a tool for design and management of

manufacturing systems / Jean-Marie Proth, Xiaolan Xie. John Wiley & Sons.

[12] Rumbaugh, J., (1991). Object-oriented modeling and design. Englewood Cliffs, N.J.:

Prentice-Hall.

[13] Sabuncuoglu I. and Bayiz M. Analysis of reactive scheduling problems in a job shop

environment. European Journal of Operational Research, Vol. 126, Issue 3, Nov. 2000, pp.

567-586.

[14] Stoop P. and Wiers V. The complexity of scheduling in practice. International Journal of

Operations & Production Management, Vol. 16 No. 10, 1996, pp. 37-53.

[15] Vajpayee, S. K. (1995). Principles of Computer-Integrated Manufacturing. Englewood

Cliffs, New Jersey, Prentice Hall.

[16] Wang, H. and Li, J. (1991). Computer-Aided Process Planning, in Advance in Industrial

Engineering, Vol. 13. Elsevier.

[17] Zhou, M. and K. Venkatesh, Modeling, simulation, and control of flexible manufacturing

systems : a petri net approach Intelligent Control and Intelligent Automation 6 1999:

World Scientific Pub, 1999.

[18] Zurawski, R. and Z. MengChu, Petri nets and industrial applications: A tutorial. Industrial

Electronics, IEEE Transactions on, 1994. 41(6): p. 567-583.

[19] Bloom J.; Clark C.; Clifford C.; Duncan A.; Khan H.; Papantoniou M.: The Platform

Independent Petri Net Editor 2 (PIPE2 homepage). 2005. Available at–

http://pipe2.sourceforge.net.[20July2006]

34

CHAPTER 3

OPERATING SEQUENCING USING MULTI-POPULATION DIRECTED GENETIC

ALGORITHMS

3.1 Abstract

Planning and scheduling (PS) problems in advanced manufacturing systems, such as

flexible manufacturing systems (FMS), are composed of a set of interrelated problems, such as

operation sequencing, machine selection, routing, and online scheduling. Operation sequencing

deals with the problem of determining in what order to perform a set of selected operations such

that the resulting sequence satisfies a number of constraints established by both the parts and

operations. The nature of operation sequence generation is to develop a feasible and optimal

sequence of operations for a part based upon the technical requirements, including part

specifications, manufacturing resources, and certain goals such as cost or time target. In this

chapter, multi-population directed genetic algorithms (MDGA) have been used to generate a

number of optimal operation sequences for a real world manufacturing problem. The multi-

population topology is used to enable a number of operation sequences for manufacturing a

number of parts for a single of product being optimized with a single run. Meanwhile the

directed mutation is used to accelerate the individuals move toward the optimal solutions. The

quality of the result and its numerical performance is discussed in comparison with a standard

genetic algorithm (SGA). After 10 runs, the result from SGA show that the possibilities for the

solution to fall in the near optimal solution is about 30% compared with the result from MDGA

which always force the constraints to be fully satisfied.

35

Keywords:

Operation sequencing, genetic algorithms, planning and scheduling.

3.2 Introduction

Process planning is the activity of translating a set of design requirements and

specifications into technologically feasible instructions describing how to manufacture a part.

Generally, a process plan contains processes, process parameters, machines, routes, set-ups and

tools required for production of parts. Normally process planning involve several or all of the

following activities: (1) selection of required operations; (2) sequencing of selected operations;

(3) selection of required tools; (4) determining setup requirements; (5) determining of operation

parameters. Of these activities, operation sequencing is the most complex due to the need to

consider several types of constraints and the size of the resulting solution space.

The operation sequencing problem is the problem of simultaneous selecting and

sequencing operations required to produce a part while satisfying the precedence relations among

operations. There are several approaches have been used to determine an optimal sequence

include integer programming [1], branch and bound [2], Simulated Annealing [3], heuristic [4],

Ant Colony Optimization [5], [6] and evolutionary techniques [7], [8], [11], [10].

3.3 Approaches and Methods

In this research, process planning is performed in two stages: resource-independent

planning and resource-dependent planning. The purpose of resource-independent stage is to

provide a means for determining the best set of plans for a part independent of the status of the

shop floor resources. Then later when production of that part is released to the shop floor, the

resource-independent planning phase completes the planning tasks (machine selection, route,

parameter determination, etc.) based on knowledge of what shop-floor resources are available.

Therefore, this chapter is concerned with defining a set of optimal operation sequences

independent of the availability of resources.

36

3.4 Sequencing Constraints

The task of operation sequencing is complicated by the large number of interactions that

exist between the various factors which affect decision-making. According to Usher and Bowden

[8], the factors which are resource independent shown inTable 3.1. The constraints which affect

sequencing can be divided into those which address either the feasibility or optimality of a

sequence. This division permits the construction of a system which applies the feasibility

constraints to the task of generating alternative sequences, and the optimality criteria to the task

of judging the quality of the resulting alternatives. A feasible sequence is one which does not

violate any of the feasibility constraints listed in Table . 3.1.

Table 3.1: Sequencing Constraints

[Adopted from Usher and Bowden, 1996]

Feasibility

constraints

Location reference

Accessibility

Non-destruction

Geometric tolerance

Strict precedence

Optimality criteria

Number of setups

Continuity of motion

Loose precedence

In this research, we only consider feasibility constraints, because the optimality criteria

will be considered in another stage. The feasibility constraints adopted here is shown in Table

3.2.

Table 3.2: New Sequencing Constraints

Feasibility

constraints

Location reference

Accessibility

Non-destruction

Strict precedence

Alternative constraint

37

The location constraint is concerned with an examination of the defined part features to

determine what reference face is used to locate each feature. This reference identifies the

necessity that the locating surface be machined prior to the associated feature. In order to

machine a feature it must be accessible. The accessibility constraint evaluates each feature's

accessibility based on the feature type and its location relative to other features. Features are

defined as either primary or secondary. The primary features define the basic shape of the part

(diameters, tapers, etc) and secondary features provide the detailed shape aspects (grooves,

bends, etc.). The fact that a secondary feature is defined as residing on a primary feature, it

makes sense not to machine the secondary feature until the primary feature has been formed.

Therefore, before a secondary feature, such as a groove, is cut on the taper of the part, the taper

(a primary feature) must be machined to specifications.

The non-destruction constraint is concerned with ensuring that a subsequent operation

does not destroy the properties of features machined in prior operations. This type of problem is

limited to the interactions that occur between the secondary features which reside on the same

primary feature. One example would be the need to tapering the parts prior to punching the parts.

Another constraint considers strict precedence whereby order is determined based on feature type

and properties. One example would be an eye forming whose properties require the use of a

bushing operation. However, before bushing can be performed, there is a need to form the eye

first, and possibly reams, the internal part. The need for these preparatory operations is actually

determined during operation selection. Therefore, the results of this constraint will not actually

influence the plan until the operations are considered when writing out the sequence. The last

constraint pertains to the alternative operation defined for the part. There are several alternative

operations performed on the parts. One example would be one part only needs one type of end

cutting, it is either diamond cutting or width cutting; or it is either end trimming or end grooving.

These feasibility constraints give us the capability to define a set of precedence between the

features of a part resulting in the construction of a precedence relationship matrix (PRM) to

represent these precedence relationships.

