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ABSTRACT 

 

 

Flexible manufacturing system (FMS) is a manufacturing system in which there is some amount 

of flexibility which allows the system to react in the case of changes, whether predicted or 

unpredicted. Two major activities in manufacturing system are process planning and production 

scheduling. The current trends in present manufacturing industries require the ability to quickly 

integrate process plans for new orders into the existing production schedule to best accommodate 

the current load of the facility, the status of machines, and the availability of raw materials. The 

goal of this project is to propose an integrated planning and scheduling system for a flexible and 

complex manufacturing environment. Firstly, in Chapter 1, we give an overview of the real 

problem occurred in the field of dynamic scheduling. A hybrid genetic algorithm (HGA) for 

solving the dynamic job shop problem is proposed to solve the dynamic scheduling. Secondly, in 

Chapter 2 we described the modeling of the real world manufacturing processes using Petri Nets. 

We present two models of manufacturing process, namely machine model and process model. 

The goals of these models are to understand the behavior of the machine and to demonstrate the 

dynamic behavior of production processes, respectively. Next, multi-population directed genetic 

algorithms (MDGA) have been used to generate a number of optimal operation sequences for a 

real world manufacturing problem which is elaborated in Chapter 3. Then, in Chapter 4, a 

modified particle swarm optimization (MPSO) has been used to generate a feasible operation 

sequence for a real world manufacturing problem. Lastly, in Chapter 5, we investigate the 

problem of integrating new rush orders into the current schedule of a real world FMS. The aim is 

to introduce match up strategy with genetic algorithms (GA) that modify only part of the 

schedule in order to accommodate new arriving jobs. 
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ABSTRAK 

 

 

Sistem Pembuatan Fleksibel (FMS) merupakan sistem pengeluaran yang mempunyai beberapa 

fleksibiliti yang mengakibatkan sistem berubah mengikut perubahan kes sama ada dalam kes 

yang boleh diramalkan atau tidak. Dua aktiviti penting dalam sistem pengeluaran adalah 

perancangan proses dan penjadualan produksi. Trend masa kini dalam industri pengeluaran 

memerlukan kebolehan mengendalikan perancangan untuk pesanan baru dengan jadual produksi 

sedia ada serta memilih keadaan yang paling tepat untuk disesuaikan dengan beban semasa bagi 

fasiliti, status mesin dan sumber bahan mentah. Tujuan utama projek ini adalah membentangkan 

cadangan bagi perancangan dan sistem penjadualan untuk persekitaran pembuatan yang 

kompleks dan fleksibel. Pertama sekali, kami telah memberi gambaran bagi keseluruhan masalah 

sebenar yang berlaku dalam bidang penjadualan dinamik. Satu Algoritma Genetik Hibrid (HGA) 

diperkenalkan untuk menyelesaikan penjadualan dinamik. Kedua, kami telah menerangkan 

model proses pembuatan sebenar menggunakan Rangkaian Petri di dalam Bab 2. Kami 

perkenalkan dua buah model proses pembuatan iaitu model mesin dan model proses. 

Matlamatnya ialah untuk memahami kelakuan mesin dan untuk menunjukkan tingkah laku 

dinamik proses pengeluaran. Seterusnya dalam Bab 3, Genetik Algoritma Pelbagai Populasi 

Terarah (MDGA) digunakan untuk menghasilkan jumlah sebenar jujukan operasi yang paling 

optimum bagi permasalahan sebenar sistem pengeluaran. Dalam Bab 4, Kumpulan Elemen 

Pengoptimuman Diubahsuai (MPSO) digunakan untuk menghasilkan satu jujukan pengendalian 

yang sesuai bagi masalah pengeluaran sebenar. Akhir sekali, dalam Bab 5, kami telah menyelidik 

masalah dalam mengintegrasi pesanan baru ke dalam jadual semasa sebenar bagi FMS. 

Matlamatnya ialah memperkenalkan strategi padan dengan Algoritma Genetik (GA) yang hanya 

mengubahsuai sebahagian daripada jadual tersebut bagi menampung pesanan baru.
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CHAPTER 1 

 

 

 

 

TOWARDS IMPLEMENTING REACTIVE SCHEDULING FOR JOB SHOP PROBLEM 

 

1.1 Abstract 

 

Most of the research literature concerning scheduling concentrates on the static problems, 

i.e problems where all input data is known and does not change over time. However, the real 

world scheduling problems are very seldom static. Events like machine breakdown or bottleneck 

in some situation impossible to predict. Dynamic scheduling is a research field, which take into 

consideration uncertainty and dynamic changes in the real world scheduling problem. This 

chapter gives an overview of the real problem occurred in the field of dynamic scheduling. Then 

we propose a hybrid genetic algorithm for solving the dynamic job shop problem. 

 

Keywords 

 Dynamic scheduling, reactive scheduling, job shop scheduling, genetic algorithms 
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1.2 Introduction 

 

Scheduling problem can be found in many different application areas, e.g. manufacturing, 

logistic, transportation, communication, sports, education, administration, etc. Main task of 

scheduling is the creation of schedules, which are temporal assignments of a set of activities to a 

set of resources subject to a set of constraints. Examples of scheduling constraints include 

deadlines (e.g., job i must be completed by time t), resource capacities (e.g., there are only two 

machine for drill), precedence constraints on the order of tasks (e.g., a leaf must be painted 

before it is assembled), and priorities on tasks (e.g., finish job j as soon as possible while meeting 

the other deadlines).  

Many scheduling problems are difficult to solve [1]. It has been shown that many 

scheduling problems are NP-hard problem [2, 3, 4, 5, 6, 7, 8] - the time required to compute an 

optimal schedule increases exponentially with the size of the problem, meaning that with 

present-day algorithms even moderately sized problems cannot be solved to guaranteed 

optimality. 

The rest of this chapter is organized as follows. In section 1.3, the current issues that 

motivate the research on this area are discussed. In Section 1.4, a detailed description of the Job 

Shop Scheduling Problem (JSSP) is given. Section 1.5 summarizes the research done concerning 

JSSP. Section 1.6 and 1.7 discussed the previous genetic algorithms research aimed at solving 

the dynamic JSSP. Section 1.8 describes the current issues and challenges in this research area. 

In section 1.9, summarized the future plans. 

 

1.3 Motivation 

 

Basically there are two kinds of scheduling problems [9]. The first problem is static 

problem which related to the combinatorial nature of the problems, where it is difficult to find an 
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optimal solution because it is impossible to consider all nodes in a large search space. This 

problem is also called generative in [10] and predictive in [11, 12]. The second problem is 

dynamic problem which related to the dynamic nature of the problems, where variables and 

constraints always change due to the development of an organization or emergence of certain 

type of events. This problem is also called revisions in [11] and reactive in [10, 12]. This 

problem is viewed as the reactive part of the system which monitors the execution of the 

schedule and copes with unexpected events (i.e., machine breakdowns, tool failures, order 

cancelation, due date changes, etc) [11]. 

The major criticism brought against the predictive mechanisms in practice is that the 

actual events on the shop floor can be considerably different compared to the one specified in the 

schedule due to the random interruptions (i.e., machine breakdowns, bottleneck, due date 

changes, order cancelations, etc.) [13, 14]. Thus an appropriate corrective action (or response) 

should be taken to improve the performance of the infeasible schedule [7, 10, 11, 12, 15, 16, 17].  

Although reactive scheduling is of great importance in any scheduling system, most scheduling 

research has mainly focused on the construction of a good generative schedule from scratch 

without providing enough attention on the reactive control phase. 

In industrial practice, the majority of scheduling systems address the reactive scheduling 

problem by making it the responsibility of the human scheduler to evaluate the implications of 

the unexpected events, and to adjust the generative schedule accordingly [10, 12]. However, the 

combinatorial complexity of the scheduling problem tends to overburden the human scheduler 

and may result in poor schedule performance. 

Because of the dynamic environment Graves [18] stated that there is no scheduling 

problem but rather a rescheduling problem. Responding to the dynamic factors immediately as 

they occur is also called real-time scheduling [13]. The initial schedule will be rescheduled to 

cope with the new conditions. This can also be called a time critical decision making process 

since the shop waits to receive the new schedule.  
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1.4 Definition of the JSSP 

 

A N × M job shop scheduling problem, hereafter referred to as the JSSP, consists of N 

jobs and M machines [8]. A job j consists of a sequence of operations Oj = (oj1, o j2,…,ojkj). Each 

operation ojl is to be processed on a specific machine and has a specific processing time τjl. Each 

job has at most one operation on each machine (capacity constraint). The processing order of the 

operations in job j must be the order specified in the sequence Oj. These sequences are often 

called the technological constraints and also referred to as the precedence constraint. During 

processing each machine can process at most one operation at a time, and no preemption can 

take place; once processing of an operation has been started it must run until it has completed. In 

the following Cj will denote the end of processing time of the last operation of job j in a given 

schedule.  

Some problems include a due date dj for each job, a time by which the processing of the 

job is supposed to be finished, a release time rj for each job, prior to which no processing of the 

job can be done, or a initial setup time sm for each machine, prior to which no processing can be 

done on the machine. 

A number of different objective functions exist for job shop problems. The most 

extensively researched is the makespan Cmax = maxj∈{1..N}(Cj), the time span needed to complete 

all operations of all jobs. However the makespan objective is not well-suited for scheduling on a 

rolling time horizon-basis (jobs arriving continuously over time), and it does not include due 

dates. More realistic objectives include total flowtime 
1

N
j j

j
F C r

=
= −∑ , summed lateness 

1

N
j j

j
L C dΣ

=
= −∑ , summed tardiness 

1
max ( ,0)

N
j j

j
T C dΣ

=
= −∑ , maximum lateness Lmax =  

maxj∈{1..N}(Cj - dj) and maximum tardiness Tmax = max (Lmax, 0). All of these performance 

measures reflect schedule implementation cost and are to be minimised, i.e., a low performance 

measure equals a good schedule. 
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Table 1.1 : A 3 × 3 problem  

job 
Operations routing (processing 

time) 

1 1 (3) 2 (3) 3 (3) 

2 1 (2) 3 (3) 2 (4) 

3 2 (3) 1 (2) 3 (1) 

 

An example of a 3 × 3 JSSP is given in Table 1.1. The data includes the routing of each 

job through each machine and the processing time for each operation (in parentheses). Figure 1.1 

shows a solution for the problem represented by "Gantt-Chart". 

 

M1               

M2               

M3               

               

 d              

               

Figure 1.1: A schedule for a 3 x 3 JSSP instance 

 

Based on the release times of jobs, JSSP can be classified as static or dynamic 

scheduling. In static JSSP, all jobs are ready to start at time zero. In dynamic JSSP, job release 

times are not fixed at a single point, that is, jobs arrive at various times. Dynamic JSSP can be 

further classified as deterministic or stochastic based on the manner of specification of the job 

release times. Deterministic JSSP assume that the job release times are known in advance. In 

stochastic JSSP, job release times are random variables and some or all parameters are uncertain 

[3, 5]. 

