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PERMODELAN HUJAN PEROLAKAN UNTUK MERAMALKAN BANJIR KILAT

(Kata kunci: hujan perolakan, banjir kilat, Neyman-Scott, MCME, MARIMA)

Hujan perolakan lebat biasanya adalah penyebab bagi peristiwa hidrometeorologi
ekstrim. Ini termasuk kebanyakkan peristiwa banjir kilat yang merupakan salah satu fenomena
paling merosakkan berhubung iklim terutama di kawasan bandar di Malaysia. Untuk kajian ini
data hujan diperoleh daripada radar dan juga tolok hujan bagi kawasan Lembah Klang. Hujan
perolakan diklasifikasikan kepada perolakan kecil, sederhana dan kuat berdasarkan nilai b
Lengkung “Areal Reduction Factor' (ARF) yang diperoleh dari kajian ini adalah setara dengan
nilai ARF yang diperoleh dari pengkaji terdahulu. Lengkung ‘Intensity Duration Frequency’
(IDF) yang diplot berdasarkan hujan perolakan sahaja mempunyai keamatan yang lebih tinggi
Jika dibandingkan dengan lengkung IDF yang sedia ada dan mungkin lebih sesuai bagi
menentukan design storms bagi kawasan bandar yang mengalami banyak hujan perolakan. Siri
data sintetik pula dijana bagi mengatasi masalah kekurangan data bertempoh pendek. Dua model
stokastik yang terkemuka iaitu model berasaskan proses Neyman-Scott Rectangular Pulses
(NSRP) dan Markov Chain Mixed Exponential (MCME) digunakan. Hasil penilaianan model
menggunakan data hujan setiap jam selama 10 tahun bagi stesen 3217001 di Wilayah
Persekutuan menunjukkan model NSRP berupaya mengekal beberapa ciri statistik dan fizikal
pada tempoh masa yang berbeza (1, 6, dan 24-jam). Penilaian kualitatif dan berangka di antara
model NSRP dan MCME menunjukkan kedua-dua model adalah setanding dalam keupayaan
mengekal ciri skala sejam, walaupun keupayaan diskriptif mengatasi keupayaan menelah..
Bagaimana pun kedua-dua model berupaya mengekal trend bermusim seperti ciri data tercerap.
Untuk penelahan siri data sejam model Multivariat Autoregresi Terkamir Purata Bergerak
(MARIMA) digunakan. Perbandingan dengan model Autoregresif Purata Bergerak (ARMA)
menunujukkan hasil yang setara dan ini memungkinkan MARIMA berpotensi sebagai model
penelahan.
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MODELING OF CONVECTIVE RAIN FOR PREDICTING FLASH FLOOD

(Keyword. convective rain, flash flood, Neyman-Scott, MCME, MARIMA)

Intense convective rain cells are often responsible for extreme hydrometeorological
events including the majority of flash flood episodes, which is one of the most common and
destructive weather-related phenomena especially in urban areas of Malaysia. Both ground and
radar data from the Klang Valley were the inputs of this study on the spatial and temporal
characteristics of convective rains. A classification based on the J value was used to differentiate
the slightly, moderately and strongly convective rains. The areal reduction factor (ARF)
obtained from this study is comparable with ARF values obtained earlier by other researchers.
An intensity duration frequency (IDF) curve plotted based only on convective storms generally
result in higher storm intensity compared to the existing IDF curve and is potentially more
appropriate for determining design storms for urban areas with high occurrence of convective
events. Synthetic rainfall data series was generated to overcome lack of short duration data
series. Two predominant stochastic rainfall model namely a point-process model based on the
Neyman-Scott Rectangular Pulses (NSRP) stochastic process and the Markov Chain Mixed
Exponential (MCME) was employed. Results of the model evaluation using a 10-year hourly
rainfall record at station 3217001 in the Wilayah Persekutuan indicated that NSRP models
describe adequately various statistical and physical properties at different timescales (1, 6, and
24-hour). Qualitative and numerical evaluation between the NSRP and MCME models indicated
both models have comparable abilities in preserving the properties at the hourly scales, even
though the models” descriptive ability fared better than their predictive ability. However, they
were able to preserve the seasonal trend of the observed properties. For forecasting hourly
rainfall series, the Multivariate Autoregressive Integrated Moving Average (MARIMA) model
was employed. A comparison with an autoregressive moving average model (ARMA) showed
comparable results which highlights the potential of the MARIMA model as a forecasting
method.
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ABSTRACT

Intense convective rain cells are often responsible for extreme
hydrometeorological events including the majority of flash flood episodes, which is one
of the most common and destructive weather-related phenomena especially in urban
areas of Malaysia. Both ground and radar data from the Klang Valley were the inputs of
this study on the spatial and temporal characteristics of convective rains. A classification
based on the /S value was used to differentiate the slightly, moderately and strongly
convective rains. The areal reduction factor (ARF) obtained from this study is
comparable with ARF values obtained earlier by other researchers. An intensity duration
frequency (IDF) curve plotted based only on convective storms generally result in higher
storm intensity compared to the existing IDF curve and is potentially more appropriate
for determining design storms for urban areas with high occurrence of convective events.
Synthetic rainfall data series was generated to overcome lack of short duration data
series. Two predominant stochastic rainfall model namely a point-process model based
on the Neyman-Scott Rectangular Pulses (NSRP) stochastic process and the Markov
Chain Mixed Exponential (MCME) was employed. Results of the model evaluation
using a 10-year hourly rainfall record at station 3217001 in the Wilayah Persekutuan
indicated that NSRP models describe adequately various statistical and physical
properties at different timescales (1, 6, and 24-hour). Qualitative and numerical
evaluation between the NSRP and MCME models indicated both models have
comparable abilities in preserving the properties at the hourly scales, even though the
models’ descriptive ability fared better than their predictive ability. However, they were
able to preserve the seasonal trend of the observed properties. For forecasting hourly
rainfall series, the Multivariate Autoregressive Integrated Moving Average (MARIMA)
model was employed. A comparison with an autoregressive moving average model
(ARMA) showed comparable results which highlights the potential of the MARIMA

model as a forecasting method.
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ABSTRAK
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ekstrim. Ini termasuk kebanyakkan peristiwa banjir kilat yang merupakan salah satu
fenomena paling merosakkan berhubung iklim terutama di kawasan bandar di Malaysia.
Untuk kajian ini data hujan diperoleh daripada radar dan juga tolok hujan bagi kawasan
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dari kajian ini adalah setara dengan nilai ARF yang diperoleh dari pengkaji terdahulu.
Lengkung ‘Intensity Duration Frequency’ (IDF) yang diplot berdasarkan hujan
perolakan sahaja mempunyai keamatan yang lebih tinggi jika dibandingkan dengan
lengkung IDF yang sedia ada dan mungkin lebih sesuai bagi menentukan design storms
bagi kawasan bandar yang mengalami banyak hujan perolakan. Siri data sintetik pula
dijana bagi mengatasi masalah kekurangan data bertempoh pendek. Dua model
stokastik yang terkemuka iaitu model berasaskan proses Neyman-Scott Rectangular
Pulses (NSRP) dan Markov Chain Mixed Exponential (MCME) digunakan. Hasil
penilaianan model menggunakan data hujan setiap jam selama 10 tahun bagi stesen
3217001 di Wilayah Persekutuan menunjukkan model NSRP berupaya mengekal
beberapa ciri statistik dan fizikal pada tempoh masa yang berbeza (1, 6, dan 24-jam).
Penilaian kualitatif dan berangka di antara model NSRP dan MCME menunjukkan
kedua-dua model adalah setanding dalam keupayaan mengekal ciri skala sejam,
walaupun keupayaan diskriptif mengatasi keupayaan menelah.. Bagaimana pun kedua-
dua model berupaya mengekal trend bermusim seperti ciri data tercerap. Untuk
penelahan siri data sejam model Multivariat Autoregresi Terkamir Purata Bergerak
(MARIMA) digunakan. Perbandingan dengan model Autoregresif Purata Bergerak
(ARMA) menunujukkan hasil yang setara dan ini memungkinkan MARIMA berpotensi

sebagai model penelahan.
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ABSTRACT

Intense convective rain cells are often responsible for extreme
hydrometeorological events including the majority of flash flood episodes, which is one
of the most common and destructive weather-related phenomena especially in urban
areas of Malaysia. Both ground and radar data from the Klang Valley were the inputs of
this study on the spatial and temporal characteristics of convective rains. A classification
based on the f value was used to differentiate the slightly, moderately and strongly
convective rains. The areal reduction factor (ARF) obtained from this study is
comparable with ARF values obtained earlier by other researchers. An intensity duration
frequency (IDF) curve plotted based only on convective storms generally result in higher
storm intensity compared to the existing IDF curve and is potentially more appropriate
for determining design storms for urban areas with high occurrence of convective events.
Synthetic rainfall data series was generated to overcome lack of short duration data
series. Two predominant stochastic rainfall model namely a point-process model based
on the Neyman-Scott Rectangular Pulses (NSRP) stochastic process and the Markov
Chain Mixed Exponential (MCME) was employed. Results of the model evaluation
using a 10-year hourly rainfall record at station 3217001 in the Wilayah Persekutuan
indicated that NSRP models describe adequately various statistical and physical
properties at different timescales (1, 6, and 24-hour). Qualitative and numerical
evaluation between the NSRP and MCME models indicated both models have
comparable abilities in preserving the properties at the hourly scales, even though the
models’ descriptive ability fared better than their predictive ability. However, they were
able to preserve the seasonal trend of the observed properties. For forecasting hourly
rainfall series, the Multivariate Autoregressive Integrated Moving Average (MARIMA)
model was employed. A comparison with an autoregressive moving average model
(ARMA) showed comparable results which highlights the potential of the MARIMA

model as a forecasting method.
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CHAPTER |

INTRODUCTION

1.1 Introduction

The globally accepted phenomena of climate fluctuations have received wide
attention from all walks of life. As climate and weather dictates our life to a certain
extent, even the uncertainty of a dry and wet season serves to disrupt designed activities.
Studies on climate change are plentiful in the literature as every country serves to
address the issue. On a more local note, the impact of climate change has had some
impact. Flash floods resulting from extremely heavy thunderstorms are becoming more

frequent. So too are the occurrence of tornado-like activities.