38

3.5 Operation Sequence Coding

Application of an evolutionary search technique like genetic algorithms (GA) requires a

method for representing a solution. An obvious choice would be to represent a sequence as a

string whose elements define a list of operations, or possibly the features processed by those

operations. However, inherent within this representation is the need to express the constraints

which must be fulfilled by the resulting sequence. Therefore, most representations begin from

this point, adding attributes to the definition of each element in the string or devising a method of

coding the representation to impose these constraints.

Since operation sequencing problem is an order-based problem like travel salesman

problem, we used path representation to represent the sequence. In this problem a sequence is

represented as a list of n operations. If operation ‘i’ is the j-th element of the list, operation ‘i’ is

the j-th operation to be performed. Hence, the sequence 3-2-5-6-1-4 is simple represented by

325614.

Then, we used a sequence of operations as the chromosome structure. Each chromosome

is a sequence of operations to be performed, in order to produce a part, as follows:

The sequence of operations is bounded to the precedence constraints. Table 3.3 shows the

example of precedence constraints for a number of processes. O04,…, O07 is a set of flexible-

route operations which can be performed in any order.

1 3 9 A B C D E F G H J

39

Table 3.3: Precedence constraints

Id Operation Precedes

O1 Shearing O2

O2 Center Hole Punching O3, O4 ,O5 ,O6 ,O7

O3 Berlin Eye Forming nil

O4 Short tapering O5 ,O6 ,O7

O5 End punching O4 ,O6 ,O7

O6 Bevel hole punch O4 ,O5 ,O7

O7 Diamond cut O4 ,O5 ,O6

There are several approaches have been used to represent precedence relationships

among features. They are feature precedence graph (FPG) [8], rules [3] and precedence

relationship matrix (PRM) [6]. In this research, we used another kind of precedence-relation

matrix as shown in Figure 3.1 to represents the constraints and relationships between the

operations.

Figure 3.1: Precedence-Relation Matrix

1 2 3 4 5 6 7 8 9

1 0

2 1 0

3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 0 0 0 0 0 0 0 0 0

8

9

A B C D E F G H I J K L M N

A

B

C

D

E

F

G

H

I

J

K

L

M

N

−

−

− − − − − −

− − − − −

− − − − −

− − − − −

− − − − 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1

−

− − − − −

− −

− −

−

−

−

−

− − − − − − −

− − − − − 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1
























 − −

− − − − − − −

−

−

−

−

− − − − − −

−


























 
 
 
 
 
 
 
 
 
 
 



40

The value of the matrix is either

if can precede

if can not precede

if and are two alternative operations

0

1ij

i j

i j

i j

ρ




= 
−

3.6 Fitness Function

For our problem, the fitness of a chromosome is obtained by computing the cost of

penalty for the constraints violation according to the sequence of the chromosome. Thus our

objective function is to

subject to the precedence constraints represented by precedence-relation matrix (PRM) shown in

Figure 3.1.

3.7 GA Operators

There are usually three operators in a typical genetic algorithm [11]. The first is the

reproduction operator which makes one or more copies of a well performing individual

compared to the rest of individuals in the population; otherwise, the individual is eliminated from

the solution pool. For example, consider two individuals. The first individual is considered to

perform better than the second one. After the reproduction operator is applied, the first individual

is duplicated; the second individual is eliminated from the population, due to its low

performance.

The second operator is the mutation operator. This operator acts as a background operator

and is used to explore some of the unvisited points in the search space by randomly flipping a bit

in a population of strings. During the past decade, several mutation operators have been proposed

1

1 1

min
n n

ij

i j i

 i, j in the sequencep
−

= = +

∀∑∑

41

for permutation representation, such as inversion, insertion, displacement, and reciprocal

exchange mutation.

The third operator is the recombination (also known as the crossover) operator. This

operator selects two individuals within the generation and a crossover site and performs a

swapping operation of the string bits to the right hand side of the crossover site of both

individuals. The outcome of the crossover operation is two individuals that possess some traits

inherited from both parents. In this research, in order to guarantees that the resulting offspring is

a legal sequence, we used two methods of path representation for mutation and crossover.

3.8 Mutation

There are number of crossover operators and mutation operators that can be applied with

path representation in order to solve this problem.

For mutation we used reciprocal exchange method which swaps two values in the

individual. The algorithms will randomly choose two mutation points and swap the values in

those particular points.

As shown in Figure 3.2, reciprocal exchange mutation selects two positions at random

and swaps the values on these positions.

Figure 3.2: Mutation using Reciprocal Exchange

Parent 1

Offspring

1

8 A 1 4 C 2 E J D B

8 A 1 E C 2 4 J D B

Two mutation points randomly

chosen

Two values swapped

42

3.9 Crossover

There are three crossovers were defined for the path representation: partially-mapped

(PMX) [12], order (OX) [13] and cycle (CX) [14] crossovers.

Figure 3.3: Order-based or cyclic crossover

The crossover used in this algorithm is a version of the order crossover (OX) which also

known in [15] as cyclic crossover. As revealed in Figure 3.4, two parents (with a random cut

point marked by |) would produce the offspring in the following way. First, the segments before

cut point are copied into offspring. Next the values from the other parent are copied in the same

order from the beginning of the string, omitting symbols already present.

3.10 Multi-population Directed Genetic Algorithms

In order to accelerate the performance of GA, we introduce two types of accelerators. The

goal of the first accelerator is to terminate the evolution when the optimal solution found. In this

6 I 1 4 C 2 E J D B

I C 9 E D 2 4 1 5 B

5 9

J 6 Parent

Parent

Parent2

Parent1

Offspring

Offspring2

I C 9 E D 2 4 1 5 B J 6

D C J I E 2 4 1 5 B 9 6

6 I 1 4 C 2 E J D B 5 9

5 I 1 C 4 2 E J D B 6 9

43

case, the optimal solution found if all the precedence constraints is satisfied. If this is the case,

the GA stops their iteration and return current population as an optimal solution.

Figure 3.4: Directed Mutation

On the other hand, the second accelerator is used to accelerate the individuals move

towards the optimal solutions. When the solution in the population did not show any

improvement, GA will force for improvement using directed mutation. Using this directed

mutation, the algorithms randomly pick one individual and force the mutation for any unsatisfied

values.

As shown in Figure 3.5, feasibility of each two consecutive values in the selected

individual will be checked and which are not satisfying the precedence constraints will be

swapped.

In addition, we used multi-population genetic algorithms topology to enable a number of

parts’ sequence from a single product being sequenced in a single run. The number of parts n

extracted from product design and being used to produce the number of population. As shown in

Figure 3.5, n number of populations have to go through the same processes namely,

reproduction, mutation and crossover, then will produce their own optimal solution.

J 1 E B D 2 4 8 A C

J 1 E C D 2 4 8 A B

The feasibility of each two consecutive values

will be checked and which are not satisfied

will be force to be satisfied

Two unfeasible values

swapped

44

Figure 3.5: Multi-population GA

3.11 Results and Discussion

The goal of sequencing is to find an operation sequence which satisfies the constraints

mentioned in the previous section. The constraints have been representing in the form of

precedence-relation matrix (PRM).

In order to demonstrate the practicability and efficiency of the proposed algorithm,

different numerical simulations are tested and evaluated. The algorithm is run on a personal

computer with an Intel Pentium IV, 512MB RAM, on Microsoft Windows 2000 Professional.

The codes are written in the LISP language.

Each trial run of our program started with a randomly created generation of individuals.

The program was allowed to evolve this generation up to 50 times.