0         2         4          6         8        10       12 time 
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1.5 Related Works  

 

As discussed earlier, the majority of the published literature in the scheduling area deals 

with the task of schedule generation or predictive nature of the scheduling problems. The 

normally employed approaches for the solution of these problems are heuristic strategies [4]. 

Some of the most common techniques used are branch and bound [19], dispatching rules [20, 

21], tabu search [22, 23, 24, 25, 26], simulated annealing [27, 28, 29] and genetic algorithms [2, 

3, 5, 7, 8, 17, 30, 31, 32, 33]. In [34] and [35] we can found an extensive study about the main 

techniques that were applied since the year 1960s. The application of GA to scheduling problems 

has interested many researchers due to the fact that they seem to offer the ability to cope with the 

huge search spaces involved in optimizing schedules. 

However, reactive scheduling is also important for the successful implementation of 

scheduling systems. A review on research papers that are related to reactive scheduling was 

given in [11]. This chapter gives a short classification and a brief description about the existing 

studies concerning reactive scheduling. 

Another popular approach to deal with reactive scheduling is knowledge-based system or 

expert system [14, 32, 36, 37, 38, 39, 40, 41, 42].  

As stated earlier the common practice related to reactive scheduling in industrial practice 

is to assign human schedulers to repair the schedules using their knowledge and experience in 

the particular domain. This scenario shows that knowledge and experience are the most 

important elements to make the scheduling system become reactive because knowledge can 

provide information on where jobs are, where they need to go and what machine are up or down, 

etc.  

A discussion on the knowledge-based reactive scheduling systems can be found in [34] 

and [43]. Cowling and Johansson [14] proposed a framework to use real time information to 

improve scheduling decisions, which allows the tradeoff between the quality of the revised 

schedule against the production disturbance which results from changing the planned schedule. 
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Shah et al. [44] developed knowledge based dynamic scheduling for production of parts 

in a steel plant. A rule base is used to handle the shared transporter, moving components and 

treated in sequence stations.  

 

1.6 Dynamic JSSP 

  

Dynamic problems have been considered on a rolling time horizon basis, in which the 

problem is solved by making a schedule for the part of the problem that is known. Processing of 

the jobs according to this schedule is then started, and as soon as information about new jobs 

arrive a new schedule incorporating the new jobs and the work not yet processed in the previous 

schedule is created.  

Most research on scheduling has been focused mainly on optimizing one particular 

performance measure, like the use of resources, makespan or tardiness, normally reflecting some 

kind of cost. It is assumed that all problem data are known before scheduling has to take place 

and no change ever happens. However real world applications operate in dynamic environments 

frequently subject to several kinds of random occurrences and perturbations, such as new job 

arrivals, machine breakdowns, employees sickness, jobs cancellation and due date and time 

processing changes, causing that the original schedule becomes unfeasible.  

Due to their dynamic nature, real scheduling problems have an additional complexity in 

relation to static ones. In many situations these problems, even for apparently simple situations, 

are hard to solve, i.e. the time required to compute an optimal solution increases exponentially 

with the size of the problem [6]. 

For such class of problems, the goal is no longer to find a single optimum [Zhang, 99], 

but rather to continuously adapt the solution to the changing environment. When a change in the 

environment happens rescheduling is needed, and the existence of a good near-optimal schedule, 

which is easy to modify will be in some situations preferable to an optimal, which cannot be 

modified.  
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The algorithms for dynamic scheduling should be able to manage any disruption of a 

schedule caused by changes in scheduling environment. Such changes can be classified in three 

major groups [16] : 

• Activity Changes 

Request for new or extended activities can result in resource contention and inconsistency 

of a schedule. In long term scheduling introducing new activities can aim at improving 

the schedule efficiency and degree of resource utilization (e.g. leasing out some resource 

leads). In the short term scheduling activities are introduced as they arise (e.g. emergency 

service). Changes in activity duration and increased level of resource usage can occur. 

• Resource Changes 

Primary reduction of resources (e.g. machine failure) can disrupt a schedule. Resource 

changes may be also requested to reduce the cost of a schedule (e.g. machine utilization 

problems). Shorter term resource changes are usually connected with resource failure. 

• Temporal Changes 

The most frequent form of temporal change is a contraction of schedule horizon. Long 

term temporal changes (e.g. changing a schedule in public transport for regularity) and 

short time changes (e.g. downstream effect of delayed aircraft or train) may also cause 

schedule inconsistency. 

 

1.7 Genetic Algorithms (GA) 

 

GA appeared around the end of the 1960s. Since Davis proposed the first GA-based 

technique to address scheduling problems in 1985 [44], GA have been widely used in the context 

of job shop scheduling problems (JSSP) [3, 4, 5, 17]. However, most of the works deal with 

optimisation of the scheduling problem in static environments, in which all jobs are ready to start 

at time zero, with the makespan objective. In dynamic JSSP, which are more realistic, jobs can 
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arrive at some known (deterministic JSSP) or unknown (stochastic JSSP) future times. Further, 

the importance of each job can be different and the objective is more complex [3]. 

 

1.8 Issues and Challenges 

 

Although scheduling is a well researched area, and numerous articles and books have 

been published, classical scheduling theory has been little used in real production environments 

[45]. It is believed that scheduling research has much to offer industry and commerce, but that 

more work is needed to address the ‘gap’ between scheduling theory and practice [14, 46]. One 

frequent assumption of scheduling theory, which rarely holds in practice, is that the scheduling 

environment is static. In recent years many authors [7, 10, 11, 12, 13, 14, 15, 16, 17, 46] have 

recognized that this is unlikely scenario in many manufacturing environment. In reality, 

schedules must be revised frequently in response to both instantaneous events, which occur 

without warning, and anticipated events where information is given in advance by, for example, 

process control computers or customers.  

As a consequence, even though GA have previously been demonstrated to have an 

acceptable performance on job shop problems, it is still have not been adopted in standard 

manufacturing practice. For this reason, in recent years, academic research has attempted to 

consider real-life scheduling problems. Standard benchmark problems do not attract the attention 

of people in industry since practical scheduling problems are far more complex than the famous 

benchmark problems [4] that are still used in most research. 

For the comprehensive comparison and summary of results that have been published for 

the Lawrence’s [47] and Fisher and Thompson’s [6] benchmark problems see [4]. 

However, a considerable number of recently published papers address real-life 

scheduling cases. Vieira et al. [48] described the development of a global scheduling system for 

a semiconductor test area. Gilkinson et al. [49] tackled the scheduling problem of a company that 

produces laminated paper and foil products. Hamada et al. [50] approached a complex 
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scheduling problem in a steel-making company using a hybrid system based on evolutionary 

algorithms and expert systems. Shaw and Fleming [51] and Kumar and Srinivasan [52] proposed 

evolutionary computation methods for the solution of scheduling problems in companies that 

produce ready-chill meals and defense products, respectively. Sakawa et al. [53] considered the 

scheduling problem of a machining center using an evolutionary algorithm. Shah et al. [44] 

developed knowledge based dynamic scheduling for Steel Plant. Finally, Suh et al. 1998 [10] 

implemented ordering strategies for constraint satisfaction in steel industry. A scheduling expert 

system was developed to implement these strategies for the reactive adjustment of hot-rolling 

schedules in a hot strip mill.  

 

1.9 Suggestion for Further Work 

 

We propose to use GA with a match-up approach to solve dynamic problem in the job 

shop scheduling problem. GA was chosen since it is well suited to optimization problem and 

were proved successfully solve a number of problem that were difficult to solve with other 

methods [32]. We proposed to use match-up approach in order to change only a part of the initial 

schedule when a disturbance occurs, in such a way as to accommodate new disturbances and 

maintain both performance and stability of the shop floor. In order to make this JSSP realistic to 

the real world problem, we will use the real data from automotive spring production as a case 

study. 

 

1.10 Conclusion 

 

This chapter described the actual problem happened in the job shop scheduling problem. 

It also discussed the previous work related to this area. Hybrid-GA is proposed to be developed 

in order to solve the dynamic problem in the real manufacturing environment.  
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CHAPTER 2 

 

 

 

 

MODELING THE REAL WORLD MANUFACTURING PROCESSES USING PETRI NETS 

 

2.1 Abstract 

 

The real world manufacturing processes are hard to model and analyze. Petri Nets 

(PN) have been widely used at this aim and the reasons are their formal semantics, graphical 

nature, expressiveness, the availability of analysis techniques to prove logical properties 

(invariance properties, deadlock, liveliness, etc.) and the possibility to define and evaluate 

performance indices (throughput, occupation rates, etc.). The goal of this chapter is to 

describe the modeling of the real world manufacturing processes using Petri Nets. This 

chapter begins with a brief description of Petri nets and manufacturing behaviors, with a 

focus on flexible productions. We highlight the power of Petri nets in modeling the dynamic 

behavior of manufacturing system compared to several other approaches such as state 

diagrams, event trace diagrams, state transition diagrams and interaction diagrams which 

commonly used as the dynamic modeling tools in object-oriented methodology. Then we 

present two models of manufacturing process, namely machine model and process model. 

The goals of these models are to understand the behavior of the machine and to demonstrate 

the dynamic behavior of production processes, respectively. Our case study is automotive 

spring production processes. We found that these models are useful for us to get better 

understanding on the behavior of manufacturing processes in order to solve the scheduling 

problem in manufacturing environment. The simulation result shown that the complexity of 

the models are depends on the flexibility of the system – the more flexible the system, the 

more complex the model. 
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2.2 Introduction 

 

Every company strives to increase their profits. One of the key factors in ensuring the 

profits is effective utilization of manufacturing resources through application of efficient 

planning and scheduling approaches. These two main approaches are closely related to the 

manufacturing processes in a flexible manufacturing system (FMS) which are formally 

known as process planning and production scheduling.  

Process planning is refers to a process plan which is generated for each part to be 

manufactured in a manufacturing system [16]. The process plan specifies operations to be 

performed and their sequence, required resources and process parameters of each operation. 

On the other hand, production scheduling determines the most appropriate moment to execute 

each operation for the planned production, taking into account the due date, a maximum 

resource utilization, etc., in order to achieve high productivity in a manufacturing system [6].  

One of the objectives of this work is to develop the process models, to help the 

definition of production processes. These models allow focusing on the second objective, 

which is to implement an integrated process planning, to specify the operations to be 

performed in manufacturing a product; and production scheduling, to estimate a start time for 

the particular operations to be performed in the case of manufacturing an automotive spring 

product. This chapter concentrates on the modeling of production processes using Petri Nets 

(PN) in order to understand the dynamic behavior of machine and production processes. Our 

case study is automotive spring production.   