Intense convective rain cells are often responsible for extreme
hydrometeorological events with serious and relevant consequences from a social and
economic standpoint. Therefore, the analysis of the spatio-temporal properties of these
structures is relevant both theoretically and operationally. It is widely acknowledged
that storms of convective origins are responsible for the majority of flash flood events,

which is one of the most common and destructive weather-related phenomena in the



country. In Selangor, these rain events occur mainly during the inter monsoon period as

discussed in Mohd Nor and Zalina (1999).

A deeper understanding of the properties and the dynamics of convective rain
cells is, therefore, necessary from a physical and operational point of view. Studies on
the origin and physics of convective storms have been reported worldwide (Llasat, 2001;
Dong and Hyung 2000; Doswell et. al., 1996; Pascual, Callado and Berenguer, 2004).
Rapid urbanization, which modified the hydrological processes of a catchment is
responsible for many water related problems in urban areas, especially in the tropical
regions. Urban drainage systems, often cannot cope with intense convective rainfall
events. It is also difficult to forecasts convective rain in terms of timing and spatial

distribution as it develops over a short period and can happen any time day or night.

In the management of urban and rural water systems, important hydrological
processes such as runoff, infiltration and erosion are usually determined using watershed
simulation models that require rainfall data as input. Analysis of pollutant migration
through water flow system also require rainfall data as input. However, existing
historical records of rainfall are often insufficient in length or in adequate in their
completeness and spatial coverage to provide a reliable simulation results. Hence,
simulations of rainfall data have been widely used through rainfall modeling. These
models were used to generate many sequences of synthetic rainfall series that could
describe accurately the physical and statistical properties of the observed rainfall process

at a given location.

In many situations, stochastic approach is always preferred in the rainfall
modeling as compared to the physically-based model due to the complexity in describing
the dynamical and randomness properties of the rainfall. Stochastic rainfall modeling
involves using the historical rainfall data to estimate the model parameters of an
appropriate model, which may then be used to simulate the desired length of rainfall
series. The models are also appropriate for the analysis of data collected on a short time

scale, e.g. hourly and the synthetic rainfall series produced are said to resemble the



observations statistically. This is particularly useful when the observed rainfall data is
inadequate in terms of length and completeness for hydrological applications. These
models are also known to have the potentials to estimate the frequency of occurrence of

critical events generated by rainfall such as flood.

In view of convective rains which are shorter in duration and higher in intensity,
the modeling is based on hourly rainfall series. There are two approaches commonly
used in describing the rainfall process. The first approach combines both the rainfall
occurrence and rainfall amount and parameter estimation is performed from the hourly
and the integrated rainfall data. In this approach certain physical processes of rainfall
structure, for example, rain cells, storm and cell clusters are described with a stochastic
approach (Kavvas and Delleur, 1981; Waymire and Gupta, 1981a). The second
described the rainfall occurrence and the rainfall amount separately and then both are
superimposed to form the overall rainfall model (Woolhiser et.al,1982, Roldan et.al,
1982). A poisson-cluster process, namely the Neyman-Scott Rectangular Pulse model is
used for the first approach and the Markov-Chain Mixed Exponential model is used in

the latter.

Forecasting of convective initiation poses a challenge as orographic and diurnal
cycles which triggers a convective activity need to be correctly identified and assessed.
Rainfall forecasts can help to determine the magnitudes and patterns of the rainfall
expected. It helps prevent hazards caused by flash flood such as damages on building
structures and casualties. Forecasting rainfalls also allow an efficient real-time control
(RTC) of combined sewer systems (CSS), by proper operation of gates and pumping
stations. These control actions enable tanks and channels of the sewer system to be kept
at low levels, in order to allow the storage of water volumes of the approaching storm,
and to limit the overflow, thus reducing damage, costs and pollution. It is also the means
to prepare for drought where the water can be stored if there is no rain for a very long

term.



Forecasting rain is one of the most difficult tasks in weather prediction due to the
scarce knowledge on how to characterize the mechanisms taking part in its formation.
Many different techniques have been proposed to forecast rainfalls. Among these, a
physically based approach which makes use of meteorological models might be
appealing. However there is some limitations using this approach such as the hydro
meteorological variables are not available. In these cases, rainfall forecasting based on
stochastic models represent a useful tool where one may be able to forecast rainfall
based on current and past rainfall measurements even though such forecasts may not be
as accurate as those based on meteorological considerations. In the literature, several
attempts to forecast rainfall based on mathematical models can be found such as using
the Box-Jenkins models, the neural network models and the numerical weather

prediction (NWP) models.

Hydrological data such as rainfall and humidity are often collected in roughly
equally spaced time intervals such as, hour, week, month, or year. Such time series data
may be available on several related variables of interest. In other words, more than one
series is involved in such a model. For example, the rainfall data, where the series is the
current and past rainfall occurrences observed at several points in the basin, including
the point itself. The operational use of multivariate autoregressive integrated moving
average (MARIMA) model or also known as multiple time series ARIMA was
suggested by Montanari et al. (1994), who highlighted how a multivariate scheme could
remarkably improve the forecasts. In view of the limitations regarding the physics of
convective rain initiations, the study undertook the stochastic approach of forecasting

using MARIMA.

1.2 Objective of the Study

The objectives of the research are:

(1) To define and identify convective rain based on predetermined variables



(i1) To build/identify a model for convective processes for predicting flash floods.

1.3 Scope of Study

The study encompasses a detailed investigation into the spatio-temporal behavior
of convective rain. Distinguishing convective from non-convective events, tracking the
movement of storms using radar data and building intensity duration frequency curves

based on convective rains are included in the research.

For the modeling and generation of synthetic hourly data, two approaches were
investigated namely the stochastic Poisson-cluster process and the Markov-chain
process. Hourly rainfall data were the main input for building the models and seasonal

effect was taken into account.

The third and last part of the study involves forecasting of hourly rainfall based
on a multivariate autoregressive integrated moving average model. Physically based
model were not considered due to the limitations in hydro meteorological data and

difficulty in assessing the physics of such events.



CHAPTER 2

LITERATURE REVIEW

2.1 Identification of Convective Rainfall

Forecasting of convective initiation is one of the main current challenges in
operational nowcasting tasks today. Knowledge of areas where convection develops
most frequently is very important. It has been widely known that storms of convective
origins are responsible for the majority of flash flood events that causing significant loss
of life, property damage, soil erosion and other socio-economic problems.
Unfortunately, forecasting skill for heavy convective rain still lacking at present. The
characteristic of convective rain such as intensity, rainfall duration, spatial distribution
and storm movements are still not enough. No specific guideline is giving a better

understanding of this rain which is plays an important part of flooding area.

In Malaysia, these events have contributed to substantial damages and losses
especially in areas that are prone to flash flood such as Klang Valley. This problem has
not been eased even though million of ringgit has been spent or allocated to overcome
the drainage problem. Therefore, in this study an effort is made to examine the
characteristics of convective rain from Klang Valley’s surface rainfall data and radar

data.



Although convective rain has long been recognized as important in the area, its
contribution has to our knowledge, never been quantified properly. The nearly reason is
that convective rain not usually recorded and therefore it is hardly identifiable in
meteorological records. Nevertheless, in addition to its meteorological interest, for some
applications such as in civil engineering, microwave radiolinks (Burgueno et al., 1987,
1988; Vilar et al., 1988), design management of drainage systems and water resources
management (Cheng-Lung Chen, 1983; Vazquez ef al., 1987; Nix, 1994), it is needed to

know the type of rain.

In this chapter, the types of rain, the measurement of rainfall and the previous
research on convective rain were described. The probability of the occurrence of flash
flood due to convective storm also discussed. Then the methods of spatial interpolation
and comparing spatial distribution between all of that method were presented at the end

of this chapter.