In order to show the effectiveness of the proposed algorithms, several runs have been

done to be compared with the result from standard genetic algorithms (SGA).

solution part

population 1 … population

n

mutation

crossover

reproductio

mutation

crossover

reproduction

solution part n solutions

n populations

Multi-population GA

…

45

Figure 3.6: Modified PSO vs Standard GA (Run 1)

Figure 3.6 show the comparison results for Modified PSO vs Standard Genetic

Algorithms (SGA). The graphs show that in each trial modified PSO found the solution earlier

than SGA.

Figure 3.7: Modified PSO vs Standard GA (Run 2)

As stated earlier, PSO have a number of initial solutions which represented by a number

of particles and every particles strive to get their own optimal solution. The results shows in

Figure 3.7 prove that the cooperation among the particles assist the algorithms to converge

earlier, compared to SGA which only have one candidate solution to be manipulated in order to

get the optimal solution.

46

Figure 3.8: Modified PSO vs Standard GA (Run 3)

This is of the most significant advantage for PSO compared to GA. With a number of

candidate solutions PSO can come out with a near optimal solution faster than GA. However, the

author believes that GA also can perform this advantage through parallel structure. Hence, we

conclude that the performance of PSO is comparable with parallel GA.

3.12 Conclusion

The results show that the implementation of multi-population GA enables us to optimize

a number of parts (sequences) for a single product using a single run. This can increase the

efficiency of the algorithms because we no need to have a multiple run of GA for a single

product.

On the other hand, directed GA is used to accelerate the individuals move toward the

optimal solutions. This can help us to get the solution without a long waiting time.

3.13 Acknowledgements

Special thanks are due to APM Automotive Holdings Bhd and Zilun System Sdn Bhd for

the provided data.

47

3.14 References

[1] Lin, C.-J. and Wang H.-P. (1993). Optimal operation planning and sequencing:

minimization of tool changeovers. International Journal of Production Research, 31(2),

311-324.

[2] Koulamas, C. (1993). Operation sequencing and machining economics. International

Journal of Production Research, 31(4), 957-975.

[3] Ma, G.H., Zhang, Y.F., Nee, A.Y.C. (2000). A simulated annealing based optimization

algorithm for process planning, International Journal of Production Research, 38(12),

2371-2387.

[4] Lee, D.-H., Kiritsis, D. and Xirouchakis, P. (2001). Search heuristics for operation

sequencing in process planning, International Journal of Production Research, 39(16),

3771-3788(18).

[5] McMullen, P.R. (2001). An ant colony optimization approach to addressing a JIT

sequencing problem with multiple objectives, Artificial Intelligence in Engineering,

15(3), 309-317.

[6] Jain, P.K. and Kumar, G. V. (2005). Operation Sequencing using Ant Colony

Optimization Technique, IEEE International Conference on Systems, Man and

Cybernetics.

[7] Awadh, B., Sepehri, N. and Hawaleshka, O. (1995). A computer-aided process planning

model based on genetic algorithms, Computers & Operations Research , 22(8), 841-856.

[8] Usher, J.M. and Bowden, R.O. (1996). The application of genetic algorithms to operation

sequencing for use in computer-aided process planning. Computers & Industrial

Engineering, 30(4), 999-1013.

[9] Chiu, N.-C., Fang, S.-C. and Lee, Y.-S. (1999). Sequencing parallel machining operations

by genetic algorithms. Computers & Industrial Engineering, 36(2), 259-280.

48

[10] Li, L., Fuh, J. Y. H., Zhang, Y. F. and Nee, A. Y. C. (2005). Application of genetic

algorithm to computer-aided process planning in distributed manufacturing

environments, Robotics and Computer-Integrated Manufacturing, 21(6) 568-578.

[11] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley.

[12] Goldberg, D.E. and Lingle, J.R. (1985). Alleles, loci and the traveling salesman problem,

Proceedings of an International Conference on Genetic Algorithms, In Grefenstette, J.J.

(ed.), Lawrence Erlbaum Associates, Hillsdale.

[13] Davis, L. (1985). Applying Adaptive Algorithms to Epistatic Domains, Proceedings of

the International Joint Conference on Artificial Intelligence, Morgan Kaufmann.

[14] Oliver, I.M., D.J. Smith, and J.R.C. Holland. (1987). A Study of Permutation Crossover

Operators on the Traveling Salesperson Problem, Proceedings of the Second International

Conference on Genetic Algorithms and their Applications, In Grefenstette, J.J. (ed.),

Lawrence Erlbaum Associates, Hillsdale.

[15] Zhang, F., Zhang, Y.F. and Nee, A.Y.C. (1997). Using genetic algorithms in process

planning for job shop machining. IEEE Transactions on Evolutionary Computation, 1(4),

278-289.

49

CHAPTER 4

OPERATING SEQUENCING USING MODIFIED PARTICLE SWARM OPTIMIZATION

4.1 Abstract

Planning and scheduling (PS) problems in advanced manufacturing systems, such as

flexible manufacturing systems, are composed of a set of interrelated problems, such as

operation sequencing, machine selection, routing, and online scheduling. Operation

sequencing deals with the problem of determining in what order to perform a set of selected

operations such that the resulting sequence satisfies the precedence constraints as well as

alternative operation constraints established by both the parts and operations. In this chapter,

modified particle swarm optimization (MPSO) has been used to generate a feasible operation

sequence for a real world manufacturing problem. In addition, the directed mutation is used

to accelerate the individuals move toward the optimal solutions. The quality of the result and

its numerical performance is discussed in comparison with a standard genetic algorithm

(SGA). After 10 runs, the result from SGA show that the possibilities for the solution to fall

in the near optimal solution is about 30% compared with the result from MPSO which

always force the constraints to be fully satisfied.

Keywords: Operation sequencing, particle swarm optimization, process planning and

scheduling.

50

4.2 Introduction

Process planning is the activity of translating a set of design requirements and

specifications into technologically feasible instructions describing how to manufacture a part

[1]. Generally, a process plan contains processes, process parameters, machines, routes, set-

ups and tools required for production of parts. Normally process planning involve several or

all of the following activities: (1) selection of required operations; (2) sequencing of selected

operations; (3) selection of required tools; (4) determining setup requirements; (5)

determining of operation parameters. Of these activities, operation sequencing is the most

complex due to the need to consider several types of constraints and the size of the resulting

solution space.

 The operation sequencing problem is the problem of simultaneous selecting and

sequencing operations required to produce a part while satisfying the precedence relations

among operations [8].

There are several approaches have been used to determine an optimal sequence

include integer programming [3], branch and bound [2], simulated annealing [3], heuristic

[4], ant colony optimization [5], [6] and evolutionary techniques [8],[9],[10] ,[11], [10].

4.3 Approaches and Methods

 The overall goal of this research is the development of an integrated planning and

scheduling framework for a real world manufacturing environment. Thus this research

involves two main research problems namely, process planning and production scheduling.

This chapter is more focusing on the former problem.

In this research, process planning is performed in two stages: resource-independent

planning and resource-dependent planning. The purpose of resource-independent stage is to

provide a means for determining the best set of plans for a part independent of the status of

the shop floor resources. Then later when production of that part is released to the shop floor,

the resource-independent planning phase completes the planning tasks (machine selection,

route, parameter determination, etc.) based on knowledge of what shop-floor resources are

available. Therefore, this chapter is concerned with defining a feasible operation sequences

independent of the availability of resources.