The rest of this chapter is organized as follows. In section 2.3, the manufacturing 

issues that motivate the research on this area are discussed. In Section 2.5, a detailed 

description of the scheduling problem is given. Section 2.6 summarizes the theory behind the 

Petri nets. Section 2.7 and 2.8 discussed the developed model and simulation results aimed at 

solving the scheduling problem. Section 2.9 summarized the future works and conclusion. 

 



19 

 

2.3 Manufacturing Problem  

 

In essence, a manufacturing system can be viewed as a sequence of discrete events [4] 

or a discrete event dynamic system (DEDS) [7], i.e. a system with concurrency, mutual 

exclusions, decisions and synchronizations. In a typical time history of event, we would 

observe that more than one event could be occurring at the same time. From this time history 

we can identify the following characteristics [3]:  

Concurrency or parallelism. In a manufacturing system many operations take place 

simultaneously. 

Asynchronous operations. The evolution of system events is aperiodic. This may be due to 

variable process completion times, e.g., the time to machine a part may vary from one part to 

another. In the case of the assembly of two different parts, one may be ready to be assembled 

before the other. Hence the two parts are being produced asynchronously. 

Event driven. The completion of one operation may initiate more than one new operation. 

Also, since there are other processes in the system, the order of occurrence of events is not 

necessarily unique. 

As a result of these dynamic characteristics there are two other situations that can 

occur: 

Deadlock. In this case, a state can be reached where none of the processes can continue. This 

can happen with the sharing of two resources between two processes. This situation is 

undesirable and is usually the result of the system design. An important feature of a good 

model is that it can detect deadlock, permitting time for correction and redesign prior to 

system implementation. 

Conflict. This may occur when two or more processes require a common resource at the same 

time. For example, two machines might share a common transport system. Note that one of 

the processes may proceed if the conflict can be resolved while in the deadlock case nothing 

can be done to get the system going again. One simple way to resolve the conflict is to assign 

a priority level to each of the processes.  
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There are many combinations of sequences of events that can occur in these systems. 

As a result, this can lead to a large state space. In order to solve this complexity, a modeling 

technique which able to contend with, and manage, the size of this state space is needed. 

Hence a modeling tool should model in detail the concurrency and synchronization in the 

system with respect to time. Furthermore, such a tool should help to analyze the system 

behavior to check for aspects such as deadlocks. Since it is very common in FMS to share 

certain resources (e.g. an operator is shared by more than one machine to load/unload), a 

modeling tool should represent these aspects to analyze the conflicts during the system 

execution.  

Petri nets (PN) have all these capabilities and hence are suitable as dynamic modeling 

tool irrespective of the various methods used for modeling the dynamic behavior of FMS 

such as state diagrams [12], as well as state transition diagrams and interaction diagrams [2]. 

In object-oriented design, state diagrams or state transition diagrams are used to represent 

how objects respond to the internal and external events in the system. Interaction diagrams 

are used to study the synchronization aspects and to trace the execution of events in the 

system. Also, unlike previous works which use two different kinds of diagrams for 

representing system states and tracing events [2],[12], PN can be used as a single tool to 

represent both the system states and to trace the events in the system when time durations of 

activities are associated with transitions. 

 

2.4 Problem Description  

 

Automotive spring production is one of the discrete manufacturing which produces 

high variety of automotive spring products. Most of the automotive spring productions 

involve the difference product models that also need different processes.  

The production of automotive spring consists of three stages: forming, heat treatment 

and assembly. Under each of these stages, there are several processes, each with very distinct 

characteristics. For instance, forming processes include all activities that involve material-

shaping processes such as cutting, drilling, punching and tapering. Each of them carried out 

on separate machines or on a single machine center. Heat treatment is a group of 

manufacturing techniques used to alter the hardness and toughness of a material i.e., 
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quenching, and tempering. Likewise, assembly could be carried out through a sequence of 

operations include the part finishing processes such as bushing, painting, marking, and 

reverting; and then assembling the machined parts to form the required products. In this 

section the scheduling problems for manufacturing processes is defined. 

 

2.5 The Scheduling Problem    

 

There are m dedicated machines at forming, heating and assembly stations. Thus, the 

problem is composed of m machines {M1, M2, …, Mm} and has n jobs (parts to be produced) 

{J1, J2, …, Jn}. Each job Ji requires a sequence of operations {Oi1, Oi2…Oik}. The processing 

time pik of each operation Oik is given. The objective of the scheduling is to determine the 

operation sequences, determine the optimal route (machine) to process the parts, and estimate 

the start time of production activities, so that the makespan (Cmax), i.e., the maximum 

completion time, is minimized, in the way that minimize machine idle time and balance 

machine load. 

In this chapter, the process sequence of a product refers to the order in which parts or 

subassemblies are process by the machines. Here, the process sequence of a product to be 

produced is represented by a Petri nets which referred to as process model, which being 

discussed in details in next section. 

 

 

 

 

 

 

 

Figure 2.1: An Example of Product Structure 
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Table 2.1: Precedence constraints and processing time 

Id Operation Precedes t(sec) 

O1 Shearing O2 15 

O2 
Center Hole 

Punching  

O3, O4 ,O5 

,O6 ,O7 
15 

O3 
Berlin Eye 

Forming 
nil 20 

O4 Short tapering  O5 ,O6 ,O7  10 

O5 End punching  O4 ,O6 ,O7  15 

O6 
Bevel hole 

punch 
O4 ,O5 ,O7  15 

O7 Diamond cut  O4 ,O5 ,O6  20 

 

For example, there is one model of product to be produced. This product consists of 

three main part components, namely leaf 1, leaf 2 and leaf 3, which involve distinct 

operations. In order to solve this scheduling problem, the processes related to this problem 

needs to be defined, as well as constraints. Each product consists of parts, and there are a 

number of operations to be performed on each part (see for example Figure 2.1). 

The sequence of operations is bounded to the precedence constraints. Table 2.1 shows 

the precedence constraints for the forming processes. O04,…, O07 is a set of flexible-route 

operations which can be performed in any order. These precedence constraints can be clearly 

viewed through the developed process model in the next section. 

  

2.6 Petri Nets 

 

Petri Nets (PN) have been widely used in modeling the manufacturing processes 

[4],[7] for the reasons of their formal semantics, graphical nature, expressiveness, the 

availability of analysis techniques to prove logical properties and the possibility to define and 

evaluate performance indices. The major advantage of PN is that the same model is used for 

the analysis of behavioral properties and performance evaluation, as well as for discrete-event 

simulators. As discussed earlier, PN have its’ own strength compared to some other 

approaches. 
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A Petri net is a graphical and mathematical modeling tool for describing and studying 

systems that are characterized as being concurrent, asynchronous, distributed, parallel, 

stochastic and/or nondeterministic. Petri nets can be used as a visual-communication aid 

similar to flow charts, block diagrams, and networks. In addition, tokens are used in these 

nets to simulate the dynamic and concurrent activities of systems [8].  

In PN modeling, there are two nodes [17], places and transitions, represented by 

circles and bars, respectively. The places are used to represent the status of a resource, e.g., 

its availability; a process, e.g., its undergoing; or condition, e.g., its satisfaction. The bars are 

used to model the events, e.g., start and end of an operation. A token is represented by a dot 

located in a place indicates weather a resource is available, a process is undergoing, or a 

condition is true. Multiple tokens often imply availability of multiple resources or the 

undergoing of operations of several parts. When the conditions for an event become all true, 

the corresponding transition is enabled and thus can fire. Firing enables the flow of tokens 

from places to places, implying the change of system status.   

Formally, a Petri net can be defined as follows: 

A Petri Net (PN) is a 5-tuple, PN = (P, T, I, O, M0) where [18]: 

P = {p1, p2 … pm} is a finite set of places. 

T = {t1, t2 … tn} is a finite set of transitions. 

I : (P × T) → N is an input function that defines the directed arcs from places to transitions, 

where N is a set of non-negative integers. 

O : (P × T) → N is an output function that defines the directed arcs from transitions to places  

M0 : P → N is the initial marking. 

In order to simulate the dynamic behavior of the model, a state or marking 

represented by a token is changed according to the enabling and firing or transition rules [17]: 

– Enabling Rule: A transition t is enabled if each input places have enough tokens : m(p) ≥ 

I(p,t), ∀ p ∈ P.  

– Firing Rule: Enabled m allow firing t will result m’ : m’(p) = m(p) - I(p,t) + O(p,t), ∀ p ∈ 

P.  
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Firing happens by changing distribution of tokens on places, which reflect the 

occurrence of events or execution of operations. There are two stages of firing. First, remove 

the required number of tokens from each input place I and the number of tokens equals to the 

number of directed arc connecting p to t, which reflected by - I(p,t) in the equation above. 

Second, deposit tokens into each of output place p and the number of tokens equals to the 

number of directed arc connecting t to p, which represented by + O(p,t) in the equation. 

 

2.7 Case Study 

 

In order to assist us to understand the behavior of manufacturing process, we 

developed two PN models namely machine model and process model.  

 

2.7.1 Machine Modeling 

 

The goal of machine model is to understand the behavior of the machine in the 

manufacturing environment. In FMS, normally each operation needs a machine and an 

operator to (un)load the parts and setup the machine. Buffer is used to store the partially 

completed products between two consecutive operations. Buffer is also important in order to 

absorb random event like machine breakdowns, unexpected demand etc. Buffer-in used to 

keep parts waiting for the next operation. Buffer-out used to keep finished parts from the 

current operation and waiting for the next operation. 
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Figure 2.2: Machine modeling 

 

 

 Table 2.2: Detail Descriptions of Places for Machine Model 

Place State 

p1 Raw part are ready in buffer-in  

p2 Machine available  

p3 Operator available  

p4 Part loaded ready for machining 

p5 Part machining 

p6 Finished part for unloading 

p7 Finished part are ready in buffer-out 

 

 

Figure 2.2 shows a machine model to illustrate this behavior. This model contains 

seven places denoted by p1, p2, p3, p4, p5, p6 and p7 and five transitions denoted by t1, t2, t3, t4 

and t5. Its initial marking is the vector M0 = [1,1,1,0,0,0,0] represents the number of token in 

the places. The time θ associated with timed transition t2 represents the processing time for 

the machining operation. The tokens in place p1, p2 and p3 represent the availability of raw 

material (part) waiting for operations, the machine and the operator waiting for serving the 

machine, respectively.  

In this model, place p2 contains one token, which prevents t1 being fired twice 

simultaneously. From a practical point of view, this means that the related machine cannot 

perform more than one operation at one time. This condition is also referred to as capacity 

constraints.  

θθθθ 
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Table 2.2 and Table 2.3 show the detail descriptions of the places and transitions in 

this machine model, respectively.  