2.1.1 Convective Rainfall

Unlike stratiform precipitation, which is formed in a stable atmosphere,
convective precipitation is formed in an unstable atmosphere. Convective rain is a
sudden short outburst of rain that brings heavy rainfall in a short period of time.
Usually, this short outburst of rain is heavier than normal rainfall. This precipitation
occurs from convective clouds e.g., cumulonimbus or cumulus congestus. It falls as
showers or a sudden downpour, with rapidly changing intensity. Beside that, the
downpour is within one area at a time, as a convective cloud has limited horizontal
extent (WikiAnswers, 2007). Convective precipitation usually occurs in the tropics
especially in midlatitudes. This phenomenon is due to convection process. Convection
is the vertical transport of heat and moisture in the atmosphere, especially by updrafts
and downdrafts in an unstable atmosphere. The atmosphere is classified as unstable
when the temperature of displaced surface air is warmer than that of the environment

surrounding it. This difference in temperature causes the displaced air to rise up into the


http://www.personal.psu.edu/users/m/s/mss298/Meteo482/topic3.html
http://www.answers.com/topic/cumulonimbus-cloud-1
http://www.answers.com/topic/cumulus-congestus-cloud
http://www.answers.com/topic/tropics

atmosphere until it gets to a point where it is colder than its surrounding air. At this
time, the air begins to fall back towards its original location. This happens because
warm air is less dense than cold air at equal pressure (PennState, 2001). Figure 2.1

clearly shows the process of convective rainfall.

(a) warm air rises

(b) Air from surrounding regions move in to replace the warm air as it moves up. The air that
moves in to take the place of the rising air has to come from the north or the south because
the air to east and west is also extra hot and rising.



(b) As the warm air rises it expands and cools. Since cool air cannot hold as much moisture, this
often results in rainfall. The cooled air is then drawn back towards the poles, dropping
towards the earth to replace the air moving along the surface near the equator. This cycle of
air movement is called convention and causes convective rainfall.

Figure 2.1 : The formation of convective rainfall (After Charles L. Hogue, 2007)

2.1.2 ldentifying Convective Rainfall

2.1.2.1 Rainfall Intensity

The intensity of rainfall is dependent on the rate at which storm processes water
vapor. In this case, a distinction could be made essentially, between precipitation of
convective origin and precipitation stratiform origin. Many researchers used intensity as
a method to differentiate among convective and stratiform rainfall. Dutton and
Dougherty, 1979; Watson et al., 1982 sets a convective rainfall rate threshold at 50
mm/hr and below as supposedly non-convective. Llasat and Puigcerver (1997) divided
their analysis into four kinds of event: (1) non-convective (2) convective with rain rate
equal or less than 0.8 mm/min (3) convective in which the rate threshold of 0.8 mm/min
was exceeded; and (4) rainfall from thunderstorms. Llasat studied convective rain for a
number of years. In 2001, she used 35 mm/hr as a threshold intensity value and was

utilized parameter f for characterizing convective rain (Llasat 2001).
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Nevertheless, Houze (1993) distinguishes between stratiform or convective
precipitation on the basis of vertical air velocity, w. If it is less than the terminal fall
velocity of ice crystals and snow, it is called as stratiform. But nowadays, radar can also
be used to make a distinction between both of these rainfalls. Using 4-D radar imagery,
the ‘bright band’ near the melting level is a signature that helps to distinguish convective
mode from stratiform mode (Llasat, 2001). Steiner et al. (1995) proposed two methods
to distinguish between stratiform and convective precipitation in radar echo patterns.
Radar used reflectivity to measure the intensity of rain and usually the reflectivity is
expressed in decibels of z (dBZ). Dong and Hyung (2000) used 35 dBZ to determine
convective rainfall. Pascual, Callado and Berenguer (2004) used four reflectivity
thresholds: 30 dBZ, 35 dBZ, 40 dBZ and 45 dBZ during identify convective cells origin.
On the other hand, Rigo and Llasat (2002) used 43 dBZ to analyse convective event

which is derived from meteorological radar.

2.1.2.2 Rainfall Duration

As previously mentioned, convective rain is a sudden short outburst of rain that
brings heavy rainfall in a short period of time. These are usually inversely related,
because high intensity storms are likely to be of short duration and low intensity storms
can have a long duration. Brooks et al., (1992) noting that convective cell typically has
a lifetime of about 20 min. It follows, then, that any convective storm lasting more than
about 20 min is made up of more than one cell. A convection cell is a phenomenon of
fluid dynamics which occurs in situations where there are temperature differences within

a body of liquid or gas (Wikipedia, 2007).

Ronal and Andrew (1981) studied about duration of convective events related to
visible cloud, convergence, radar and rain gage parameters in South Florida. The highly
variable response could be understood better by taking into account the duration of the
cloud where it is defined as the time from first surface convergence until it is complete

dissipation. From their observation, the average of storm duration for nine clouds was
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http://en.wikipedia.org/wiki/Temperature
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25 min from first convergence to first organization of the cloud area. Another 35 min

passed, on the average, until the clouds began a rapid upward growth stage.

2.1.2.3 Analyses on Convective Rain

The poor quality of heavy rain forecast might seem surprising in view of the
great improvements over recent years in general weather forecasts. Predicting where
such storms will break out or start abruptly is one of the major challenges facing
meteorologists today. Furthermore, convective storms always cause downpours and

flash flood. This situation motivates many researchers to study about convective rain.

Llasat and Puigcerver, (1997) studied convective rainfall with an objective to
obtain the percentage of convective rainfall from the total rainfall amount in Catalonia.
Convective events were identified on charts of a rain-rate recorder from 1960-1979.
Events were classified into four categories: non-convective, convective with low rainfall
rates, convective with moderate to high rates and thunderstorm events. From the result,
the ratio of convective to total rainfall amounts ranges from 70 to 80 percent in summer
months to less than 30 percent in winter. Next, in year 2001, Llasat characterized
convective rain in new event classes and apply it in modelling intensity-duration-
frequency (IDF) curves and design hyetographs (Llasat, 2001). A parameter related to
the greater or lesser convective character of the precipitation, designated as S is defined.
Intensity value of 35 mm/hr is taken as threshold intensity and g parameter was
classified into four categories; non-convective, slightly convective, moderately
convective and strongly convective. Llasat and Rigo (2002) used radar in their analysis.
They studied convective structures with made a comparison between meteorological
radar data and surface rainfall data. In year 2007, Llasat and Barnolas studied flood
geodatabase and its application in meteorology of climates. In their study, convective
rain was divided in three types; (1) very convective rainfall events: episodes of very
short duration (less than 6 h) but very high rainfall intensity, (2) very convective and

moderate rainfall events: episodes of short duration (between 6 and 72 h) with heavy
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rain sustained for several hours, and (3) episodes of long duration (approximately 1
week) with weak raingauge intensity values. Geographical Information System (GIS) is
used to display all of the information in geodatabase. From the analysis, fall season
floods are mainly identified with convective episodes with heavy rain sustained for
several hours. The inland region is mainly affected by episodes of types 2 and 3. While
episodes of type 1 mainly affected in regions with a high population density.

Nowadays, there are many researchers used meteorological radar to detect
convective area and done various analyses. By using radar, two algorithms have been
applied to analyze convective structures. First, Johnson et al, (1998) identified
convective cells as a region of maximum reflectivity in 3D. Second algorithms were
proposed by Steiner et al., (1995), where they identify convective structures at the
lowest level 2D. These algorithms classify pixels from radar image as rainfall or non-
rainfall. Then they choose which rainfalls satisfy certain requirements to consider them
as ‘convective’and ‘stratiform’. Both of these algorithms also have been applied by
Rigo and Llasat (2002) where they used radar data and surface data to improve the
tracking and nowcasting of convective structures in Catalonia, Spain. For surface
rainfall data, they used 35mm/hr as a rain rate threshold of convective events whilst
43dBZ as a reflectivity threshold to do a first identification of convective rainfall. The S
parameter (Llasat, 2001) is used to identify the degree of convection of every rainfall
event for raingauge data. The comparison of the daily f parameter for raingauges and
radar charts allows identifying the areas most prone to convective precipitation,

especially for different seasons.

Another study of convective rain using meteorological radar is Pascual et al.,
(2002) and Callado ef al., (2002). They analyzed the origin of convection identified in
radar data with low levels convergence zones. After that, Pascual et al., (2004) studied
about convective activity during the summer of 2003 and relate it with convergence
areas associated to terrain characteristics and to the interaction between different flows
at low levels. The 15 C-band Doppler radars are used in this study. The results were

presented in term of relative frequency maps. From the observation, higher relative



13

frequencies for all thresholds (30 dBZ, 35 dBZ, 40 dBZ and 45 dBZ) appear in

mountainous terrain and most of the frequencies happen between 12:00 and 18:00 hours.

As mentioned before, convective activities are more frequent in the Tropics. The
diurnal cycles of convective activity are different and it is depend on the location and
weather. If the location is near to the sea, the convective activity may due to wind and
water vapour from the sea. The duration also can be different with other location. Hara,
Yoshikane and Kimura, (2006) conducted a cloud-resolved simulation using regional
climate model to clarify the mechanism of diurnal cycle of convective activity around
Borneo Island. The convective activities on top of mountain decay in evening. The
diurnal cycle of convective activity in Borneo Island is maintained by sea breeze and
upslope wind and is dependent on the distance from the coast to the centre of the

mountain. The convective activities continue until the next morning.