51

4.4 Sequencing Constraints

The task of operation sequencing is complicated by the large number of interactions

that exist between the various factors which affect decision-making. According to Usher and

Bowden [8], the factors which are resource independent shown in Table 4.1 As revealed in

Table 4.1, the constraints which affect sequencing can be divided into those which address

either the feasibility or optimality of a sequence. This division permits the construction of a

system which applies the feasibility constraints to the task of generating alternative

sequences, and the optimality criteria to the task of judging the quality of the resulting

alternatives. A feasible sequence is one which does not violate any of the feasibility

constraints listed in Table 4.1.

Table 4.1: Sequencing constraints [Adopted from Usher and Bowden, 1996]

Feasibility

constraints

Location reference

Accessibility

Non-destruction

Geometric tolerance

Strict precedence

Optimality criteria

Number of setups

Continuity of motion

Loose precedence

In this research, we only consider feasibility constraints, because the optimality

criteria will be considered in another stage. The feasibility constraints adopted here are shown

in Table 4.2.

52

Table 4.2: New sequencing constraints

Feasibility

constraints

Location reference

Accessibility

Non-destruction

Strict precedence

Alternative constraint

The location constraint is concerned with an examination of the defined part features

to determine what reference face is used to locate each feature. This reference identifies the

necessity that the locating surface be machined prior to the associated feature. In order to

machine a feature it must be accessible. The accessibility constraint evaluates each feature's

accessibility based on the feature type and its location relative to other features. Features are

defined as either primary or secondary. The primary features define the basic shape of the

part (diameters, tapers, etc) and secondary features provide the detailed shape aspects

(grooves, bends, etc.). The fact that a secondary feature is defined as residing on a primary

feature, it makes sense not to machine the secondary feature until the primary feature has

been formed. Therefore, before a secondary feature, such as a groove, is cut on the taper of

the part, the taper (a primary feature) must be machined to specifications.

The non-destruction constraint is concerned with ensuring that a subsequent operation

does not destroy the properties of features machined in prior operations. This type of problem

is limited to the interactions that occur between the secondary features which reside on the

same primary feature. One example would be the need to tapering the parts prior to punching

the parts.

Another constraint considers strict precedence whereby order is determined based on

feature type and properties. One example would be an eye forming whose properties require

the use of a bushing operation. However, before bushing can be performed, there is a need to

form the eye first, and possibly reams, the internal part. The need for these preparatory

operations is actually determined during operation selection. Therefore, the results of this

constraint will not actually influence the plan until the operations are considered when

writing out the sequence. The last constraint pertains to the alternative operation defined for

the part. There are several alternative operations performed on the parts. One example would

53

be one part only needs one type of end cutting, it is either diamond cutting or width cutting;

or it is either end trimming or end grooving.

These feasibility constraints give us the capability to define a set of precedence

between the features of a part resulting in the construction of a precedence relationship matrix

(PRM) to represent these precedence relationships.

4.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is a new population-based search algorithm based

on the simulation of the social behavior of the swarms in nature such as flocking birds,

schooling fish, etc. It was introduced by Russell Eberhart and James Kennedy in 1995 [13]. It

is easily implemented in most programming languages and has proven to be both very fast

and effective when applied to a diverse set of optimization problems. PSO combines

cognition model that values self experience and social model that values experience of

neighbors.

PSO has been applied successfully to a wide variety of search and optimization

problems like travel salesman problem [14],[15], flow/job shop scheduling problem

[16],[17],[18],[19], university timetabling problem [20][21], machining parameter

optimization [22] and generator maintenance scheduling [23].

A swarm consists of N particles flying around in a D-dimensional search space. Each

particle holds a position (candidate solution to the problem) and a velocity (the flying

direction and speed of the particle). Each particle successively adjust its position toward the

global optimum according to two factors: the best position visited by itself (pbest) and the

best position visited by the whole swarm (gbest). Each particle of PSO can be considered as a

point in the solution space. If the number of particle is N, then the position of the i-th

(i=1,2…N) particle is expressed as Xi. The best position passed by the particle is pbesti. The

velocity is expressed with Vi. The best position of the swarm is gbest. Therefore, particle i

will update its own velocity and position according to equations:

1

1 1 2 2() (-) () (-)t t t t

i i i i iV w V c rand pbest X c rand gbest X
+ = × + × × + × × ………………... (1)

1 1t t t

i i iX X V
+ += + (2)

54

where, 1t

i
V + and t

iV are velocities of particle i at time t+1 and t, respectively. 1t

iX
+ and t

iX

are positions of particle i at time t+1 and t, respectively. 1c and 2c are two constant weighting

factor related to pbest and gbest, respectively. rand()1 and rand()2 are two random number

between 0 and 1. pbesti is pbest position of particle i, gbest is gbest position of swarm and w

is the inertia weight.

The basic PSO algorithms are as follow:

1. Initialize the swarm from the solution space (position and velocity of each particle)

2. Evaluate fitness of each particle.

3. Modify gbest, pbest and velocity.

4. Move each particle to a new position.

5. Go to step 2, and repeat until convergence or a stopping condition is satisfied.

4.6 Comparison to Genetic Algorithms

There are several similarities and dissimilarities between PSO and GA. They are as

follow:

• Similarity

– Both algorithms start with a group of a randomly generated population.

– Both have fitness values to evaluate the population.

– Both update the population and search for the optimum with random

techniques.

– Both do not guarantee success.

• Dissimilarity

– Unlike GA, PSO has no evolution operators such as crossover and mutation.

– In PSO, the potential solutions, called particles, fly through the problem

space by following the current optimum particles.

– Particles update themselves with the internal velocity.

– They also have memory, which is important to the algorithm.

• Advantages

– PSO is easy to implement and there are few parameters to adjust.

55

– Compared with GA, all the particles tend to converge to the best solution

quickly

4.7 Operation Sequence Coding

Application of an evolutionary search technique like genetic algorithms (GA) or

particle swarm optimization (PSO) requires a method for representing a solution. Since

operation sequencing problem is an order-based problem like travel salesman problem, we

used path representation to represent the sequence. In this problem a sequence is represented

as a list of n operations. If operation ‘i’ is the j-th element of the list, operation ‘i’ is the j-th

operation to be performed. Hence, the sequence 3-2-5-6-1-4 is simple represented by 325614.

Then, we used this sequence as the position of a particle, which is represented by Xi.

Thus, each position of a particle i, Xi is a sequence of operations to be performed, in order to

produce a part, as follows:

Then velocity of each particle i, represented by Vi is a randomly generated mutation rate

between 0 and Vmax where Vmax = 0.5 * length(Xi) and length(Xi) is the length of the position

Xi.

The sequence of operations is bounded to the precedence constraints. Table 4.3 shows

the example of precedence constraints for a number of processes. O04,…, O07 is a set of

flexible-route operations which can be performed in any order.

1 3 9 A B C D E F G H J

56

Table 4.3: Precedence constraints

Id Operation Precedes

O1 Shearing O2

O2 Center Hole Punching O3, O4 ,O5 ,O6 ,O7

O3 Berlin Eye Forming nil

O4 Short tapering O5 ,O6 ,O7

O5 End punching O4 ,O6 ,O7

O6 Bevel hole punch O4 ,O5 ,O7

O7 Diamond cut O4 ,O5 ,O6

There are several approaches have been used to represent precedence relationships

among features. They are feature precedence graph (FPG) [8], rules [3] and precedence

relationship matrix (PRM) [6]. In this research, we used another kind of precedence-relation

matrix as shown in Figure 4.1 to represents the constraints and relationships between the

operations.