Table 2.3: Detail Descriptions of Transitions for Machine Model 

Trans

ition 
Event 

Pre-

Condit

ion 

Post-Condition 

t1 Start loading 
p1, p2, 

p3 

p4 (part loading on machine, operator and machine 

are busy)  

t2 
Complete loading, start 

machining 
p4 

p3 (part on machining, machine are busy), p5 

(operator released) 

t3 
Complete machining, start 

unloading 
p3, p5 p6 (finished part unloading, operator is busy) 

t4 Complete unloading p6 
p2 , p3 (machine/operator released), p7 (finished part 

ready in buffer-out) 

t5 
Transition between finished 

and new part 
p7 p1 (new part ready for operation) 

 

The dynamic behavior of the system can be observed through this model. 

• Transition t1 represents the model of the start of loading a part by the operator. Initially 

only transition t1 is enabled since only t1's enabled condition are met. Three arcs link from 

p1, p2 and p3 to t1 meaning that three condition in p1, p2 and p3 have to be met before the 

event in t1 can happen. Firing t1, removes three tokens from p1, p2 and p3, and deposits a 

token to p4. Now, places p1, p2 and p3 hold no token and transition t1 is disabled. The 

occurrence of event t1 allows the machine (operator) to enter the status of “being loading 

with a part” (loading a part) modeled by place p2 (p3), respectively. Then, the loaded part 

at p4 is ready for machining. 

• Transition t2 model both “completion of operator’s loading” and “start of machining”. 

One arc from p4 to t2 represents that t2’s being enabled if one conditions met. Now, only 

transition t2 is enabled and firing t2, removes a token from p4 and deposits a token to p3 

and p5 , respectively.  

• Now, only transition t3 is enabled and firing t3, removes two tokens from p2 and p5 and 

deposits a token to p6. 

• Then, only transition t4 is enabled and firing t4, removes a token from p6 and deposits a 

token to p2 and p7, respectively.  
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• Finally, only transition t5 is enabled and firing t5, removes a token from p7 and deposits a 

token to p1. Now the system returns to the initial condition and ready to repeat the above 

processes.  

 The machine model helps us to understand the behavior of the machine, served by the 

operator in order to process the parts. From this model, we develop the process model for the 

overall production processes. 

 

2.7.2 Process Modeling 

 

The process of manufacturing a product can be viewed as a sequence of operations, to 

be carried on a different machine. We have been developed a process model to represent the 

sequence of operations to be performed. A process model includes a set of activities or 

processes arranged in a specific order, with the clearly identified inputs and outputs. The 

input may be either a raw material or semi-finished part. Meanwhile the output maybe either 

a semi-finished part, sub-assembled or assembled product. Each activity in a process takes an 

input and transforms it into an output with some value added.  

Figure 2.3 shows the process model for the previous example. In this model, each 

place represents the input and output buffer of the machine, each transition represents the 

operation performed by the machine, an arc represents a precedence relationship between two 

operations and a token represents the availability of a part. 

 The goal of process model is to demonstrate the dynamic behavior of production 

processes. The process model for the previous example contains sixteen places (p1, p2, …, 

p16) and thirty one transitions (t1, t2, …, t31). The initial marking M0 = 

[3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. The three tokens in p1 represent three raw materials (parts) to 

be manufactured.  

 This process model is closely related to the previous machine model. The places p in 

this process model represents the operation Oi performed on a particular machine Mi. So the 

behavior of this machine Mi can be observed from the previous machine model. 
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Figure 2.3: Process modeling 

 

The dynamic behavior of the system can be observed through this model: 

• Initially, t1, t2, t3 are enabled. Firing t1, t2, t3 (shearing), removes three tokens from p1 

and deposits a token to p2, p3, p4, respectively. Consequently, now p1 hold no token and 

p2, p3, p4 hold one token, respectively.  

• Now, M1 = [0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0], the three parts at p2, p3, p4 are on shearing. 

• Then t4, t5, t6 are enabled.  Firing t4, t5, t6 (start of punching) removes a token from p2, 

p3, p4, respectively, and deposits a token to p5, p7, p8, respectively. Now, p5, p7, p8 hold 

one token, respectively.  

• Now, M2 = [0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0], then 3 parts at p5, p7, p8 are on punching. 

 

Then this simulation will be executed accordingly until the end of the process. 

The arcs associated with p12 to p15 represent the most complex part of this model. The 

complexity is due to the flexibility of the system. Thus, this complexity reflects the fact that 

the more flexible the route the more complex the model. In essence, p12 to p15 represent a set 

of operations which can be performed in any orders. In other words, there are no precedence 

constraints between them. The detail descriptions of places and transitions for this process 

model are shown in Table 2.4 and Table 2.5, respectively.  
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Table 2.4: Detail Descriptions of Places for Process Model. 

Place State 

p1 Raw part are ready in buffer-in  

p2 Shearing Oi1 on machine M11  

p3 Shearing Oi1 on machine M12 

p4 Shearing Oi1 on machine M13 

p5 Center punching Oi2 on machine M21 

p6 Center punching Oi2 on machine M22 

p7 Center punching Oi2 on machine M23 

p8 Eye forming Oi3 on machine M31 

p9 Diamond cutting Oi6 on machine M61 

p10 Diamond cutting Oi6 on machine M62 

p11 Tapering Oi4 on machine M41 

p12 End punching Oi5 on machine M51 

p13 Bevel hole punching Oi7 on machine M71 

p14 Bevel hole punching Oi7 on machine M72 

p15 End punching Oi5 or bevel hole punching Oi7 on machine Mij 

p16 Finished part are ready in buffer-out 
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Table 2.5: Detail Descriptions of Transitions for Process Model 

Transition Event 
Pre-

Condition 

Post-

Condition 

t1, t2, t3 Start shearing p1 p2, p3, p4 

t4, t5, t6 
Finish shearing and start center 

punching  
p2, p3, p4 p5, p6, p7 

t7 
Finish center punching and start 

eye forming 
p5 p8 

t8, t12 
Finish center punching and start 

diamond cutting 
p5, p7 p9, p10 

t9, t11 
Finish diamond cutting and start 

tapering 
p9, p10 p11 

t10 
Finish center punching and start 

tapering 
p6 p11 

t13 
Finish eye forming and start 

unloading 
p8 p16 

t14 
Finish tapering and start end 
punching 

p11 p12 

t15 
Finish end punching and start 

unloading 
p12 p16 

t16, t20, t21, 

t24,  t29 

Finish end punching and start 

bevel hole punching 
p12, p15 p13, p14, p15 

t17, t22,  t23, 

t25,  t28 

Finish bevel hole punching and 

start end punching 
p13, p14, p15 p12, p15 

t18, t26 
Finish tapering and start bevel 

hole punching 
p11 p13, p14 

t19, t27 
Finish bevel hole punching and 

start unloading 
p13, p14 p16 

t30 
Finish tapering and start end 

punching or bevel hole punching  
p11 p15 

t31 
Finish end punching or bevel 
hole punching and start 

unloading 

p15 p16 
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2.8 Simulation Results 

 

To verify the proposed models we used PIPE2 (Platform Independent Petri Net Editor) 

[19] to edit, animate and analyze our models. Figure 2.4 shows some of the simulation results for 

the proposed models. The result shows the feasibility of our models. 

 

 

 
 

   

Figure 2.4: Simulation Results using PIPE2 

 

2.9 Future Work and Conclusion 

 

This chapter described the modeling of production processes in the real world 

manufacturing environment. It also discussed the previous work related to this area. Petri nets is 

used to develop the models due to the fact that the behavior of elementary nets and 

manufacturing system are similar made it possible to propose new algorithms for the planning 



32 

 

and the scheduling of manufacturing system. We used the proposed models to help the definition 

of production processes. These models allow focusing on implementing an integrated process 

planning and production scheduling in the case of manufacturing the automotive spring product. 
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CHAPTER 3 

 

 

 

 

OPERATING SEQUENCING USING MULTI-POPULATION DIRECTED GENETIC 

ALGORITHMS 

 

3.1 Abstract 

 

Planning and scheduling (PS) problems in advanced manufacturing systems, such as 

flexible manufacturing systems (FMS), are composed of a set of interrelated problems, such as 

operation sequencing, machine selection, routing, and online scheduling. Operation sequencing 

deals with the problem of determining in what order to perform a set of selected operations such 

that the resulting sequence satisfies a number of constraints established by both the parts and 

operations. The nature of operation sequence generation is to develop a feasible and optimal 

sequence of operations for a part based upon the technical requirements, including part 

specifications, manufacturing resources, and certain goals such as cost or time target. In this 

chapter, multi-population directed genetic algorithms (MDGA) have been used to generate a 

number of optimal operation sequences for a real world manufacturing problem. The multi-

population topology is used to enable a number of operation sequences for manufacturing a 

number of parts for a single of product being optimized with a single run. Meanwhile the 

directed mutation is used to accelerate the individuals move toward the optimal solutions. The 

quality of the result and its numerical performance is discussed in comparison with a standard 

genetic algorithm (SGA). After 10 runs, the result from SGA show that the possibilities for the 

solution to fall in the near optimal solution is about 30% compared with the result from MDGA 

which always force the constraints to be fully satisfied. 
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Operation sequencing, genetic algorithms, planning and scheduling. 

 

3.2 Introduction  

 

Process planning is the activity of translating a set of design requirements and 

specifications into technologically feasible instructions describing how to manufacture a part. 

Generally, a process plan contains processes, process parameters, machines, routes, set-ups and 

tools required for production of parts.  Normally process planning involve several or all of the 

following activities: (1) selection of required operations; (2) sequencing of selected operations; 

(3) selection of required tools; (4) determining setup requirements; (5) determining of operation 

parameters. Of these activities, operation sequencing is the most complex due to the need to 

consider several types of constraints and the size of the resulting solution space.  

The operation sequencing problem is the problem of simultaneous selecting and 

sequencing operations required to produce a part while satisfying the precedence relations among 

operations. There are several approaches have been used to determine an optimal sequence 

include integer programming [1], branch and bound [2], Simulated Annealing [3], heuristic [4], 

Ant Colony Optimization [5], [6] and evolutionary techniques [7], [8], [11], [10]. 

 

3.3 Approaches and Methods  

 

In this research, process planning is performed in two stages: resource-independent 

planning and resource-dependent planning. The purpose of resource-independent stage is to 

provide a means for determining the best set of plans for a part independent of the status of the 

shop floor resources. Then later when production of that part is released to the shop floor, the 

resource-independent planning phase completes the planning tasks (machine selection, route, 

parameter determination, etc.) based on knowledge of what shop-floor resources are available. 

Therefore, this chapter is concerned with defining a set of optimal operation sequences 

independent of the availability of resources. 
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3.4 Sequencing Constraints 

 

The task of operation sequencing is complicated by the large number of interactions that 

exist between the various factors which affect decision-making. According to Usher and Bowden 

[8], the factors which are resource independent shown inTable 3.1. The constraints which affect 

sequencing can be divided into those which address either the feasibility or optimality of a 

sequence. This division permits the construction of a system which applies the feasibility 

constraints to the task of generating alternative sequences, and the optimality criteria to the task 

of judging the quality of the resulting alternatives. A feasible sequence is one which does not 

violate any of the feasibility constraints listed in Table . 3.1. 