Dong and Hyung (2000) studied heavy rainfall with Mesoscale Convective
Systems (MCSs) over the Korean Peninsular. A Mesoscale Convective Systems (MCSs)
is a complex group of thunderstorms which becomes organized on a scale larger than the
individual thunderstorms, and normally persists for several hours or more. It can be
round or linear in shape, and include systems such as tropical cyclones, and squall lines
(Wikipedia, 2007). The study focused on mesoscale convective systems (MCSs) which
were most responsible for flash floods over the central Korean Peninsular for 6 hours.
The evolution and movement of convective storms resulting in heavy rainfall were
investigated. They used WSR-88D radar data to conduct the study. From their
observation, the heavy rainfall was caused from well-organized multi-cell type
convective storms in MCSs. The storm abruptly started near the sea and land, and then
merged into large convective storm within less than 2 hours. To investigate movement
of the convective storms, they tracked the edges of convective storms. It is found that
the boundaries changed into a very complex shape with time and the storm movement

was very limited.


http://en.wikipedia.org/wiki/Thunderstorms
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2.1.2.4 Probability of Flash Flood due to Convective Storm

Convective storms are always related with the flash floods. It is produced by
strong convection in a short time. Charles (1993) considered a precipitation rate of
about 25 mm/hr as quite heavy, and flash floods often result from rainfall intensities
much greater than that value (25 mm/hr). For this time, it is difficult to sort this rainfall
rate from non-convective processes. This is because they simply don’t process water
mass fast enough. Charles also identified the precipitation efficiency which is indicated
from water vapour. Precipitation efficiency is defined as the ratio of the water vapour
absorbed into the storm to the water dropped as rainfall. This ratio is not meaningfully
evaluated in an instantaneous value. At the start of convective storm, no rain is falling,
so the ratio is zero, but at the end of the storm, rainfall can continue to fall after the
updraft has dissipated. Figure 2.8 shows a schematic diagram of precipitation efficiency.
Therefore, this quantity only makes sense as a time essential over the lifetime of
convective system (Fankhauser, 1988). Simple basic consideration suggest that of the
water vapour passes through a convective storm, what doesn’t fall out as precipitation

must evaporate.

Barnolas and Llasat, (2007) studied a flood geodatabase in Catalonia. They
classified flash flood into three types based on the convective character of rainfall event.
Type 1: Very convective rainfall events: episodes of very short duration (less than 6 h)
but very high rainfall intensity. They produce flash flood and local damage. Their
associated floods are usually ordinary or extraordinary, following the classification
shown in Llasat et al., (2005). Type 2: Very convective and moderate rainfall events:
episodes of short duration (between 6 and 72 h) with heavy rain sustained for several
hours (200-500 mm). In the light of their duration and size of catchments, they can
produce catastrophic flash floods. Type 3: Episodes of long duration (approximately 1
week) with weak raingauge intensity values, with possible peaks of high intensity.
Accumulated rainfall can be over 200 mm and usually ordinary or extraordinary floods
occur. From their study, episodes of type 1 mostly occurred in the area which has a high

population density. While episodes of type 2 and 3 occurred in the inland region. It
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seems that rainfall duration, amount of precipitation and areas of rainfall are main

factors in identifying flash flood into several classes.
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Figure 2.2 : Schematic diagram showing the time history (in arbitrary time units) of
water vapor input and precipitation output (hatching) for a convective

storm system. The ratio of the areas under the two curves is the

precipitation efficiency (after Charles, 1993)

The heavy rainfalls that produce flash floods are the result of high rainfall rates
that remain. The high rainfall rates are caused by high water vapour mass flow through
convection, coupled with high precipitation efficiency. The previous study also show
that convective events and the occurrence of flash flood in a particular area always
related to each other. All of these findings are very important to give much more

information about convective especially in the areas most prone to convective rainfall.



16

2.1.4 Spatial Interpolation

A very basic problem in spatial analysis is interpolating a spatially continuous
variable from point samples. In hydrology, rainfall is always measured only at
raingauges. Nevertheless, engineers are interested to estimate the total rainfall in a
watershed. Nowadays, the question is how to calculate the individual rain measurements
to obtain the best estimate of rainfall at an unmeasured location. Figure 2.3 shows the

basic interpolation process in some area.

Figure 2.3 : The interpolated value at the unmeasured yellow point is a function of the

neighbouring red points (From ArcGIS Help Menu)

Three interpolation techniques, namely the Inverse Distance Weighted (IDW),
Kriging and Spline Method are the most commonly used techniques to estimate grid
point values from scattered data (Keckler, 1995). In this section, all interpolation
techniques will be discussed and a comparison of the spatial interpolation between some

of these methods and also from the previous study will also be presented.
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2.1.3.1 Kriging Method

Interpolation by Kriging is a geostatistical method based on statistical models
that predict spatial correlation of sampled data points (Dille et. al., 2002). Kriging was
developed in 1960s by the French mathematician Georges Matheron. Originally, it is
proposed by Krige, a South African mining geologist, who 1is the first to introduce the
use of moving averages to avoid overestimation of reserves. The method has been used
by gold mining engineers in South Africa and it is used to estimate gold in a rock from a
few random core samples. Since this method is widely used in geology, Kriging has
become similar with the variety of geological statistics (Matheron, 1963). Today,
Kriging has found its way in the earth science and other disciplines. In spatial
interpolation, it is an improvement from inverse distance weighting because prediction
estimates tend to be less bias and predictions are accompanied by prediction standard

errors (quantification of the uncertainty in the predicted values) (Jon and David, 2002).

The objective of Kriging is to estimate values of a field (or linear functions of the
field) at a point (or points) from a limited set of observed values (Bras and Rodriguez-
Iturbe, 1985). Spatial correlation, is a statistical relationship among measured points in
one data set. Kriging also can provide some measure of certainty or accuracy of the
prediction models based on correlation. Kriging models use semivariogram or
covariance to depict the spatial correlation between measured sample points and to make
optimum predictions. Semivariogram modeling is the element that must to separate the
spatial modeling from simple spatial description. The model assumes that measurements
that are geographically close together are more similar than ones that are farther apart

(Donald, 1994). Figure 2.4 shows the spatial correlation in kriging.
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Figure 2.4 : Spatial correlation (a function of distance between pairs of locations)

Semivariograms are described by the parameters of range, sill, and nugget. All
of these elements are needed to interpolate data with a Kriging method (Figure 2.5). The
range is the distance from a measurement (known sample) point to the point where the
semivariance stops increasing with distance from the sample point. Sill is known as the
value at which the semivariogram model attains the range. It is mean that the change in
semivariance is no longer increasing with increasing distance from the sample point.
The nugget is created by measurement errors or spatial sources of variation at distances
smaller than the sampling interval. Nugget also recognized as the value of semivariance
when the distance from the sample point equals zero (Main et. al., 2004). One more
element is partial sill. Partial sill is sill minus the nugget and this value is needed for

Kriging interpolation. Figure 2.5 shows one example of semivariogram.
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Figure 2.5 : Example semivariogram depicting range, sill, and nugget (after Main et al.,

2004).
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As already noted, Kriging models use semivariogram or covariance to depict the
spatial correlation.  Estimation of covariance is similar to the estimation of
semivariogram, but covariance requires mean data. However, the data mean usually not
known, but estimated and this causes bias. This situation resulted that most
geostatistical software use semivariogram as default function tool to characterize spatial
data structure (Konstantin, 2006). The equation of semivariogram and covariance can be

described as:

Empirical Semivariogram (Equation 2.3)

Semivariogram (distance h) = /2 average [(value at location 1 — value at location

)

Empirical Covariance (Equation 2.4)

Covariance (distance h) = average [(value at location i — mean)*(value at location

j—mean)]

where, for all pairs of locations i and j separated by distance h

Kriging is considered the best predictor of non-sampled locations, because mean
residual error is minimized by its calculation (Isaaks and Srivastava, 1989). Actually,
Kriging interpolation is similar to IDW where it uses surrounding data points to predict
an unknown value for an unmeasured location. The difference with Kriging can be

mentioned in three ways:

(a) the predicted point depends on a fitted model to the measured points;
(b) the distance from the unknown point to measured points; and
(©) the spatial relationship among the measured points around the predicted

point.
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In this study, Kriging Method is chosen to show the spatial distribution of rainfall

derived from surface rainfall data.

2.2 Model Building Using Stochastic Rainfall Modelling : Neyman-Scott
Rectangular Pulse Model (NSRP) and Markov Chain Mixed Exponential
Model (MCME).

The modeling of rainfall has been progressing significantly in the recent decades.
It has a long history in literature with significant advances being made over years in the
statistical methods and techniques used and the subsequent accuracies achieved.
Reviews of previous works on rainfall modeling have been discussed exhaustively in
Waymire and Gupta (1981), Foufoula-Georgiu and Krajewski (1995) and Onof C. et al.,
(2000). Two models based on stochastic rainfalls modeling are adopted in this study.
The first is on the cluster point process and the second is on empirically derived models

with “fitted” parameters. The developments of both models are presented as follows.