Figure 4.1: Precedence-relation matrix

The value of the matrix is either

if can precede

if can not precede

if and are two alternative operations

0

1ij

i j

i j

i j

ρ




= 
−

1 2 3 4 5 6 7 8 9

1 0

2 1 0

3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 0 0 0 0 0 0 0 0 0

8

9

A B C D E F G H I J K L M N

A

B

C

D

E

F

G

H

I

J

K

L

M

N

−

−

− − − − − −

− − − − −

− − − − −

− − − − −

− − − − 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1

−

− − − − −

− −

− −

−

−

−

−

− − − − − − −

− − − − − 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1
























 − −

− − − − − − −

−

−

−

−

− − − − − −

−


























 
 
 
 
 
 
 
 
 
 
 



57

We use mutation operator to make changes to the sequence. Mutation is a unary

operator that introduces random modifications of the sequence in order to add diversity to the

solution. During the past decade, several mutation operators have been proposed for

permutation representation, such as inversion, insertion, displacement, and reciprocal

exchange mutation.

In order to preserve valid sequence, here we used reciprocal exchange method which

swaps two values in the sequence. The algorithms will randomly choose two mutation points

and swap the values in those particular points. As shown in Figure 4.2, reciprocal exchange

mutation selects two positions at random and swaps the values on these positions.

Figure 4.2: Mutation using reciprocal exchange

Then, the new positions or sequences of next generation are produced by following several

steps:

• Movement of the particles is processed by the following procedure (Adopted from [20]):

1. Each particle (Xi) must be randomly swap two operations for Vi times.

Si+1 = Vi * mutation (Xi)

2. Randomly copy a sequence of operations from the local best (Pi) to particle

(Si+1).

Wi+1 = rand * copy (Si+1, Pi)

3. Randomly copy a sequence of operations from the global best (Gi) to Wi+1.

Xi+1 = rand * copy (Wi+1, Gi)

Parent 1

Offspring

1

8 A 1 4 C 2 E J D B

8 A 1 E C 2 4 J D B

Two mutation points randomly chose

Two values swapped

58

4.8 Fitness Function

For our problem, the fitness of a sequence is obtained by computing the cost of

penalty for the constraints violation according to the sequence. Thus our objective function is

to

subject to the precedence constraints represented by precedence-relation matrix (PRM)

shown in Figure 3.1.

4.9 Results and Discussion

The goal of sequencing is to find an operation sequence which satisfies the constraints

mentioned in the previous section. The constraints have been representing in the form of

precedence-relation matrix (PRM).

In order to demonstrate the practicability and efficiency of the proposed algorithm,

different numerical simulations are tested and evaluated. The algorithm is run on a personal

computer with an Intel Pentium IV, 512MB RAM, on Microsoft Windows 2000 Professional.

The codes are written in the LISP language.

Each trial run of our program started with a randomly created generation of

individuals. The program was allowed to evolve this generation up to 50 times. In order to

show the effectiveness of the proposed algorithms, several runs have been done to be

compared with the result from standard genetic algorithms (SGA).

Run 1

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46

Generations

P
e
n

a
lt

ie
s

SGA

PSO

Figure 4.3: Modified PSO vs Standard GA (Run 1)

1

1 1

min
n n

ij

i j i

 i, j in the sequencep
−

= = +

∀∑∑

59

Figure 4.3 show the comparison results for Modified PSO vs Standard Genetic

Algorithms (SGA). The graphs show that in each trial modified PSO found the solution

earlier than SGA.

Run 2

0

500

1000

1500

2000

2500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generations

P
e
n

a
lt

ie
s

PSO

SGA

Figure 4.4: Modified PSO vs Standard GA (Run 2)

As stated earlier, PSO have a number of initial solutions which represented by a

number of particles and every particles strive to get their own optimal solution. The results

shows in Figure 4.4 prove that the cooperation among the particles assist the algorithms to

converge earlier, compared to SGA which only have one candidate solution to be

manipulated in order to get the optimal solution.

Run 3

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generations

P
e

n
a

lt
ie

s

SGA

PSO

Figure 4.5: Modified PSO vs Standard GA (Run 3)

This is of the most significant advantage for PSO compared to GA. With a number of

candidate solutions PSO can come out with a near optimal solution faster than GA. However,

the author believes that GA also can perform this advantage through parallel structure.

Hence, we conclude that the performance of PSO is comparable with parallel GA.

60

4.10 Conclusion

This chapter discusses the implementation of modified PSO to solve operation

sequencing problem. The results of this work also show that the modified PSO found the

solution faster than SGA. It is believe that the cooperation among a number of particles help

the algorithms to find the optimal solution faster than SGA.

4.11 References

[1] P. Scallan, Process Planning: The design/ manufacture interface, Butterworth-

Heinemann. Burlington MA. 2003.

[2] J.M. Usher, and R.O. Bowden, “The application of genetic algorithms to operation

sequencing for use in computer-aided process planning,” Computers & Industrial

Engineering, 30(4), 999-1013, 1999.

[3] C.-J. Lin, and H.-P. Wang, “Optimal operation planning and sequencing:

minimization of tool changeovers,” International Journal of Production Research,

31(2), 311-324, 1993.

[4] C. Koulamas, “Operation sequencing and machining economics,” International

Journal of Production Research, 31(4), 957-975, 1993.

[5] Ma, G.H., Zhang, Y.F., Nee, A.Y.C., “A simulated annealing based optimization

algorithm for process planning”, International Journal of Production Research,

38(12), 2371-2387, 2000.

[6] D.-H. Lee, D. Kiritsis and P. Xirouchakis, “Search heuristics for operation

sequencing in process planning,” International Journal of Production Research,

39(16), 3771-3788(18), 2001.

[7] P.R. McMullen, “An ant colony optimization approach to addressing a JIT

sequencing problem with multiple objectives,” Artificial Intelligence in Engineering,

15(3), 309-317, 2001.

61

[8] P.K. Jain and G. V. Kumar, “Operation Sequencing using Ant Colony Optimization

Technique,” IEEE International Conference on Systems, Man and Cybernetics, 2005.

[9] Z. Zakaria and S. Deris, “Operation Sequencing using Multi-population Directed

Genetic Algorithms.” Proc. Computer Science and Mathematics Symposium,

KUSTEM, Kuala Terengganu, 9-10, December 2006.

[10] B. Awadh, N. Sepehri and O. Hawaleshka, “A computer-aided process planning

model based on genetic algorithms,” Computers & Operations Research, 22(8), 841-

856, 1995.

[11] N.-C. Chiu, S.-C. Fang and Y.-S. Lee, “Sequencing parallel machining operations by

genetic algorithms,” Computers & Industrial Engineering, 36(2), 259-280, 1999.

[12] L. Li, J.Y.H Fuh, Y.F. Zhang and A. Y. C. Nee, “Application of genetic algorithm to

computer-aided process planning in distributed manufacturing environments,”

Robotics and Computer-Integrated Manufacturing, 21(6) 568-578, 2005.

[13] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proc. of the 1995 IEEE

International Conference on Neural Networks. 1942-1948, 1995.

[14] K.-P. Wang, L. Huang, C.-G. Zhou and W, Pang, “Particle swarm optimization for

traveling salesman problem,” International Conference on Machine Learning and

Cybernetics. 3: 1583-1585. IEEE. 2003.

[15] P. Wei, W. Kang-Ping, C.-G., Zhou, L.-J., Dong, M., Liu, H.-Y., Zhang, J.-Y., Wang,

“Modified particle swarm optimization based on space transformation for solving

traveling salesman problem,” Proceedings of the Third International Conference on

Machine Learning and Cybernetics, Shanghai. 26-29 August 2004.