Table 3.1: Sequencing Constraints  

[Adopted from Usher and Bowden, 1996] 

Feasibility 

constraints 

Location reference 

Accessibility 

Non-destruction 

Geometric tolerance 

Strict precedence 

Optimality criteria 

Number of setups 

Continuity of motion 

Loose precedence 

 

In this research, we only consider feasibility constraints, because the optimality criteria 

will be considered in another stage. The feasibility constraints adopted here is shown in Table 

3.2. 

Table 3.2: New Sequencing Constraints 

Feasibility 

constraints 

Location reference 

Accessibility 

Non-destruction 

Strict precedence 

Alternative constraint 
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The location constraint is concerned with an examination of the defined part features to 

determine what reference face is used to locate each feature. This reference identifies the 

necessity that the locating surface be machined prior to the associated feature. In order to 

machine a feature it must be accessible. The accessibility constraint evaluates each feature's 

accessibility based on the feature type and its location relative to other features. Features are 

defined as either primary or secondary. The primary features define the basic shape of the part 

(diameters, tapers, etc) and secondary features provide the detailed shape aspects (grooves, 

bends, etc.). The fact that a secondary feature is defined as residing on a primary feature, it 

makes sense not to machine the secondary feature until the primary feature has been formed. 

Therefore, before a secondary feature, such as a groove, is cut on the taper of the part, the taper 

(a primary feature) must be machined to specifications. 

The non-destruction constraint is concerned with ensuring that a subsequent operation 

does not destroy the properties of features machined in prior operations. This type of problem is 

limited to the interactions that occur between the secondary features which reside on the same 

primary feature. One example would be the need to tapering the parts prior to punching the parts. 

Another constraint considers strict precedence whereby order is determined based on feature type 

and properties. One example would be an eye forming whose properties require the use of a 

bushing operation. However, before bushing can be performed, there is a need to form the eye 

first, and possibly reams, the internal part. The need for these preparatory operations is actually 

determined during operation selection. Therefore, the results of this constraint will not actually 

influence the plan until the operations are considered when writing out the sequence. The last 

constraint pertains to the alternative operation defined for the part. There are several alternative 

operations performed on the parts. One example would be one part only needs one type of end 

cutting, it is either diamond cutting or width cutting; or it is either end trimming or end grooving.  

These feasibility constraints give us the capability to define a set of precedence between the 

features of a part resulting in the construction of a precedence relationship matrix (PRM) to 

represent these precedence relationships.  
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3.5 Operation Sequence Coding 

 

Application of an evolutionary search technique like genetic algorithms (GA) requires a 

method for representing a solution. An obvious choice would be to represent a sequence as a 

string whose elements define a list of operations, or possibly the features processed by those 

operations. However, inherent within this representation is the need to express the constraints 

which must be fulfilled by the resulting sequence. Therefore, most representations begin from 

this point, adding attributes to the definition of each element in the string or devising a method of 

coding the representation to impose these constraints.  

Since operation sequencing problem is an order-based problem like travel salesman 

problem, we used path representation to represent the sequence. In this problem a sequence is 

represented as a list of n operations. If operation ‘i’ is the j-th element of the list, operation ‘i’ is 

the j-th operation to be performed. Hence, the sequence 3-2-5-6-1-4 is simple represented by 

325614. 

Then, we used a sequence of operations as the chromosome structure. Each chromosome 

is a sequence of operations to be performed, in order to produce a part, as follows: 

 

 

The sequence of operations is bounded to the precedence constraints. Table 3.3 shows the 

example of precedence constraints for a number of processes. O04,…, O07 is a set of flexible-

route operations which can be performed in any order.  

1 3 9 A B C D E F G H J 
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Table 3.3: Precedence constraints 

Id Operation Precedes 

O1 Shearing O2 

O2 Center Hole Punching  O3, O4 ,O5 ,O6 ,O7 

O3 Berlin Eye Forming nil 

O4 Short tapering  O5 ,O6 ,O7  

O5 End punching  O4 ,O6 ,O7  

O6 Bevel hole punch O4 ,O5 ,O7  

O7 Diamond cut  O4 ,O5 ,O6  

 

There are several approaches have been used to represent precedence relationships 

among features. They are feature precedence graph (FPG) [8], rules [3] and precedence 

relationship matrix (PRM) [6]. In this research, we used another kind of precedence-relation 

matrix as shown in Figure 3.1 to represents the constraints and relationships between the 

operations.  

 

 

 

 

 

 

 

 

Figure 3.1: Precedence-Relation Matrix 
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The value of the matrix is either 

if  can precede  

if  can not precede 

if  and  are two alternative operations

0

1ij

i j

i j

i j

ρ


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= 
−

 

 

3.6 Fitness Function  

 

For our problem, the fitness of a chromosome is obtained by computing the cost of 

penalty for the constraints violation according to the sequence of the chromosome. Thus our 

objective function is to 

 

 

  

subject to the precedence constraints represented by precedence-relation matrix (PRM) shown in 

Figure 3.1. 

 

3.7 GA Operators  

 

There are usually three operators in a typical genetic algorithm [11]. The first is the 

reproduction operator which makes one or more copies of a well performing individual 

compared to the rest of individuals in the population; otherwise, the individual is eliminated from 

the solution pool. For example, consider two individuals. The first individual is considered to 

perform better than the second one. After the reproduction operator is applied, the first individual 

is duplicated; the second individual is eliminated from the population, due to its low 

performance.  

The second operator is the mutation operator. This operator acts as a background operator 

and is used to explore some of the unvisited points in the search space by randomly flipping a bit 

in a population of strings. During the past decade, several mutation operators have been proposed 

1

1 1

min
n n

ij

i j i

 i, j in the sequencep    
−

= = +

∀∑∑



41 

 

for permutation representation, such as inversion, insertion, displacement, and reciprocal 

exchange mutation.  

The third operator is the recombination (also known as the crossover) operator. This 

operator selects two individuals within the generation and a crossover site and performs a 

swapping operation of the string bits to the right hand side of the crossover site of both 

individuals. The outcome of the crossover operation is two individuals that possess some traits 

inherited from both parents. In this research, in order to guarantees that the resulting offspring is 

a legal sequence, we used two methods of path representation for mutation and crossover. 

 

3.8 Mutation 

 

There are number of crossover operators and mutation operators that can be applied with 

path representation in order to solve this problem.  

For mutation we used reciprocal exchange method which swaps two values in the 

individual. The algorithms will randomly choose two mutation points and swap the values in 

those particular points. 

As shown in Figure 3.2, reciprocal exchange mutation selects two positions at random 

and swaps the values on these positions. 

 

 

 

 

 

 

Figure 3.2: Mutation using Reciprocal Exchange  

 

Parent 1 

Offspring 

1 

8 A 1 4 C 2 E J D B 

8 A 1 E C 2 4 J D B 

Two mutation points randomly 

chosen 

Two values swapped 
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3.9 Crossover  

 

There are three crossovers were defined for the path representation: partially-mapped 

(PMX) [12], order (OX) [13] and cycle (CX) [14] crossovers.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Order-based or cyclic crossover 

 

The crossover used in this algorithm is a version of the order crossover (OX) which also 

known in [15] as cyclic crossover. As revealed in Figure 3.4, two parents (with a random cut 

point marked by | ) would produce the offspring in the following way. First, the segments before 

cut point are copied into offspring. Next the values from the other parent are copied in the same 

order from the beginning of the string, omitting symbols already present. 

 

3.10 Multi-population Directed Genetic Algorithms  

 

In order to accelerate the performance of GA, we introduce two types of accelerators. The 

goal of the first accelerator is to terminate the evolution when the optimal solution found. In this 

6 I 1 4 C 2 E J D B 
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D C J I E 2 4 1 5 B 9 6 
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case, the optimal solution found if all the precedence constraints is satisfied. If this is the case, 

the GA stops their iteration and return current population as an optimal solution.  

 

 

 

 

 

 

Figure 3.4: Directed Mutation 

 

On the other hand, the second accelerator is used to accelerate the individuals move 

towards the optimal solutions. When the solution in the population did not show any 

improvement, GA will force for improvement using directed mutation. Using this directed 

mutation, the algorithms randomly pick one individual and force the mutation for any unsatisfied 

values. 

As shown in Figure 3.5, feasibility of each two consecutive values in the selected 

individual will be checked and which are not satisfying the precedence constraints will be 

swapped. 

In addition, we used multi-population genetic algorithms topology to enable a number of 

parts’ sequence from a single product being sequenced in a single run. The number of parts n 

extracted from product design and being used to produce the number of population. As shown in 

Figure 3.5, n number of populations have to go through the same processes namely, 

reproduction, mutation and crossover, then will produce their own optimal solution. 

 

J 1 E B D 2 4 8 A C 

J 1 E C D 2 4 8 A B 

The feasibility of each two consecutive values 

will be checked and which are not satisfied 

will be force to be satisfied 

Two unfeasible values 

swapped 
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Figure 3.5: Multi-population GA 

 

3.11 Results and Discussion 

 

The goal of sequencing is to find an operation sequence which satisfies the constraints 

mentioned in the previous section. The constraints have been representing in the form of 

precedence-relation matrix (PRM).  

In order to demonstrate the practicability and efficiency of the proposed algorithm, 

different numerical simulations are tested and evaluated. The algorithm is run on a personal 

computer with an Intel Pentium IV, 512MB RAM, on Microsoft Windows 2000 Professional. 

The codes are written in the LISP language.  

Each trial run of our program started with a randomly created generation of individuals. 

The program was allowed to evolve this generation up to 50 times.  

In order to show the effectiveness of the proposed algorithms, several runs have been 

done to be compared with the result from standard genetic algorithms (SGA). 
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Figure 3.6: Modified PSO vs Standard GA (Run 1)  

 

Figure 3.6 show the comparison results for Modified PSO vs Standard Genetic 

Algorithms (SGA).  The graphs show that in each trial modified PSO found the solution earlier 

than SGA. 

 

 

Figure 3.7: Modified PSO vs Standard GA (Run 2) 

 

As stated earlier, PSO have a number of initial solutions which represented by a number 

of particles and every particles strive to get their own optimal solution. The results shows in 

Figure 3.7 prove that the cooperation among the particles assist the algorithms to converge 

earlier, compared to SGA which only have one candidate solution to be manipulated in order to 

get the optimal solution. 
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Figure 3.8: Modified PSO vs Standard GA (Run 3)  

 

This is of the most significant advantage for PSO compared to GA. With a number of 

candidate solutions PSO can come out with a near optimal solution faster than GA. However, the 

author believes that GA also can perform this advantage through parallel structure. Hence, we 

conclude that the performance of PSO is comparable with parallel GA. 