2.2.2 Neyman-Scott Rectangular Pulse (NSRP) Model

Two of the most recognized cluster-based models used in stochastic modeling of
rainfall are the Neyman-Scott Rectangular Pulses (NSRP) model and the Bartlett-Lewis
Rectangular Pulses (BLRP) model (Rodriguez-Iturbe et.al. (1987a). These models
represent rainfall sequences in time and rainfall fields in space. Both the occurrence and
the depth processes are combined and parameter estimation is performed from the hourly
and the integrated rainfall data. To understand properly the models, we begin with the
reviews of the theoretical basis of stochastic point processes. These reviews will focus
on the study of special processes that have importance application related to rainfall
modeling . The developments of techniques for analyzing data generated from such
processes can be found for example in Waymire and Gupta (1981c¢) or Rodriguez-Iturbe

et.al. (1987a). In stochastic processes, the realizations consist of point events in time or
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space. This is used in many fields of applications and is discussed exhaustively in
literature from several points of views (Cox and Isham, 1980; Waymire and Gupta,

1981a).

2.2.1.1 Development of the Neyman-Scott Rectangular Pulse Model (NSRP)

The Neyman-Scott cluster point process, originally developed in 1958 to describe
the distribution of galaxies in space (Neyman and Scott,1958) has become an important
representation for a broad range of phenomena in the physical, biological, and social
sciences. Vere- Jones (1970) applied Neyman-Scott (N-S) cluster process in the time
dimension to model the earthquake occurrences in which he utilized the probability
generating functional (pgfl) of N-S process in modeling the occurrences but did not give
a derivation of this functional. Lawrence (1972) modeled the earthquake occurrences by
deriving the probability generating functional of the Neyman-Scott (N-S) process by
counting the cluster centers which represented the main shocks and the aftershocks form
the secondary process. In the hydrologic literature Kavvas and Delleur(1975,1981),
Kavvas (1982a,b), Gupta and Waymire (1979), and Waymire and Gupta (1981a,b,c)

have popularized the use of cluster models.

There are number of variations of the N-S model for representing rainfall events.
All variations are essentially the same in the way they model the occurrence of the
rainfall events, i.e the occurrence of the rain cells. The variety of N-S models results
from how the depth of rain associated with each rain cell is distributed over a time
interval. The simplest N-S model, known as the N-S white noise model takes the rain
cells as instantaneous bursts and associates some distribution with the depth of rain due
to the cell. This model was first introduced for representing rainfall events by Kavvas
and Delleur (1975), by deriving expressions for the counting properties of rain cell
occurrence. Waymire and Gupta (1981 a,b,c) demonstrated how the probability
generating functional taken from the general theory of point processes can be an

effective tool for capturing the joint distributional properties of the counting process of
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rainfall occurrences. Smith and Karr (1985) showed that a N-S process, in which the
distribution of cluster sizes is Poisson and the distribution of the distance of the cluster
members from the cluster center is exponential, could be represented as a Cox process.
Using this representation they derived the maximum likelihood estimates for parameters
of the N-S model. Rodriguez-Iturbe et al. (1984) found the second-order moments of the
aggregated N-S white noise model. These properties are particularly desirable as rainfall
records tend to be available in aggregated form, usually as daily totals. N-S white noise
model perform better than other rainfall model over range of time scales (Cowpertwait,
1991). Valdes et al. (1985) also found that the N-S white noise model performs better
over time scales from 1 to 24 hours, when compared with some other rainfall models.
However, they found that the N-S white noise model appears not to be able to preserve
the statistics of extreme rainfall events. Foufoula-Georgiou and Guttorp (1987) also
found inadequacies in the N-S white noise model in particular, difficulties were found
when estimating the model’s parameters, when using both the method of moments and

maximum likelihood estimation.

Motivated by the inadequacies of the N-S white noise model, Rodriguez-Iturbe et
al. (1987a) introduced the N-S and Bartlett-Lewis Rectangular Pulse models for
representing rainfall. These models give each rain cell a random duration, and a random
intensity which is constant throughout the cell duration. In their paper the second-order
moments of the aggregated process for the N-S model are found, under the assumption
that the duration and the waiting time for the rain cells after the beginning of the storm
are exponentially distributed. An analysis of empirical data using the N-S and Bartlett-L
ewis rectangular pulse models has been carried out by Rodriguez-Iturbe et al.(1987b),
the conclusion being that the rectangular pulse models are able to preserve rainfall
statistics, including extreme values, over time scales from 1 hour upward, with the

exception of the proportion of dry days.

To solve the problem of overestimation of the probability of observed dry
periods, Rodrigue-Iturbe et al.(1988) suggested the use of a modified Bartlett-Lewis

model with an additional parameter, and Entekhabi et al. (1989) introduced a similar
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modification in the Neyman-Scott model. In the modified NSRP, the rain cell duration
n was random and was allowed to change from storm to storm. The probability density
function for m is assumed to be a two-gamma distribution with shape parameter a.
Burlando and Rosso (1991) questioned the ability of the modified Bartlett-Lewis models
to reproduce the historical characteristics of the rainfall series, stating that the original
N-S model fits better than the original and the modified Bartlett-Lewis models. They
(1996) also pointed out some features limiting the use of stochastic point processes in
modeling storms, such as the inability to reproduce variability displayed in the extreme
storms, nontrivial mathematical complexities are involved in the construction and
implementation of the models, and the presence of subjectivity in the parameter

estimation.

Velghe ef al. (1994) argued that even though the modified models gave a better
zero depth probability, owing to the higher complexity of the parameter estimation they
did not preserve the second order properties (especially lag-2 and lag-3 auto-
correlations) of the rainfall process. The authors also found that the Barlett-Lewis
model, especially in the modified version, is very sensitive to the choice of moments
used in the parameter estimation. The original and modified versions of the geometric
Neyman-Scott model were found to be amenable to practical use in hydrological studies
than the Poisson Neyman-Scott model. However, the findings were not conclusive and

open to many more research to be undertaken.

Cowpertwait (1994) further developed the model at a single site by allowing each
generated cell to be of # types. The model developed is called generalized Neyman-Scott
Rectangular Pulses [GNSRP(n)Jmodel. The case for two cell types was considered,
categorized as either “heavy” or “light” where heavy cells have shorter expected lifetime
than the light cells, which agreed with the observational studies on precipitation fields.
Cowpertwait (1997) fitted the model and harmonic parameter estimates were regressed
on sites variables. The residual errors analysis showed that the regression equations

could be used with reasonable confidence for urban sites.
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Stochastic spatial-temporal models of rainfall have been formulated based on
physical processes observed in precipitation fields which usually incorporate bands of
rain, regions of high intensity rain, and rain cells. These fields can be used to simulate
fine resolution data over a large geographical region, and are potentially useful in real-
time forecasting. Cox and Isham (1988) developed a simple model where storm centers
arrived in a two-dimensional space and time Poisson process but empirical analysis of
data has shown that rainfall events tend to arrive in clusters. Cowpertwait (1995) then
formulated spatial-temporal model where the arrival times of rain cells follow a
Neyman-Scott process. The cells are randomly classified from 1 to n with different
parameters for different cell types, so that the random variables of an arbitrary cell, e.g.
radius and intensity, are correlated. The model has a flexible structure, via the
generalization, so that a reasonable fit to multi-site extreme values could probably be
achieved. However, the range of applications to which the model could be applied may
be limited because rain cells are taken to have zero velocity. An extension of the
generalized spatial-temporal model was done by introducing the third moment function
for the single site model by Cowpertwait (1998). A good fit to the observed extreme
values over a range of time scales was found. Lack of fit was evident when the third
moment was excluded from the fitting procedure. However, the cell parameter estimates
had large standard errors and were related, partly due to the difficulty in identifying cells
in physical process. Statistical properties for the spatial-temporal model (Cowpertwait,
1995,1998) were combined into the fitting procedure, which used moments up to third
order and cross correlation function (Cowpertwait, 2002), but for a single type of cell.
The results indicate that the model is able to preserve regional extremes and support the

use of the model in hydrological applications.

The GNSRP(n) that was developed by Cowpertwait (1994) did not include the
third moment function. Hence, Cowpertwait (2004) developed a mixed model by using
superposed independent NSRP processes to make use of the existing NSRP functions
that have been derived and cited in Cowpertwait (2002). The use of superposed
processes makes an allowance for different possible storm types, e.g. those with

predominantly convective cells or stratiform cells. This model gives further flexibility in
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the parameterizations thus providing a methodology for obtaining good fits to a wider

range of data.

Kim et al.,(2006) developed a new stochastic point rainfall model which
considers the correlation structure between rain cell intensity and duration. The model is
able to reproduce well the statistical characteristics of the historical rainfall series and
the model generated data are robust with different parameter sets when the correlation

parameter is appropriately taken.

Previous studies assumed that rain cell intensity follows an exponential
distribution due to its small number of parameter (e.g. Rodriguez-Iturbe et al., 1987a,
1988; Cowpertwait, 1996, etc). However, the choice of distribution for the cell intensity
in the NSRP model is arbitrary. Cowpertwait (1998) had used gamma to represent the
rain cell distribution because past studies have reported lack-of-fit to extreme values
under the exponential distribution. Cowpertwait, (1996, 2002, 2004) had also attempted
a heavier-tailed distribution such as Weibull to improve the fit in the extremes. Hence,

there are still many other distributions that are open to be explored.