[16] S. Chandrasekaran, S. G. Ponnambalam, R. K. Suresh, N. Vijayakumar, “A Hybrid

Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling

Problems,” Conference on Cybernetics and Intelligent Systems.: IEEE. 2006.

[17] Z. Lian, X. Gu and B. Jiao, "A similar particle swarm optimization algorithm for

permutation flowshop scheduling to minimize makespan." Applied Mathematics and

Computation. 175(1): 773-785. 2006.

62

[18] Z. Lian, B. Jiao and X. Gu, "A similar particle swarm optimization algorithm for job-

shop scheduling to minimize makespan." Applied Mathematics and

Computation.183(2): 1008-1017. 2006.

[19] Jerald, J., P. Asokan, G. Prabaharan and R. Saravanan, “Scheduling optimisation of

flexible manufacturing systems using particle swarm optimisation algorithm,” The

International Journal of Advanced Manufacturing Technology. 25(9):964-971. 2005.

[20] S.-C. Chu, Y.-T. Chen and J.-H. Ho, “Timetable Scheduling Using Particle Swarm

Optimization,” First International Conference on Innovative Computing, Information

and Control. ICICIC '06. 2006.

[21] D.R. Fealko, “Evaluating Particle Swarm Intelligence Techniques for Solving

University Examination Timetabling Problems,” Nova Southeastern University: PhD

Thesis. 2005.

[22] G. Liang, G. Haibing, and Z. Chi, “Particle swarm optimization based algorithm for

machining parameter optimization,” Fifth World Congress on Intelligent Control and

Automation (WCICA 2004). 4: 2867-2871. 2004.

[23] K. Chin Aik, and D. Srinivasan, “Particle swarm optimization-based approach for

generator maintenance scheduling,” Proc. of the Swarm Intelligence Symposium, SIS

'03: IEEE. 2003.

63

CHAPTER 5

GENETIC MATCH-UP ALGORITHMS FOR DYNAMIC SCHEDULING OF A

REAL MANUFACTURING PROBLEM

5.1 Abstract

We are investigate the problem of integrating new rush orders into the current

schedule of a real world flexible manufacturing system (FMS). A good rescheduling method

must keep stability of the shop by producing the fewest number of changes in the ordering of

operations while maintaining the same level of the scheduling performance criteria. The aim

of this work is to introduce match up strategy with genetic algorithms (GA) that modify only

part of the schedule in order to accommodate new arriving jobs. The performance of this

strategy will be compared with right-shifting and total-rescheduling methods.

5.2 Introduction

The traditional scheduling process always considers the static and deterministic

condition. However, in the real world disturbances often arise on the shop floor, such as the

arrival of the new job, rush orders, machine breakdowns, rework that has to be done, due date

changing etc. These require rescheduling of the initially allocated jobs. The approaches for

rescheduling can be classified into three groups [Aytug et al, 2005]: reactive approaches in

which a job to be processed next is selected among the available jobs using only local

information regarding the new job; 2) robust scheduling which creates a schedule in such a

way that it absorbs the disruptions on the shop floor; and 3) predictive-reactive scheduling in

which a schedule which optimizes the shop floor performance is generated first and then it is

modified when a disruption occurs.

64

The proposed genetic match-up algorithms belong to the group of predictive-reactive

approaches. The aim is to change only a part of the initial schedule when a disturbance

occurs, in such a way as to accommodate new disturbances and maintain both performance

and stability of the shop floor.

5.3 The Problem

Automotive spring production is one of the discrete manufacturing which produces

high variety of automotive spring products. Most of the automotive spring productions

involve the difference product models that also need different processes.

 The production of automotive spring consists of three stages: forming, heat treatment

and assembly. Under each of these stages, there are several processes, each with very distinct

characteristics. For instance, forming processes include all activities that involve material-

shaping processes of each part of a product such as cutting, drilling, punching and tapering.

Each of them carried out on separate machines or on a single machine center. Heat treatment

is a group of manufacturing techniques used to alter the hardness and toughness of a material

i.e., quenching, and tempering. Likewise, assembly could be carried out through a sequence

of operations include the part finishing processes such as bushing, painting, marking, and

reverting; and then assembling the machined parts to form the required products. One of the

examples of the automotive spring production processes are shown in Figure 5.1. The dashed

line show the machine type needed to perform the process.

65

Figure 5.1: An example of Automotive Spring Production Processes

This company receives orders from the customer in an open time horizon. This makes

the release time for each job varies based on their date of arrival at the shop floor. Therefore,

this type of scheduling is categorized as dynamic job shop problem (JSP) which is differing

from static JSP. In static or classical JSP the release time of the jobs are set to be zero and

therefore it is called as static.

5.4 Current practice in this shop floor

Currently, this shop floor practices the robust schedule approach. Each order will be

reserved with 2 days additional time or slack-time to provide each activity with extra time to

execute so that some level of uncertainty can be absorbed without rescheduling. This

approach is known as slack-based techniques in [Davenport et al, 2001]. The slack of an

operation is the time by which processing can be delayed without worsening the performance

of the schedule. When any problem occurs the right-shifting strategy will be applied.

However, there are several weaknesses with the current practice. 1) The slack-time

will definitely make the flow time of an order longer even if no problem happen. 2) The

right-shifting strategy will simply post-pone all the remaining operations in the schedule

forwards in time by the amount of the disruptions. Thus the longer the disruption, the larger

the expected shift and the greater the increase in completion time.

66

The aim of this work is to introduce match up strategy with genetic algorithms (GA)

that only change part of the initial schedule, in such a way as to accommodate new

disturbances and maintain both performance and stability of the shop floor. The performance

of this strategy will be compared with right-shifting and total-rescheduling methods in terms

of performance and stability.

5.5 Problem Description

The FMS scheduling problem addressed here can be considered as flexible job shop

problem (JSP) which is an extension of the classical JSP where operation Oij is allowed to be

processed on any of a given set of machines Mij, where Mij ⊆ Mi.

The problem can be described as follows: there are a set of n jobs J = {J1, J2, J3, ...,

Jn} where i = 1,…, n and a set of m machines M = {M1, M2, M3, ..., Mm} where k = 1, …, m in

an FMS system, each job Ji consists qi operations and has its corresponding release time Ri,

due date Di, completion time Ci and priority weight Wi. Each operation Oij (i =1, 2, 3, ..., n; j

= 1, …, q) can be performed on a number of alternative machines with possibly same or

different processing times Pjk, j = 1, 2, 3, ..., q; k = 1, 2, 3, ..., m. Each machine Mk sorted into

s machine types. A machine type is denoted by Yb, (b = 1, 2, 3 ..., s). The jobs J are

dependent due to their precedence relations. The order or the precedence of the operations for

each job is fixed and known beforehand. The problem is to determine the operation

sequences to process the parts, determine the optimal route (machine) to process the parts,

and estimate the start time of production activities, such that the optimal schedule is obtained.

The assumptions considered in the scheduling problem are as follows:

1. Processing times are deterministic as provided by the process plan.

2. Set-up times are included in the processing times.

3. An operation cannot be performed by more than one machine at the same time.

4. Each machine can perform only one operation at a time.

5. The types and number of machines are known.

6. Operations are non-preemptive.

7. The operation allocated to a machine cannot begin until a previously allocated operation

is completed

67

8. No operation is purposely delayed

9. There is sufficient input/output buffer space at each machine.

10. The issues such as machine breakdown, order cancellation and rush order arrival are

ignored.