 

3.12 Conclusion 

 

The results show that the implementation of multi-population GA enables us to optimize 

a number of parts (sequences) for a single product using a single run. This can increase the 

efficiency of the algorithms because we no need to have a multiple run of GA for a single 

product. 

On the other hand, directed GA is used to accelerate the individuals move toward the 

optimal solutions. This can help us to get the solution without a long waiting time.   
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CHAPTER 4 

 

 

 

 

OPERATING SEQUENCING USING MODIFIED PARTICLE SWARM OPTIMIZATION 

 

4.1 Abstract 

 

Planning and scheduling (PS) problems in advanced manufacturing systems, such as 

flexible manufacturing systems, are composed of a set of interrelated problems, such as 

operation sequencing, machine selection, routing, and online scheduling. Operation 

sequencing deals with the problem of determining in what order to perform a set of selected 

operations such that the resulting sequence satisfies the precedence constraints as well as 

alternative operation constraints established by both the parts and operations. In this chapter, 

modified particle swarm optimization (MPSO) has been used to generate a feasible operation 

sequence for a real world manufacturing problem. In addition, the directed mutation is used 

to accelerate the individuals move toward the optimal solutions. The quality of the result and 

its numerical performance is discussed in comparison with a standard genetic algorithm 

(SGA). After 10 runs, the result from SGA show that the possibilities for the solution to fall 

in the near optimal solution is about 30% compared with the result from MPSO which 

always force the constraints to be fully satisfied. 

 

Keywords: Operation sequencing, particle swarm optimization, process planning and 

scheduling. 
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4.2  Introduction 

   

Process planning is the activity of translating a set of design requirements and 

specifications into technologically feasible instructions describing how to manufacture a part 

[1]. Generally, a process plan contains processes, process parameters, machines, routes, set-

ups and tools required for production of parts.  Normally process planning involve several or 

all of the following activities: (1) selection of required operations; (2) sequencing of selected 

operations; (3) selection of required tools; (4) determining setup requirements; (5) 

determining of operation parameters. Of these activities, operation sequencing is the most 

complex due to the need to consider several types of constraints and the size of the resulting 

solution space. 

  The operation sequencing problem is the problem of simultaneous selecting and 

sequencing operations required to produce a part while satisfying the precedence relations 

among operations [8]. 

There are several approaches have been used to determine an optimal sequence 

include integer programming [3], branch and bound [2], simulated annealing [3], heuristic 

[4], ant colony optimization [5], [6] and evolutionary techniques [8],[9],[10] ,[11], [10]. 

 

4.3 Approaches and Methods 

 

 The overall goal of this research is the development of an integrated planning and 

scheduling framework for a real world manufacturing environment. Thus this research 

involves two main research problems namely, process planning and production scheduling. 

This chapter is more focusing on the former problem.  

In this research, process planning is performed in two stages: resource-independent 

planning and resource-dependent planning. The purpose of resource-independent stage is to 

provide a means for determining the best set of plans for a part independent of the status of 

the shop floor resources. Then later when production of that part is released to the shop floor, 

the resource-independent planning phase completes the planning tasks (machine selection, 

route, parameter determination, etc.) based on knowledge of what shop-floor resources are 

available. Therefore, this chapter is concerned with defining a feasible operation sequences 

independent of the availability of resources. 
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4.4 Sequencing Constraints 

 

The task of operation sequencing is complicated by the large number of interactions 

that exist between the various factors which affect decision-making. According to Usher and 

Bowden [8], the factors which are resource independent shown in Table 4.1 As revealed in 

Table 4.1, the constraints which affect sequencing can be divided into those which address 

either the feasibility or optimality of a sequence. This division permits the construction of a 

system which applies the feasibility constraints to the task of generating alternative 

sequences, and the optimality criteria to the task of judging the quality of the resulting 

alternatives. A feasible sequence is one which does not violate any of the feasibility 

constraints listed in Table 4.1. 

 

Table 4.1: Sequencing constraints [Adopted from Usher and Bowden, 1996] 

Feasibility 

constraints 

Location reference 

Accessibility 

Non-destruction 

Geometric tolerance 

Strict precedence 

Optimality criteria 

Number of setups 

Continuity of motion 

Loose precedence 

 

In this research, we only consider feasibility constraints, because the optimality 

criteria will be considered in another stage. The feasibility constraints adopted here are shown 

in Table 4.2. 
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Table 4.2: New sequencing constraints 

Feasibility 

constraints 

Location reference 

Accessibility 

Non-destruction 

Strict precedence 

Alternative constraint 

 

The location constraint is concerned with an examination of the defined part features 

to determine what reference face is used to locate each feature. This reference identifies the 

necessity that the locating surface be machined prior to the associated feature. In order to 

machine a feature it must be accessible. The accessibility constraint evaluates each feature's 

accessibility based on the feature type and its location relative to other features. Features are 

defined as either primary or secondary. The primary features define the basic shape of the 

part (diameters, tapers, etc) and secondary features provide the detailed shape aspects 

(grooves, bends, etc.). The fact that a secondary feature is defined as residing on a primary 

feature, it makes sense not to machine the secondary feature until the primary feature has 

been formed. Therefore, before a secondary feature, such as a groove, is cut on the taper of 

the part, the taper (a primary feature) must be machined to specifications. 

The non-destruction constraint is concerned with ensuring that a subsequent operation 

does not destroy the properties of features machined in prior operations. This type of problem 

is limited to the interactions that occur between the secondary features which reside on the 

same primary feature. One example would be the need to tapering the parts prior to punching 

the parts. 

Another constraint considers strict precedence whereby order is determined based on 

feature type and properties. One example would be an eye forming whose properties require 

the use of a bushing operation. However, before bushing can be performed, there is a need to 

form the eye first, and possibly reams, the internal part. The need for these preparatory 

operations is actually determined during operation selection. Therefore, the results of this 

constraint will not actually influence the plan until the operations are considered when 

writing out the sequence. The last constraint pertains to the alternative operation defined for 

the part. There are several alternative operations performed on the parts. One example would 
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be one part only needs one type of end cutting, it is either diamond cutting or width cutting; 

or it is either end trimming or end grooving.  

These feasibility constraints give us the capability to define a set of precedence 

between the features of a part resulting in the construction of a precedence relationship matrix 

(PRM) to represent these precedence relationships.  

 

4.5 Particle Swarm Optimization 

 

Particle swarm optimization (PSO) is a new population-based search algorithm based 

on the simulation of the social behavior of the swarms in nature such as flocking birds, 

schooling fish, etc. It was introduced by Russell Eberhart and James Kennedy in 1995 [13]. It 

is easily implemented in most programming languages and has proven to be both very fast 

and effective when applied to a diverse set of optimization problems. PSO combines 

cognition model that values self experience and social model that values experience of 

neighbors.  

PSO has been applied successfully to a wide variety of search and optimization 

problems like travel salesman problem [14],[15], flow/job shop scheduling problem 

[16],[17],[18],[19], university timetabling problem [20][21], machining parameter 

optimization [22] and generator maintenance scheduling [23]. 

A swarm consists of N particles flying around in a D-dimensional search space. Each 

particle holds a position (candidate solution to the problem) and a velocity (the flying 

direction and speed of the particle). Each particle successively adjust its position toward the 

global optimum according to two factors: the best position visited by itself (pbest) and the 

best position visited by the whole swarm (gbest). Each particle of PSO can be considered as a 

point in the solution space. If the number of particle is N, then the position of the i-th 

(i=1,2…N ) particle is expressed as Xi. The best position passed by the particle is pbesti. The 

velocity is expressed with Vi. The best position of the swarm is gbest. Therefore, particle i 

will update its own velocity and position according to equations: 

                                                                                                                                                                                                                                            

1

1 1 2 2() ( - ) () (  - )t t t t

i i i i iV w V c rand pbest X c rand gbest X
+ = × + × × + × × ………………...    (1) 

1 1t t t

i i iX X V
+ += +           (2) 
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where, 1t

i
V +  and t

iV  are velocities of particle i at time t+1 and t, respectively. 1t

iX
+ and t

iX  

are positions of particle i at time t+1 and t, respectively. 1c  and 2c are two constant weighting 

factor related to pbest and gbest, respectively. rand()1 and rand()2 are two random number 

between 0 and 1. pbesti is pbest position of particle i, gbest is gbest position of swarm and w 

is the inertia weight.  

 

The basic PSO algorithms are as follow: 

1. Initialize the swarm from the solution space (position and velocity of each particle) 

2. Evaluate fitness of each particle. 

3. Modify gbest, pbest and velocity. 

4. Move each particle to a new position. 

5. Go to step 2, and repeat until convergence or a stopping condition is satisfied. 

 

4.6 Comparison to Genetic Algorithms 

 

There are several similarities and dissimilarities between PSO and GA. They are as 

follow: 

• Similarity 

– Both algorithms start with a group of a randomly generated population. 

– Both have fitness values to evaluate the population.  

– Both update the population and search for the optimum with random 

techniques.  

– Both do not guarantee success.  

• Dissimilarity 

– Unlike GA, PSO has no evolution operators such as crossover and mutation. 

– In PSO, the potential solutions, called particles, fly through the problem 

space by following the current optimum particles. 

– Particles update themselves with the internal velocity.  

– They also have memory, which is important to the algorithm.  

• Advantages 

– PSO is easy to implement and there are few parameters to adjust.  
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– Compared with GA, all the particles tend to converge to the best solution 

quickly 

  

 

4.7 Operation Sequence Coding 

 

Application of an evolutionary search technique like genetic algorithms (GA) or 

particle swarm optimization (PSO) requires a method for representing a solution. Since 

operation sequencing problem is an order-based problem like travel salesman problem, we 

used path representation to represent the sequence. In this problem a sequence is represented 

as a list of n operations. If operation ‘i’ is the j-th element of the list, operation ‘i’ is the j-th 

operation to be performed. Hence, the sequence 3-2-5-6-1-4 is simple represented by 325614. 

Then, we used this sequence as the position of a particle, which is represented by Xi. 

Thus, each position of a particle i, Xi is a sequence of operations to be performed, in order to 

produce a part, as follows: 

 

 

Then velocity of each particle i, represented by Vi is a randomly generated mutation rate 

between 0 and Vmax where Vmax = 0.5 * length(Xi) and length(Xi) is the length of the position 

Xi.  

The sequence of operations is bounded to the precedence constraints. Table 4.3 shows 

the example of precedence constraints for a number of processes. O04,…, O07 is a set of 

flexible-route operations which can be performed in any order. 