2.2.2.2 Parameter Estimation

The fitting of the parameters of the model and the assessment of the adequacy of
its fit raise many statistical questions. Calenda and Napolitano (1999) described
exhaustively the different methods for parameters estimation of the NSRPM model. The
usual procedure as described by them is based on the method of moments (Rodriguez-
Iturbe et al, 1987a,b; Entekhabi ef al., 1989; Cowpertwait, 1991). The maximum
likelihood estimates, besides involving heavy mathematical complexity (Smith and Karr,
1985 a,b) are not available and are not computable because the distribution function of
the rainfall average intensity in each disjoint time interval for a given scale of

aggregation is not known. Even if a likelihood function could be calculated, it would
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not be a proper basis for fitting the model because the idealization involved leads to
sample path with some (short-term) deterministic features (Favre et al., 2004). Kirk
(1997) fits the model using importance sampling in order to obtain a product-of-spacings

function, but the estimator obtained is biased.

The original NSRP model depends on five parameters, A,f,n,v,&, so that
following the method of moments, five statistical properties of the observed time-series
must be equated to their theoretical expression, and the resulting equations solved for the
parameters estimates. The most frequently used procedure that used the method of
moments, adopted first by Rodriguez-Iturbe ef al. (1987,a,b) and then by many others
(Burlando, 1989; Entekhabi ef al.,1989; Islam et al., 1990; Cowpertwait, 1991; Velghe
et al., 1994). The historical series is aggregated at two different temporal scales using
the expressions of the mean at the first level of aggregation, the variances and the lag-1
autocorrelation at both levels with the mean being a linear function of the scale. The
equation system obtained is not linear, and it is solved by minimization of

Z(x) :%{1—%} 2.1)

The use of the ratio function Z(x) ensures that large numerical values do not
dominate the fitting procedure. Cowpertwait et al. (1996 a,b) suggested the use of a
larger set of sample moments. They used mean at 1 hour scale, variance at 1, 6 and 24
hour aggregation, autocorrelations at 1, 6 and 24 hour and, probability of dry time
intervals, assigning weights to the different statistics. The used of autocorrelations were
found to affect the match on the proportion of dry days because autocorrelations tend to
have large sampling errors because of the large number of zero depths. Thus, the
autocorrelations at all aggregations were excluded and the transition probabilities were
used instead while the other moments remained the same. They also used sample
moments and transition probabilities at 3 and 12 hour aggregations besides 1, 6 and 24
that were applied earlier. The results on the proportion of dry periods improved. The
couple of scales generally considered in the estimation procedure are combinations of 1,

3, 6, 12 and 24h aggregation scales (Rodriguez-Iturbe et al., 1987 a,b; Entekhabi et al.,



27

1989; Islam et al., 1990; Cowpertwait, 1991, 1992; Velghe et al., 1994; Cowpertwait et
al., 1996 a,b); but sometimes also scales of 30 min (Burlando, 1991), and 20 min
(Sirangelo, 1992). It is generally held that the parameter estimates are not biased by the
selection of the aggregation scales of the sample data set; but preliminary results
(Calenda and Napolitano,1997) showed a significant variability of the estimates with the
scales, that could be ascribed to two different causes: the characteristics of the objective
function Z(x) change substantially with the scales and the results of the optimization
algorithm vary when the starting point of the search is changed, especially if the selected
scales are close together. They then suggested an alternative estimation procedure based
on the scale of fluctuation of the observed process. The estimates obtained with the
proposed procedure are as good or better than those obtained with the usual procedure
for all aggregation scales, with the exception of very long (24h) and very short
aggregation times (5 and 10 min), both in term of reproduction of the second order

statistics and extreme values for different aggregation scales.

Following Calenda and Napolitano (1999), Favre et al. (2002) proposed a
modified method of moments using two temporal scales of aggregation, hourly (1h) and
daily (24h). The two scales were selected because the estimates of the parameters of the
continuous process always depend on the aggregation scales selected for the formulation
of the solution system. However, if the scales are more widely spaced the estimation

stabilizes.

The choice of the minimization of the objective function of concern, whereby
methods like quadratic convergence of Powell have been proposed (Velghe et al., 1994;
Calenda and Napolitano,1999) to solve the nonlinear optimization problem. The main
difficulty relates, however, to the choice of initial parameters values on which the
convergence of the algorithm is strongly dependent. The minimization is carried out in a
space of five or more dimensions and local minima are difficult to avoid. To avoid these
limitations and the related bias an alternative approach is proposed by Favre et al.,
(2004) by reducing the number of parameters to be obtained by minimization. Using the

Nelder-Mead simplex the minimization procedure is said to be stable with regard to the
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starting point of the algorithm and always converges. Nelder and Mead simplex uses
direct search complex algorithm that is dependent on the comparison of function values
at the (n+1) vertices of a general simplex, followed by the replacement of the vertex with
the highest value by another point (Nelder and Mead, 1963). This method is said to

be effective and computationally compact.

Duan (1992) developed Shuffle Complex Evolution-University of Arizona (SCE-
UA) method that is a general purpose global optimization program. SCE-UA was both
effective and efficient, compared with the existing global methods such as adaptive
random research (ARS) method and multi-start Simplex method. He also showed that
SCE-UA was an effective and efficient optimization technique for calibrating watershed
models and these are basically influenced by the choices of algorithmic parameters. Han
(2001) used SCE-UA method to optimize the objective function of NSRP and compared
that with the Nelder-Mead Simplex method. It was found that the SCE-UA performed
better than Nelder-Mead simplex method.

2.2.3 The Markov Chain Mixed Exponential Model (MCME)

A rainfall model based on daily precipitation is attractive because relatively long
and reliable records are readily available and such a model is frequently efficient for
many practical problems. Stochastic models of daily rainfall are usually divided into
two parts, a model of rainfall occurrence which provides a sequence of dry and wet days,
and a model of rainfall amounts, which simulates the amount of rainfall occurring on
each wet day and then both are superimposed to form the overall rainfall model.
(Woolhiser et.al,1982, Roldan et.al,1982, ). One of the popular stochastic modeling of
daily rainfall is the Markov Chain-Mixed Exponential (MCME). The first-order two-
state Markov Chain model is used to describe the daily rainfall occurrence process and
the Mixed Exponential distribution is used to describe the daily amount distribution.
Many studies have used the combination of Markov Chain and Mixed Exponential

(MCME) to model daily rainfall series and the combined model had proven to be the
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best in describing rainfall processes (Woolhiser and Pegram. 1979, Woolhiser
et.al, 1982, Han, 2001). Models of this kind are capable of simulating daily rainfall
records of any length, based on simulating occurrences and rainfall amounts separately.
Parameter estimates are needed for transitional probabilities for occurrences and
parameters are fitted through a frequency distribution for rainfall amounts. The research
work presented in this thesis on modeling the hourly rainfall series is based on this

approach.

2.2.2.1 Modeling of Rainfall Occurrences

The Markov chain model for the daily occurrence of precipitation has achieved
widespread use with Gabriel and Neumann (1962) was probably the first mentioned in
literature that had described the daily occurrence using a two-state simple Markov
Chain. Their work was then adopted by Haan et al. (1976) that proposed a stochastic
model based on a first-order Markov Chain to simulate daily rainfall series at a point. He
was able to justify the capability of the model to simulate a daily rainfall record of any
length, based on the estimated transitional probabilities and frequency distributions of

rainfall amounts.

According to Chin (1977), the common practice of assuming that the Markov
order is always one is unjustified. He used a decision criterion based on a loss function
that is composed of a log-likelihood ratio term and a degree-of-freedom term and the
order that minimized the loss function is selected. The results showed that the order of
conditional dependence of daily precipitation occurrences is dependent upon the season
and the geographical locations. Gregory et al.(1992) found that the lumping together
some of the states of a many-state first-order Markov Chain does not in general give a
first-order Markov chain with a smaller number of states. They even suggested that a
many-state process, possibly of only first order would actually be a better choice than a

two-state process.
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Most of the point process models are continuous in time and not directly
applicable to discretely sampled data such as the occurrence of rainfall. But Smith
(1987) proposed a new family of discrete point process models for daily rainfall
occurrences termed as a Markov Bernoulli process that contained Markov chain and
Bernoulli trial models. The process in which a discrete time analog of Neyman-Scott
models was constructed. Likelihood-based inference procedures for discrete point
process models of wet-dry sequences were developed that not only evaluates
quantitatively but also qualitatively the significance of the parameter estimates.
Foufoula (1987) found an alternative discrete-time point process model termed as
Markov renewal model. This model exhibits clustering relative to the independent

Bernoulli process.

Another alternative approach is through the use of spell-length models, where
observed relative frequencies of dry or wet day spells are fitted to a probability
distribution. This process is called the ‘alternating renewal process (Buishand, 1977,
Roldan and Woolhiser, 1982; Raseko et al.,1991) allows for a new spell of opposite type
of random length to be generated once a spell of consecutive dry or wet days have

ended.