A job can be defined as either a batch of raw materials or semi-finished parts or sub-

assembled parts or assembled product. Before starting the first operation (shearing) the raw

materials is consist of metal slabs. Thus we could not specify the number of jobs before the

first operation start because it is depends on the length of the slab. Thus we only start

specifying the number of jobs based on the output of the first operation.

The number of job derived from each product model is subject to the specification of

the product itself. If the product contains 3, 4, or 5 main components thus the jobs derived

from this product also 3, 4 and 5, respectively as shown in Figure 5.2.

Figure 5.2: Job derivation from product specification

Each activity in an operation takes a job as an input and transforms it into an output with

some value added. The objective function is based on flowtime, Fi = Ci - Ri, the

manufacturing times to complete the jobs. We only consider deterministic job (the job

currently in the shop) not the stochastic jobs (the job arriving in future). The arrival time, due

date (the promised delivery date), routing and processing times of a job are not known until

the job arrives in the shop.

68

5.6 Literature Review

Match-up algorithms have been extensively investigated in the context of single

machine and flow shop problems. The study presented in [Bean et al, 1991; Birge and

Dempster, 1995] described a theoretical approach based on turnpike theory. The basic idea

consists in restoring the initial schedule as soon as possible, since it already has an optimal

solution. However, these studies are restricted to single machine problems and single stage

with parallel machines problems. A branch and bound algorithms technique for match-up is

presented in [Akturk and Gorgulu, 1999] to solve flow shop problems in which dispatching

rules are selected for a match-up strategy.

Knowledge-based rescheduling systems have been investigated in the job shop

context [Smith et al, 1990; Sadeh, 1994; Smith, 1995; Sun and Xue, 2001]. They resemble

match up approaches in that they also consider a part of the schedule for rescheduling.

Another job shop scheduling problem with machine breakdown was investigated in

[Abumaizar and Svestka, 1997]. Recently, another match-up approach was presented in

[Moratori, et al, 2008] in which a genetic algorithms considers both stability and performance

measures to generate the optimal solution. However, the production environment is restricted

to single stage job shop problems.

Here, match up strategy will be used to modify part of the initial schedule when any

unexpected problem occurs. Meanwhile the genetic algorithms will be used to optimize the

sequence of operations for the part of the schedule which being modified.

From the literature, it was found that there are two rescheduling approach due to new

event using GA as summarized in Table 5.1 It is either to:

1. Discard old population and replace with the new one where GA will be restarted with

the new problem (reduced problem) or

2. Regenerated or modified populations for example for the case of new job arrival new

gene are inserted and cancelled job existing genes are deleted from each chromosome.

Then GA are re-run based on new or modified population

Among them, Lin et al., 1994 and Medureira et al., 2001 uses modified population,

while the rest use restart new GA with a new or reduced problems. In addition, except in

69

[Jensen, 2003] most of the GAs used in solving dynamic scheduling produce a totally new

schedule with new modified problem. Jensen (2003) introduces a robustness measure in order

to get a robust enough schedule when facing breakdowns and when right-shifting is used for

rescheduling.

70

Table 5.1: Dynamic Scheduling using Genetic Algorithms

Reference
Type of

disturbance
Test Problem Methods Objective function Representation

Selection, Crossover,

Mutation

Robustness

measure

Fang, 1994

Change of

processing

time and start

time of some

task

Standard

benchmark

JSSP

Gene-variance

based operator

targeting (GVOT)

makespan

Indirect

representation -

String j x m

Variant-based Roulette

wheel selection Gene-

variance based crossover

Gene-variance based

mutation

Not

discussed

Lin et al. 1997
New job

arrival

Standard

benchmark

JSSP

Time

decomposition –

modified

population;

genetic operator

based on G&T

algorithms

weighted flow time,

maximum tardiness,

weighted tardiness,

Weighted lateness,

weighted number of

tardy jobs, and

weighted earliness

plus weighted

tardiness.

Direct

representation -

operation starting

times, no of fields

in chromosome =

no. of operations

n/a

Time horizon

exchange (THX) –

exchange information

between two schedule

THX mutation -

Randomly

selects and reverse 2

operations in the block

Run a new

population of

GA which

give totally

new schedule

71

Bierwirth and

Mattfeld,

1999

New job

arrival
JSSP

Modified

population of GA,

Temporal

decomposition for

non deterministic

JS and solved as

dynamic JS by

PGA

Mean flow time of

jobs

produces semi

active, active and

non delay

schedules. Used

total ordering

permutation that

determines the

priority for each

operation.

Inverse proportional

fitness Precedence

Preservative Crossover

(PPX) picking (and

deleting) an operation

before reinserting at a

randomly chosen

position of the

permutation

Not

discussed

Madureira,

1999

New job

arrival and

cancelled job

Single

machine SP

A problem

decomposed into

SMSP and solved

one by one, Multi-

start

of GA (metaGA)

minimise total

weighted tardiness

Indirect

representation,

gene correspond

to job index,

position of gene

correspond

processing order

n/a

Order crossover (OX),

inversion

Not

discussed

Vanquez and

Whitley 2000

Deterministic

Dynamic

JSSP, New

job arrival

Standard

benchmark

JSSP

Hybrid Order-

based Giffler &

Thompson GA

weighted flow time,

maximum tardiness,

weighted tardiness,

weighted lateness,

weighted number of

tardy jobs, and

weighted earliness

plus weighted

tardiness.

Direct

representation

n/a

Uniform order-based

crossover

Order-based scramble

mutation

Not

discussed

72

Chryssolouris

and

Subramaniam

, 2001

Machine

breakdown

and alternate

job routings

dynamic job

shop problem,

Simulation

testbed and

compare with

common

dispatching

rules

GA

mean job tardiness

and mean job cost)

and multiple jobs

routes

a string of

resource/job-

operation

allocation in

chronological

order

Order-based crossover

operator

2 mutation : simple swap

and alternate job routing

Not

discussed

Yang and

Wu, 2003

Order

cancellation,

machine

breakdown,

new order

arrival

Simulation

and Real Job

shop FMS

Problem

Generate a

reduced JSP based

on current data

from dynamic

database with

Adaptive Genetic

Algorithms

weighted tardiness

Based on Zhou

and Wu, 2001 –

direct

representation

Roulette wheel selection

and elitism strategy, two

points linear order

crossover, insertion and

swapping mutation.

Run a new

population of

GA give

totally new

schedule

Jensen, 2003
Machine

breakdown
JSSP

GA +

neighborhood

based robustness

measure

Cmax (ordinary

schedules), RCmax and

Re (neighborhood-

based robustness),

and Zr=1 (slack-based

robustness)

permutation with

repetition -

schedule is a

sequence of job

no., describe the

operation

processing order.

Tournament selection

(Tournament size = 2)

Generalised order

crossover (GOX)

position based mutation

(PBM)

Focus on low

robustness

measure

73

Malve and

Uzsoy, 2007

New job

arrival

Integrated

circuits

Combination of

Iterative

improvement

heuristics with GA

minimise maximum

lateness Lmax

Random keys

representation

[Bean, 1994}

Random key-based

crossover and mutation

Not

discussed

74

5.7 Proposed algorithms

Basically the proposed algorithms consist of three main phases:

Phase 1: to set the rescheduling horizon (the range of rescheduling) from start to end as shown

in Figure 5.

Phase 2: to define a new scheduling problem within the calculated horizon and optimize using

genetic algorithms.