 

1 3 9 A B C D E F G H J 
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Table 4.3: Precedence constraints 

Id Operation Precedes 

O1 Shearing O2 

O2 Center Hole Punching  O3, O4 ,O5 ,O6 ,O7 

O3 Berlin Eye Forming nil 

O4 Short tapering  O5 ,O6 ,O7  

O5 End punching  O4 ,O6 ,O7  

O6 Bevel hole punch O4 ,O5 ,O7  

O7 Diamond cut  O4 ,O5 ,O6  

 

There are several approaches have been used to represent precedence relationships 

among features. They are feature precedence graph (FPG) [8], rules [3] and precedence 

relationship matrix (PRM) [6]. In this research, we used another kind of precedence-relation 

matrix as shown in Figure 4.1 to represents the constraints and relationships between the 

operations.  

 

 

 

 

 

 

 

 

Figure 4.1: Precedence-relation matrix 
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We use mutation operator to make changes to the sequence. Mutation is a unary 

operator that introduces random modifications of the sequence in order to add diversity to the 

solution. During the past decade, several mutation operators have been proposed for 

permutation representation, such as inversion, insertion, displacement, and reciprocal 

exchange mutation. 

In order to preserve valid sequence, here we used reciprocal exchange method which 

swaps two values in the sequence. The algorithms will randomly choose two mutation points 

and swap the values in those particular points. As shown in Figure 4.2, reciprocal exchange 

mutation selects two positions at random and swaps the values on these positions. 

 

 

 

 

 

 

Figure 4.2: Mutation using reciprocal exchange  

 

Then, the new positions or sequences of next generation are produced by following several 

steps: 

• Movement of the particles is processed by the following procedure (Adopted from [20]): 

1.   Each particle (Xi) must be randomly swap two operations for Vi times. 

Si+1 = Vi * mutation (Xi)  

2.   Randomly copy a sequence of operations from the local best (Pi) to particle 

(Si+1). 

Wi+1 = rand * copy (Si+1, Pi) 

3.   Randomly copy a sequence of operations from the global best (Gi) to Wi+1. 

Xi+1 = rand * copy (Wi+1, Gi) 

Parent 1 

Offspring 

1 

8 A 1 4 C 2 E J D B 

8 A 1 E C 2 4 J D B 

Two mutation points randomly chose 

Two values swapped 
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4.8 Fitness Function  

 

For our problem, the fitness of a sequence is obtained by computing the cost of 

penalty for the constraints violation according to the sequence. Thus our objective function is 

to 

 

 

subject to the precedence constraints represented by precedence-relation matrix (PRM) 

shown in Figure 3.1. 

 

4.9 Results and Discussion  

 

The goal of sequencing is to find an operation sequence which satisfies the constraints 

mentioned in the previous section. The constraints have been representing in the form of 

precedence-relation matrix (PRM).  

In order to demonstrate the practicability and efficiency of the proposed algorithm, 

different numerical simulations are tested and evaluated. The algorithm is run on a personal 

computer with an Intel Pentium IV, 512MB RAM, on Microsoft Windows 2000 Professional. 

The codes are written in the LISP language. 

Each trial run of our program started with a randomly created generation of 

individuals. The program was allowed to evolve this generation up to 50 times. In order to 

show the effectiveness of the proposed algorithms, several runs have been done to be 

compared with the result from standard genetic algorithms (SGA).  
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Figure 4.3: Modified PSO vs Standard GA (Run 1) 
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Figure 4.3 show the comparison results for Modified PSO vs Standard Genetic 

Algorithms (SGA). The graphs show that in each trial modified PSO found the solution 

earlier than SGA. 
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Figure 4.4: Modified PSO vs Standard GA (Run 2) 

 

As stated earlier, PSO have a number of initial solutions which represented by a 

number of particles and every particles strive to get their own optimal solution. The results 

shows in Figure 4.4 prove that the cooperation among the particles assist the algorithms to 

converge earlier, compared to SGA which only have one candidate solution to be 

manipulated in order to get the optimal solution. 
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Figure 4.5: Modified PSO vs Standard GA (Run 3) 

 

This is of the most significant advantage for PSO compared to GA. With a number of 

candidate solutions PSO can come out with a near optimal solution faster than GA. However, 

the author believes that GA also can perform this advantage through parallel structure. 

Hence, we conclude that the performance of PSO is comparable with parallel GA.  
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4.10  Conclusion 

 

This chapter discusses the implementation of modified PSO to solve operation 

sequencing problem. The results of this work also show that the modified PSO found the 

solution faster than SGA.  It is believe that the cooperation among a number of particles help 

the algorithms to find the optimal solution faster than SGA. 
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CHAPTER 5 

 

 

 

 

GENETIC MATCH-UP ALGORITHMS FOR DYNAMIC SCHEDULING OF A 

REAL MANUFACTURING PROBLEM 

 

5.1 Abstract 

 

We are investigate the problem of integrating new rush orders into the current 

schedule of a real world flexible manufacturing system (FMS). A good rescheduling method 

must keep stability of the shop by producing the fewest number of changes in the ordering of 

operations while maintaining the same level of the scheduling performance criteria. The aim 

of this work is to introduce match up strategy with genetic algorithms (GA) that modify only 

part of the schedule in order to accommodate new arriving jobs. The performance of this 

strategy will be compared with right-shifting and total-rescheduling methods. 

 

5.2 Introduction 

 

The traditional scheduling process always considers the static and deterministic 

condition. However, in the real world disturbances often arise on the shop floor, such as the 

arrival of the new job, rush orders, machine breakdowns, rework that has to be done, due date 

changing etc. These require rescheduling of the initially allocated jobs. The approaches for 

rescheduling can be classified into three groups [Aytug et al, 2005]: reactive approaches in 

which a job to be processed next is selected among the available jobs using only local 

information regarding the new job; 2) robust scheduling which creates a schedule in such a 

way that it absorbs the disruptions on the shop floor; and 3) predictive-reactive scheduling in 

which a schedule which optimizes the shop floor performance is generated first and then it is 

modified when a disruption occurs. 
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The proposed genetic match-up algorithms belong to the group of predictive-reactive 

approaches. The aim is to change only a part of the initial schedule when a disturbance 

occurs, in such a way as to accommodate new disturbances and maintain both performance 

and stability of the shop floor.    

 

5.3 The Problem  

 

Automotive spring production is one of the discrete manufacturing which produces 

high variety of automotive spring products. Most of the automotive spring productions 

involve the difference product models that also need different processes. 

  The production of automotive spring consists of three stages: forming, heat treatment 

and assembly. Under each of these stages, there are several processes, each with very distinct 

characteristics. For instance, forming processes include all activities that involve material-

shaping processes of each part of a product such as cutting, drilling, punching and tapering. 

Each of them carried out on separate machines or on a single machine center. Heat treatment 

is a group of manufacturing techniques used to alter the hardness and toughness of a material 

i.e., quenching, and tempering. Likewise, assembly could be carried out through a sequence 

of operations include the part finishing processes such as bushing, painting, marking, and 

reverting; and then assembling the machined parts to form the required products. One of the 

examples of the automotive spring production processes are shown in Figure 5.1. The dashed 

line show the machine type needed to perform the process. 
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Figure 5.1: An example of Automotive Spring Production Processes 

 

This company receives orders from the customer in an open time horizon. This makes 

the release time for each job varies based on their date of arrival at the shop floor. Therefore, 

this type of scheduling is categorized as dynamic job shop problem (JSP) which is differing 

from static JSP. In static or classical JSP the release time of the jobs are set to be zero and 

therefore it is called as static.  

 

5.4 Current practice in this shop floor 

 

Currently, this shop floor practices the robust schedule approach. Each order will be 

reserved with 2 days additional time or slack-time to provide each activity with extra time to 

execute so that some level of uncertainty can be absorbed without rescheduling. This 

approach is known as slack-based techniques in [Davenport et al, 2001]. The slack of an 

operation is the time by which processing can be delayed without worsening the performance 

of the schedule. When any problem occurs the right-shifting strategy will be applied.  

However, there are several weaknesses with the current practice. 1) The slack-time 

will definitely make the flow time of an order longer even if no problem happen. 2) The 

right-shifting strategy will simply post-pone all the remaining operations in the schedule 

forwards in time by the amount of the disruptions. Thus the longer the disruption, the larger 

the expected shift and the greater the increase in completion time. 
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The aim of this work is to introduce match up strategy with genetic algorithms (GA) 

that only change part of the initial schedule, in such a way as to accommodate new 

disturbances and maintain both performance and stability of the shop floor. The performance 

of this strategy will be compared with right-shifting and total-rescheduling methods in terms 

of performance and stability. 

 

5.5 Problem Description 

 

The FMS scheduling problem addressed here can be considered as flexible job shop 

problem (JSP) which is an extension of the classical JSP where operation Oij is allowed to be 

processed on any of a given set of machines Mij, where Mij ⊆ Mi.  

The problem can be described as follows: there are a set of n jobs J = {J1, J2, J3, ..., 

Jn} where i = 1,…, n and a set of m machines M = {M1, M2, M3, ..., Mm} where k = 1, …, m in 

an FMS system, each job Ji consists qi operations and has its corresponding release time Ri, 

due date Di, completion time Ci and priority weight Wi. Each operation Oij (i =1, 2, 3, ..., n; j 

= 1, …, q) can be performed on a number of alternative machines with possibly same or 

different processing times Pjk, j = 1, 2, 3, ..., q; k = 1, 2, 3, ..., m. Each machine Mk sorted into 

s machine types. A machine type is denoted by Yb, (b = 1, 2, 3 ..., s). The jobs J are 

dependent due to their precedence relations. The order or the precedence of the operations for 

each job is fixed and known beforehand. The problem is to determine the operation 

sequences to process the parts, determine the optimal route (machine) to process the parts, 

and estimate the start time of production activities, such that the optimal schedule is obtained. 

The assumptions considered in the scheduling problem are as follows: 

1. Processing times are deterministic as provided by the process plan. 

2. Set-up times are included in the processing times. 

3. An operation cannot be performed by more than one machine at the same time. 

4. Each machine can perform only one operation at a time. 

5. The types and number of machines are known.  

6. Operations are non-preemptive.  

7. The operation allocated to a machine cannot begin until a previously allocated operation 

is completed  
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8. No operation is purposely delayed 

9. There is sufficient input/output buffer space at each machine. 

10. The issues such as machine breakdown, order cancellation and rush order arrival are 

ignored. 

 

A job can be defined as either a batch of raw materials or semi-finished parts or sub-

assembled parts or assembled product. Before starting the first operation (shearing) the raw 

materials is consist of metal slabs. Thus we could not specify the number of jobs before the 

first operation start because it is depends on the length of the slab. Thus we only start 

specifying the number of jobs based on the output of the first operation.  

The number of job derived from each product model is subject to the specification of 

the product itself. If the product contains 3, 4, or 5 main components thus the jobs derived 

from this product also 3, 4 and 5, respectively as shown in Figure 5.2. 