2.2.2.2 Modeling of Rainfall Amounts

Methods of modeling precipitation amounts on wet days have been discussed
extensively in the literature. The most common approach is to assume that precipitation
amounts on successive days are independent and to fit some theoretical distribution to
the precipitation amounts (Todorovic and Woolhiser,1975). A second approach is to
assume that precipitation amounts are independent but the distribution function depends
on whether the previous day was wet or dry, i.e a chain-dependent process (Katz,1977).
Theoretical distributions used include the exponential (Todorovic and Woolhiser, 1975),

the Gamma (Katz, 1977, Buishand,1977), and the Weibull ( Han,2001). The mixed
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exponential distribution has been used previously by Foufola-Georgiou and Lettenmaier

(1987), Woolhiser and Pegram (1979), and Han (2001).

The statistical distribution of rainfall amounts for different length periods was
discussed exhaustively in literature especially in monthly and yearly scales, where good
fits using gamma, Gaussian, logarithmic normal and normal distributions were found
(Delleur anf Kavvas, 1978; Srikanthan and McMohon, 1982). Distributions on the daily
scales or lower, on the other hand has higher variability and that limits the number of

applicable distributions (Nguyen and Rouselle, 1981; Woolhiser and Roldan, 1982).

There was generally no single distribution accepted for describing rainfall
amount over a wide range of regions and time scales. Richardson (1981) used the one
parameter exponential model due to its simplicity, as a first approximation of daily
rainfall distribution. However, to improve the fit to the observed the two-parameter
gamma was used (Ison et al.,1977; Katz,1977; Buishand, 1977). The three-parameter
Kappa distribution performed comparably with gamma (Mielke, 1973). A gamma-
family distribution such as a two-parameter Weibull has also been used. A three-
parameter mixed exponential was found to be the best fit distribution for daily rainfall
series for a number of stations in U.S (Woolhiser and Roldan, 1982; Smith and Shreiber,
1974) and also in Quebec, Canada (Nguyen and Mayabi, 1990). The mixed exponential
distribution has also given a better representation of precipitation extremes (Wilks,
1999a) than gamma improves the spatial coherency of precipitation simulated at a

network of locations (Wilks, 1998).

The method of maximum likelihood (ML) or the method of moments has always
been used in the estimation of parameters. An iterative method for the approximations
of the ML estimators for gamma was presented by Greenwood and Durand (1960) while
Rider (1961) initiated the initial parameter solutions for the mixed exponential function
through the method of moments. A faster convergence to the optimal parameter set was
done by solving seven likelihood functions with incremental initial guesses for 2 of the

parameters within reasonable bound was suggested by Nguyen et al. (1990). However,
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all iterative convergence methods of ML estimates were found to be computationally
exhaustive and often provided local optimum solutions. The method of moments on the
other hand, has often given an inefficient parameter estimates for asymmetric
distributions. It should be noted that robust global optimization methods such as the
Shuffled Complex Evolution (SCE) method (Duan et al. 1992) and the Direct Search
Complex (DSC) algorithm (Nelder and Mead, 1963) have not yet been commonly
applied to parameter estimation of probability distribution using the ML method. With
the recent advance of computing ability, these global optimization methods could

provide more robust and reliable parameter estimates.

2.2.2.4 Modeling the Seasonal Variations

The seasonal variations of parameters of the probabilistic models are usually
been accounted for by estimating the parameters in various methods. It can be handled
by estimating parameters for discrete periods such as a monthly period or 3 monthly
period. To be parsimonious with respect to the number of parameters needed to describe
rainfall at a particular location during a climatologically year, many researchers have
used Fourier series to describe the periodic seasonal fluctuations of parameters.
Fayerherm and Bark (1965) used Fourier series to account for parameter variation in
first-order Markov Chain models of precipitation occurrence. Ison et al. (1971) used
least-squares estimates of Fourier coefficients to examine seasonal variability of gamma
distribution parameters for the amount of precipitation for the i day wet period
(i=1,2,....,i). Woolhiser and Pegram (1979,1986) studied seasonal and regional
variability of parameters for stochastic daily precipitation models. They further used
maximum likelihood estimates of the Fourier coefficients to describe the seasonal
variability in parameters from a two-state Markov Chain model for occurrence and from

a mixed exponential distribution for rainfall amounts.
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2.2.2.4 Hourly Series Models

The stochastic models discussed above basically used time series of daily total
precipitation but less effort has been devoted to data on shorter time scales (e.g. hourly),
with the most prevalent approach being based on so-called conceptual (or physically
based) models, which involve chance mechanisms(e.g. clustering) by which storms
arrive (e.g. Neyman-Scott model). Katz and Parlange (1995) fitted the hourly
precipitation amounts series into an extension of a form of chain-dependent process
model that commonly fit to daily amounts. The extensions involve allowing hourly
intensities to be auto-correlated and allowing the model parameters to possess diurnal
cycles. The results are competitive, if not superior to the so-called conceptual models of

the precipitation process.

2.4  Further Advances in Rainfall Modeling

The introduction of several new concepts and ideas in rainfall modeling had been
witnessed in the past decade. The spectral theory of rainfall intensity based upon three
components of stochastic point processes were used by Waymire et al (1984) and similar
spectral structure were applied to stochastic modeling of rainfall by Yoo (1996) where
the derivation was based on the autoregressive process that considered advection and
diffusion. Elsner et al. (1993) examined the possibility of using the concept of entropy
for the problem of assessing complexity and predictability of precipitation records.
Yeboah et al. (1997) used a hybrid point rainfall model for the modeling of rainfall. The
recent developments focus more on the refinement of the existing models towards

applications to practical problems.



34

2.4  Weather Forecasting

Weather forecasting is the application of science and technology to predict the
state of the atmosphere for a future time at a given location. For millennia, people have
tried to forecast the weather. In 650 BC, the Babylonians predicted weather from cloud
patterns. In about 340 BC, Aristotle described weather patterns in Meteorological.
Chinese weather prediction lore extends at least as far back as 300 BC. Ancient weather
forecasting methods usually relied on observed patterns of events. For example, it might
be observed that if the sunset was particularly red, the following day often brought fair
weather. This experience accumulated over the generations to produce weather lore.
However, not all of these predictions proved reliable and many of them have since been

found not to stand up to rigorous statistical testing.

It was not until the invention of the telegraph in 1837 that the modern age of
weather forecasting began. Before this time, it had not been possible to transport
information about the current state of the weather any faster than a steam train. The
telegraph allowed reports of weather conditions from a wide area to be received almost
instantaneously by the late 1840's. This allowed forecasts to be made by knowing what
the weather conditions were like further upwind. The two men most credited with the
birth of forecasting as a science were Francis Beaufort, remembered chiefly for the
Beaufort scale, and his protégé Robert Fitzroy, the developer of the Fitzroy barometer.
Both were influential men in British Naval and Governmental circles, and though
ridiculed in the press at the time, their work gained scientific credence, was accepted by

the British Navy and formed the basis for all of today's weather forecasting knowledge.

As practiced by the professionally trained meteorologist, weather forecasting
today is a highly developed skill that is grounded in scientific principle and the method
makes use of advanced technological tools. The notable improvement in forecast
accuracy that has been achieved since the 1950s is a direct outgrowth of technological

developments, basic and applied research, and the application of new knowledge and
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methods by weather forecasters. High-speed computers, meteorological satellites, and

weather radars are tools that have played major roles in improving weather forecasts.

A policy statement of the American Meteorological Society as adopted by the
Council on 13" January 1991 stated that the most impressive gain in forecast accuracy in
recent years has been in the prediction for the 1 to 5 day range. A number of factors
have contributed to the increase in accuracy. Foremost among these has been the further
development of numerical prediction models, based on the laws of physics that are able
to forecast the formation and movement of the large high and low pressure systems that

govern day-to-day weather changes in middle and high latitudes.

Several other factors have also contributed significantly in increasing the
forecasting accuracy. One is the development of statistical methods for enhancing the
scope and accuracy of model predictions. Statistical methods allow a wider variety of
meteorological elements to be predicted than do the models alone, and they tailor the

geographically less precise model forecasts to specific locations.

A number of different statistical and machine learning techniques have emerged
in the last decades.  These techniques extract the information contained in
meteorological databases of historical observations to train specific forecast models such
as the regression model, hidden Markov models and neural networks. The resulting
models predict future outcomes of a given variable based on the past evidence collected

in the database.

There have also been some attempts for combining both database information
and the numerical prediction models. This is done by combining the model’s predicted
patterns with the information available in the databases such as rainfalls, and predictions,
such as gridded atmospheric patterns. Employing downscaling methods, sub-grid detail
in the prediction is gained by post-processing the outputs from the numerical prediction
models using knowledge extracted from the databases (Murphy, 1999). One of the most

popular downscaling techniques is the method of analogs, which assumes that similar
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atmospheric patterns may lead to similar future outcomes. Thus, predictions based on an
atmospheric pattern can be derived from an “analog ensemble” extracted from the

database.

Another factor that increases forecasting accuracy is the improved observational
capability afforded by meteorological satellites (Matthew et al., 2003). The continued
improvement of the initial conditions prepared for the forecast models also contributes to
the increase in accuracy. Satellites now provide the capability for nearly continuous
viewing and remote sensing of the atmosphere on a global scale. The improvement in
initial conditions is the result of an increased number of observations and better use of

the observations in computational techniques.