Phase 3: to verify the feasibility of the solution and repair the solution using right-shifting

strategy.

5.7.1 The steps in the first phase:

1. Identify required time for the new job from the idle time from the specified machine based on

the processing time of each operation for the new job.

5.7.2 The steps in the second phase:

1. Set the new release time and due date for each operations within the rescheduling horizon.

2. These operations define a new scheduling problem (reduced problem). Use genetic algorithms

to solve the new scheduling problem.

5.7.3 The steps in the third phase:

1. The partial schedule within the rescheduling horizon in the initial schedule is replaced by the

schedule found from the previous phase.

2. Make the feasibility checking because it may be the case that the latter operations extend out

of the rescheduling horizon, and consequently the operations may overlap. For such cases, the

operations that are not within the rescheduling horizon are right-shifted to restore feasibility.

75

The basic idea of the proposed algorithms can be described through the following

problem solving simulation. The scheduling problem faced by this automotive spring production

company involve the allocation of a number of jobs on 27 machines which are grouped into 16

machine types for forming, heat treatment and assembly stages. For example, currently the shop

floor is running a production of 100 units of a product model, which involve 14 machines at

forming stage, 5 machines for heat treatment and 8 machines for part finishing and assembling.

Thus we have n jobs or batch, n = 1, …, 10, where each batch consist of 50 units of parts.

Assume that the release time of the current jobs in the initial schedule is set to zero. Therefore,

the initial schedule generated is as follows:

Figure 5.3: Initial schedule

76

Then, at time t = 48 a new rush order arrive for 30 units of product, thus we have another 5 new

jobs (30 units per batch), n = 1, …, 15.

1 4 7 10M1

M2

M3

M4

M5

M6

Machine

M7

M8

M9

M10

M11

M12

Time (min)

M13

M14

M15

M16

M17

20 30 40 50 60 7010 80 100 110 120 130 140 15090 160 180 190 200 210 220170

2 5 8

3 6 9

1 4 7 10

2 5 8

3 6 9

1 6

9

10

2 4 7

3 5 8

2 7

3 8

2

4

7

3

9

8

1 26 7

105

4

3

9

8

Forming Stage

Heat

Treatment

Stage

Assembly

Stage

1 2

6 7 10

543

98

M18

M19

M20

M21

M22

M23

M24

M25

M26

M27

1 26 7 10543 98

1 6

1,2,3

6,7,8

1,2,3,4,5

6,7,8,9,10

1,2,3,4,5

6,7,8,9,10

 t = 48

Figure 5.4: New rush job arrival

77

The first phase:

1. To identify required time for the new job, the idle time from the specified machine is collected

based on the processing time required for each operation of the new jobs. Thus, the time of the

new job arrive in the shop floor is the start and the maximal completion time of running the new

jobs is the end of the rescheduling horizon as shown in Figure 5.5.

Figure 5.5: Rescheduling horizon is identified

78

The second phase:

1. New release time and due date for each operations within the rescheduling horizon is

calculated.

2. These operations define a new scheduling problem (reduced problem). Use genetic algorithms

to solve the new scheduling problem.

Figure 5.6: New solution from rescheduling is replaced to the initial schedule

79

The third phase:

1. The partial schedule within the rescheduling horizon in the initial schedule is replaced by the

schedule found from the previous phase.

2. The feasibility checking decides to right-shift the overlapped operations as shown with the

bold-lined boxes in Figure 5.6.

5.8 Current Achievement and Future Plan

Currently, this algorithm is designing and soon to be tested and implemented.

5.9 Conclusion

This work investigates a real world FMS scheduling problem from an automotive spring

production company in Malaysia. This scheduling problem is dynamic since new orders may

arrive every day and need to be integrated in the current schedule. A match-up approach which

accommodates new orders by manipulating available idle times on machines is proposed. The

motivation of the match-up approach is to modify only a part of initial schedule in such a way

that the stability and performance of the shop floor are kept. Then, genetic algorithms will be

used to optimize the sequence of the related operations on the specified machines. The

performance of this approach will be compared with right-shifting and total-rescheduling

methods in terms of time performance and stability.

80

5.10 References

[1] Aytug, H., Lawley, M. A., McKay, K., Mohan S., and Uzsoy, R. (2005). Executing

production schedules in the face of uncertainties: A review and some future directions.

European Journal of Operational Research, 161(1), 86-110

[2] A.J. Davenport, C. Gef_ot, and J.C. Beck, Slack-based techniques for robust schedules,

in Proceedings of the Sixth European Conference on Planning (ECP-2001), (2001).

[3] Mikkel T. Jensen: Generating robust and flexible job shop schedules using genetic

algorithms. IEEE Trans. Evolutionary Computation 7(3): 275-288 (2003)

[4] Bean, J.C., Birge, J.R., Mittenehal J. and Noon, C.E. (1991). Match-up scheduling with

multiple resources, release dates and disruption. Operations Research, 39(3), 470–483.

[5] Akturk, M.S. and Gorgulu, E. (1999). Match-up scheduling under a machine Breakdown.

European Journal of Operational Research, 112, 81–97.

[6] Abumaizar, R.J. Rescheduling job shops under random disruptions. (1997). International

Journal of Production Research, 35(7), 2065–2082.

[7] Bierwirth, C. and Mattfeld, D. C., (1999). Production Scheduling and Rescheduling with

Genetic Algorithms. Evolutionary Computation. 7(1), 1-17. MIT Press.

[8] Bean, J. C., Birge, J. R., Mittenthal, J. and Noon, C. E. (1991). Matchup schedules with

multiple resources, release dates and disruptions. Operation Research, 39, 470–483.

[9] Fang, H. L. (1994). Genetic Algorithms in Timetabling and Scheduling. PhD thesis,

Department of Artificial Intelligence, University of Edinburgh.

[10] Lin, S., Goodman, E. D. and Punch, W. F. (1997) A genetic algorithm approach to

dynamic job shop scheduling problems. In Thomas B¨ack, editor, Proceedings of the

seventh International Conference on Genetic Algorithms. 481–488. Morgan Kaufmann.

81

[11] Vazguez, M. and Whitley, D. (2000). A comparison of genetic algorithms for the static

job shop scheduling problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton,

J. J. Merelo, and H. Schwefel, editors, Parallel Problem Solving from Nature - PPSN VI

proceedings, LNCS vol. 1917, pages 303–312. Springer.

[12] Jensen, M. (2001). Robust and Flexible Scheduling with Evolutionary Computation. PhD

Thesis, Department of Computer Science, University of Aarhus.

[13] Malve, S. and Uzsoy, R. (2007). A genetic algorithm for minimizing maximum lateness

on parallel identical batch processing machines with dynamic job arrivals and

incompatible job families. Computers & Operation Research. 34(10): 3016-3028.

[14] Madureira, A., Ramos, C. and Silva, S. C. (2000), A Genetic Algorithm for The Dynamic

Single Machine Scheduling Problem, 4th IEEE/IFIP International Conference on

Information Technology for Balanced Automation Systems in Production and

Transportation, Berlin, Germany.

[15] Chryssolouris, G. and Subramaniam, V. (2001). Dynamic Scheduling of manufacturing

job shops using genetic algorithm. Journal of Intelligent Manufacturing. 12, 281-293.

[16] Yang, H. and Wu, Z. (2003). The application of Adaptive Genetic Algorithms in FMS

dynamic rescheduling. International Journal of Computer Integrated Manufacturing

16(6):382.