 

 

Figure 5.2: Job derivation from product specification 

 

Each activity in an operation takes a job as an input and transforms it into an output with 

some value added. The objective function is based on flowtime, Fi = Ci - Ri, the 

manufacturing times to complete the jobs. We only consider deterministic job (the job 

currently in the shop) not the stochastic jobs (the job arriving in future). The arrival time, due 

date (the promised delivery date), routing and processing times of a job are not known until 

the job arrives in the shop. 
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5.6 Literature Review 

 

Match-up algorithms have been extensively investigated in the context of single 

machine and flow shop problems. The study presented in [Bean et al, 1991; Birge and 

Dempster, 1995] described a theoretical approach based on turnpike theory. The basic idea 

consists in restoring the initial schedule as soon as possible, since it already has an optimal 

solution. However, these studies are restricted to single machine problems and single stage 

with parallel machines problems. A branch and bound algorithms technique for match-up is 

presented in [Akturk and Gorgulu, 1999] to solve flow shop problems in which dispatching 

rules are selected for a match-up strategy.  

Knowledge-based rescheduling systems have been investigated in the job shop 

context [Smith et al, 1990; Sadeh, 1994; Smith, 1995; Sun and Xue, 2001]. They resemble 

match up approaches in that they also consider a part of the schedule for rescheduling. 

Another job shop scheduling problem with machine breakdown was investigated in 

[Abumaizar and Svestka, 1997]. Recently, another match-up approach was presented in 

[Moratori, et al, 2008] in which a genetic algorithms considers both stability and performance 

measures to generate the optimal solution. However, the production environment is restricted 

to single stage job shop problems.  

Here, match up strategy will be used to modify part of the initial schedule when any 

unexpected problem occurs. Meanwhile the genetic algorithms will be used to optimize the 

sequence of operations for the part of the schedule which being modified.  

From the literature, it was found that there are two rescheduling approach due to new 

event using GA as summarized in Table 5.1 It is either to:  

1. Discard old population and replace with the new one where GA will be restarted with 

the new problem (reduced problem) or  

2. Regenerated or modified populations for example for the case of new job arrival new 

gene are inserted and cancelled job existing genes are deleted from each chromosome. 

Then GA are re-run based on new or modified population  

 

Among them, Lin et al., 1994 and Medureira et al., 2001 uses modified population, 

while the rest use restart new GA with a new or reduced problems. In addition, except in 
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[Jensen, 2003] most of the GAs used in solving dynamic scheduling produce a totally new 

schedule with new modified problem. Jensen (2003) introduces a robustness measure in order 

to get a robust enough schedule when facing breakdowns and when right-shifting is used for 

rescheduling. 
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Table 5.1: Dynamic Scheduling using Genetic Algorithms  

Reference 
Type of 

disturbance 
Test Problem  Methods Objective function Representation 

Selection, Crossover, 

Mutation 

Robustness 

measure 

Fang, 1994 

Change of 

processing 

time and start 

time of some 

task  

Standard 

benchmark  

JSSP 

Gene-variance 

based operator 

targeting (GVOT) 

makespan 

Indirect 

representation - 

String j x m 

Variant-based Roulette 

wheel selection Gene-

variance based crossover 

Gene-variance based 

mutation 

Not 

discussed 

Lin et al. 1997 
New job 

arrival 

Standard 

benchmark  

JSSP 

Time 

decomposition –

modified 

population; 

genetic operator 

based on G&T 

algorithms  

weighted flow time, 

maximum tardiness, 

weighted tardiness, 

Weighted lateness, 

weighted number of 

tardy jobs, and 

weighted earliness 

plus weighted 

tardiness. 

Direct 

representation - 

operation starting 

times, no of fields 

in chromosome = 

no. of operations 

 

n/a  

Time horizon 

exchange (THX) – 

exchange information 

between two schedule  

THX mutation -  

Randomly 

selects and reverse 2 

operations in the block 

 

Run a new 

population of 

GA which 

give totally 

new schedule 

 



71 

 

Bierwirth and 

Mattfeld, 

1999 

New job 

arrival  
JSSP 

Modified 

population of GA, 

Temporal 

decomposition for 

non deterministic 

JS and solved as 

dynamic JS by 

PGA 

Mean flow time of 

jobs 

produces semi 

active, active and 

non delay 

schedules. Used 

total ordering 

permutation that 

determines the 

priority for each 

operation. 

Inverse proportional 

fitness Precedence 

Preservative Crossover 

(PPX) picking (and 

deleting) an operation 

before reinserting at a 

randomly chosen 

position of the 

permutation 

Not 

discussed 

Madureira, 

1999 

New job 

arrival and 

cancelled job 

Single 

machine SP 

A problem 

decomposed into 

SMSP and solved 

one by one, Multi-

start 

of GA (metaGA) 

minimise total 

weighted tardiness 

Indirect 

representation, 

gene correspond 

to job index, 

position of gene 

correspond 

processing order 

n/a  

Order crossover (OX), 

inversion 

Not 

discussed 

Vanquez and 

Whitley 2000 

Deterministic 

Dynamic 

JSSP, New 

job arrival  

Standard 

benchmark  

JSSP 

Hybrid Order-

based Giffler & 

Thompson GA  

weighted flow time, 

maximum tardiness, 

weighted tardiness, 

weighted lateness, 

weighted number of 

tardy jobs, and 

weighted earliness 

plus weighted 

tardiness. 

Direct 

representation 

n/a  

Uniform order-based 

crossover  

Order-based scramble 

mutation 

Not 

discussed 



72 

 

Chryssolouris 

and 

Subramaniam

, 2001 

 

 

Machine 

breakdown 

and alternate 

job routings 

 

 

dynamic job 

shop problem, 

Simulation 

testbed and 

compare with 

common 

dispatching 

rules  

GA 

mean job tardiness 

and mean job cost) 

and multiple jobs 

routes 

a string of 

resource/job-

operation 

allocation in 

chronological 

order 

 

  

Order-based crossover 

operator 

2 mutation : simple swap 

and alternate job routing 

Not 

discussed 

Yang and 

Wu, 2003 

Order 

cancellation, 

machine 

breakdown, 

new order 

arrival 

Simulation 

and Real Job 

shop FMS 

Problem  

Generate a 

reduced JSP based 

on current data 

from dynamic 

database with 

Adaptive Genetic 

Algorithms 

weighted tardiness 

Based on Zhou 

and Wu, 2001 – 

direct 

representation  

Roulette wheel selection 

and elitism strategy, two 

points linear order 

crossover, insertion and 

swapping mutation.  

Run a new 

population of 

GA give 

totally new 

schedule 

 

Jensen, 2003 
Machine 

breakdown   
JSSP 

GA + 

neighborhood 

based robustness 

measure 

Cmax (ordinary 

schedules), RCmax and 

Re (neighborhood-

based robustness), 

and Zr=1 (slack-based 

robustness) 

permutation with 

repetition - 

schedule is a 

sequence of job 

no., describe the 

operation 

processing order.  

Tournament selection 

(Tournament size = 2) 

Generalised order 

crossover (GOX) 

position based mutation 

(PBM) 

Focus on low 

robustness 

measure 
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Malve and 

Uzsoy, 2007 

New job 

arrival 

Integrated 

circuits  

Combination of 

Iterative 

improvement 

heuristics with GA  

minimise maximum 

lateness Lmax 

Random keys 

representation 

[Bean, 1994} 

Random key-based  

crossover and mutation  

Not 

discussed 
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5.7 Proposed algorithms  

 

Basically the proposed algorithms consist of three main phases:  

Phase 1: to set the rescheduling horizon (the range of rescheduling) from start to end as shown 

in Figure 5.  

Phase 2: to define a new scheduling problem within the calculated horizon and optimize using 

genetic algorithms. 

Phase 3: to verify the feasibility of the solution and repair the solution using right-shifting 

strategy.  

 

5.7.1 The steps in the first phase:  

1. Identify required time for the new job from the idle time from the specified machine based on 

the processing time of each operation for the new job.  

 

5.7.2 The steps in the second phase:  

1. Set the new release time and due date for each operations within the rescheduling horizon.  

2. These operations define a new scheduling problem (reduced problem). Use genetic algorithms 

to solve the new scheduling problem.  

 

5.7.3 The steps in the third phase:  

1. The partial schedule within the rescheduling horizon in the initial schedule is replaced by the 

schedule found from the previous phase.  

2. Make the feasibility checking because it may be the case that the latter operations extend out 

of the rescheduling horizon, and consequently the operations may overlap. For such cases, the 

operations that are not within the rescheduling horizon are right-shifted to restore feasibility.  
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The basic idea of the proposed algorithms can be described through the following 

problem solving simulation. The scheduling problem faced by this automotive spring production 

company involve the allocation of a number of jobs on 27 machines which are grouped into 16 

machine types for forming, heat treatment and assembly stages. For example, currently the shop 

floor is running a production of 100 units of a product model, which involve 14 machines at 

forming stage, 5 machines for heat treatment and 8 machines for part finishing and assembling. 

Thus we have n jobs or batch, n = 1, …, 10, where each batch consist of 50 units of parts. 

Assume that the release time of the current jobs in the initial schedule is set to zero. Therefore, 

the initial schedule generated is as follows: 

 

Figure 5.3: Initial schedule 
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Then, at time t = 48 a new rush order arrive for 30 units of product, thus we have another 5 new 

jobs (30 units per batch), n = 1, …, 15.  
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           t = 48 

Figure 5.4: New rush job arrival 
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The first phase:  

1. To identify required time for the new job, the idle time from the specified machine is collected 

based on the processing time required for each operation of the new jobs. Thus, the time of the 

new job arrive in the shop floor is the start and the maximal completion time of running the new 

jobs is the end of the rescheduling horizon as shown in Figure 5.5.  

 

Figure 5.5: Rescheduling horizon is identified 
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The second phase:  

1. New release time and due date for each operations within the rescheduling horizon is 

calculated.  

2. These operations define a new scheduling problem (reduced problem). Use genetic algorithms 

to solve the new scheduling problem.  

 

Figure 5.6: New solution from rescheduling is replaced to the initial schedule 
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The third phase:  

1. The partial schedule within the rescheduling horizon in the initial schedule is replaced by the 

schedule found from the previous phase.  

2. The feasibility checking decides to right-shift the overlapped operations as shown with the 

bold-lined boxes in Figure 5.6.  

 

5.8 Current Achievement and Future Plan  

 

Currently, this algorithm is designing and soon to be tested and implemented.  

 

5.9  Conclusion  

 

This work investigates a real world FMS scheduling problem from an automotive spring 

production company in Malaysia. This scheduling problem is dynamic since new orders may 

arrive every day and need to be integrated in the current schedule. A match-up approach which 

accommodates new orders by manipulating available idle times on machines is proposed. The 

motivation of the match-up approach is to modify only a part of initial schedule in such a way 

that the stability and performance of the shop floor are kept. Then, genetic algorithms will be 

used to optimize the sequence of the related operations on the specified machines. The 

performance of this approach will be compared with right-shifting and total-rescheduling 

methods in terms of time performance and stability. 
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