2.6 Rainfalls Forecasting Techniques

Forecasting rains is one of the most difficult tasks in weather prediction due to
the scarce knowledge on how to characterize the mechanisms taking part in its
formation. Short term forecasting of rainfall fields is one of the major tasks to achieve
efficient forecasts of flood events. Regardless of the model adopted to predict rainfall, it
has been demonstrated that it allows extending of the lead time of flood forecasts, as
well as improving the estimate of flood for a given forecast lead time (Brath et al.,

1988).

Many different techniques have been proposed to forecast rainfalls. Among
these, a physically based approach which makes use of meteorological models might be
appealing. One example is the numerical weather prediction (NWP) model. Early in the
20th century, advances in the understanding of atmospheric physics led to the foundation
of modern numerical weather prediction. In 1922, Lewis Fry Richardson published
"Weather prediction by numerical process," which described how small terms in the
fluid dynamics equations governing atmospheric flow could be neglected to allow

numerical solutions to be found. They took the analysis as the starting point and evolved
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the state of the atmosphere forward in time using understanding of physics and fluid
dynamics. However, the sheer number of calculations required was too large to be
completed without the use of computers. Nowadays, the complicated equations which
govern how the state of a fluid changes with time can be solved by supercomputers. The
output from the model provides the basis of the weather forecasts. Unfortunately, a
major limitation stems from the spatial and temporal resolution of the hydro
meteorological variables required for the initialization of deterministic models where
wind speed, relative humidity, temperature and pressure profile cannot be provided by

most of the operational monitoring networks (Burlando et al., 1996).

In the 1960s, the chaotic nature of the atmosphere was first observed and
understood by Edward Lorenz, the founder of the field of chaos theory. These advances
have led to the current use of ensemble forecasting in most major forecasting centers and
to taking into account uncertainty arising from the chaotic nature of the atmosphere. It is
the second limitation of physically based approaches that could also be viewed in the
chaotic structure of the thermodynamic equations to be solved (Ghil et al., 1985; Tsonis
and Elsner, 1989). This can be detected as an intrinsic limit to predictability of rainfall

(Rodriguez Iturbe et al., 1989; Ghilardi and Rosso, 1990).

Since 1986, the neural network technique has drawn considerable attention to
many researchers as it can handle the complex and nonlinear problems better than the
conventional statistical techniques where it has the ability to predict future values of the
time series. Elsner and Tsonis (1992) have shown that the neural network can be
successfully used to predict the chaotic series. It is useful for stochastic and
deterministic forecast processes where in deterministic forecast process, rainfall time

series are treated as deterministic and even chaotic.

Nevertheless, some improvements can be expected as related to further
developments of mixed stochastic-deterministic models where they include both

deterministic and stochastic aspects in the model such as the so-called limited area
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models, or simplified meteorological models that act at the basin scale (Georgakakos and

Krajewski, 1991).

Rainfall forecasting based on stochastic models may still represents a useful tool.
In the literature, several attempts to forecast rainfall based on mathematical models can
be found. Most of them are statistical black-box models where the functional
relationships between system inputs and system outputs are studied. The main
advantage of this model is that they are not as data demanding as the physical models.
This model develops the concept of storm tracking, based on cross-correlation between
rainfall either observed at various rain gages, or tracked by radar signals (Nguyen et al.,

1978; Phanartzis, 1979; Johnson and Bras, 1980).

2.6 Time Series and Forecasting

A time series is a sequence of observations taken sequentially in time. There are
many sets of time series data such as a weekly series of the number of customer in a
supermarket, a yearly series for the prices of gold and hourly observations made on the
yield of a chemical process. Time series are found in many fields such as economics,

business, engineering, natural sciences and social sciences.

Time series analysis comprises methods that attempt to understand such time
series, often either to understand the underlying context of the data points such as where
they came from or what generated them. The term time series analysis is used to
distinguish a problem, firstly from more ordinary data analysis problems where there is
no natural ordering of the context of individual observations and secondly from spatial
data analysis where there is a context that observations often relate to geographical
locations. There are additional possibilities in the form of space-time models which are
often called spatial-temporal analysis. A time series model will generally reflect the fact
that observations close together in time will be more closely related than observations

further apart. In addition, time series models will often make use of the natural one-way
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ordering of time so that values in a series for a given time will be expressed as deriving

in some way from past values, rather than from future values.

There are many applications of time series. One is where the time series are
used to develop models where predictions can be made. This is called time series
forecasting. Time series forecasting is the use of a model to forecast future events based

on known past events to forecast future data points before they are measured.

Forecasting is the process of estimation in unknown situations. Prediction is a
similar, but more general term, and usually refers to estimation of time series, cross-
sectional or longitudinal data. Risk and uncertainty are central to forecasting and
prediction. In more recent years, forecasting has evolved into the practice of demand
planning in every day business forecasting for manufacturing companies. The discipline
of demand planning, also sometimes referred to as supply chain forecasting, embraces

both statistical forecasting and consensus process.

2.6.1 Statistical Time Series and Forecasting

Statistical analysis of time series data started a long time ago (Tsay, 2000), and
forecasting has an even longer history. The objectives of the two studies may differ in
some situations but forecasting is often the goal of a time series analysis. Applications
played a key role in the development of time series methodology. The following are

uses of time series analyses in business and economics:

(1) To study the dynamic structure of a process.

(i)) To investigate the dynamic relationship between variables.

(i11)) To perform seasonal adjustments of economic data such as the gross
domestic product and unemployment rate.

(iv) To improve regression analysis when the errors are serially correlated.

(v) To produce point and interval forecasts for both level and volatility series.
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To facilitate discussion, we denote a time series at time ¢ by z, and let y, , be
the information set available at time #—1. It is often assumed that y, | is the o- field

generated by the past values of z,. A model for z, can then be written as

z,=flw,.)+a, (2.2)

where a, is a sequence of independent and identically-distributed random variables with
mean 0 and finite variance o’ . It is evident from the equation that a, is the one-step-
ahead forecast error of z, at time origin #—1 and hence it is often referred to as the

innovation or shock of the series at timez. The history of time series analysis is

concerned with the evolution of the function f (I//H) and the shock a, .

The publication of Time Series Analysis: Forecasting and Control by Box and
Jenkins in 1970 was an important milestone for time series analysis. It provided a
systematic approach that enables practitioners to apply time series methods in
forecasting. It popularized the autoregressive integrated moving average (ARIMA)
model by using an iterative modeling procedure consisting of identification, estimation,
and model checking. The success of ARIMA models generated substantial research in
time series analysis. Originally, time series analysis was divided into frequency domain
and time domain approaches. The time domain approach uses autocorrelation function,
p, of the data and parametric models, such as the ARIMA models, to describe the
dynamic dependence of the series (Box, Jenkins, and Reinsel, 1994). The frequency
domain approach on the other hand focuses on spectral analysis or power distribution
over frequency to study theory and applications of time series analysis. A power
spectrum of a stationary z, is the Fourier transform of the autocorrelation function p,

(Brillinger, 1975; Priestley, 1981). Cooley and Tukey made an important advance in

frequency-domain analysis by making spectral estimation efficient (Tsay, 2000).
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The objective of an analysis and experience of the analyst are the determining
factors between which approaches to use. In the context of Bayesian and non-Bayesian
time series analyses, there remain some differences, but the issue has been shifted those
of practicality rather than philosophy. Durbin and Koopman provided both classical and

Bayesian perspectives in time series analysis (Tsay, 2000).

The advances in computing facilities and methods have profound impacts on
time series analysis. There are many important developments within the so called
"traditional analysis", for example, linear Gaussian processes with parametric models.
In model diagnostics, outlier analysis and detecting structural breaks have become an
integral part of the model. Chang, Tiao, and Chen (1988) for example, looked at outlier
detection while Martin and Yohai studied influential functionals (Tsay, 2000). Outlier

analysis in time series are concerned with aberrant observations in z, and q,, or in other

words the observations straying from the right or normal way, and the changes in the

mean of z, and the variance of a,. Akaike (1974) and Hannan (1980) proposed some

model selection criteria to help in the time series model selection. Some important
advances in pattern identification methods have also been developed for example, the R-
and S-array of Gray, Kelley, and Mclntire (1978) and the extended autocorrelation
function of Tsay and Tiao (1984). The pattern identification methods are capable of
handling both stationary and unit-root nonstationary series. Choi (1992) discussed the
many developments in ARMA model identification. The exact likelihood method now
becomes the standard method of estimation. The foregoing developments are not in
isolation with other developments in the area and their impacts are not limited to linear

Gaussian time series models (Tsay, 2000).

Generally speaking, two important technical advances in the recent history of
time series analysis have generated much interest on the topic. The first advance is the
use of state-space parameterization and Kalman filtering. This happened largely in the
1980s, as evidenced by the explosion in the papers published in statistical journals that
have "state-space" or "Kalman filter" in their titles. The original purpose of introducing

Kalman filter into time series analysis was mainly to evaluate efficiently the exact
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Gaussian likelihood function of a model and to handle missing observations. The
usefulness of the technique was extended beyond estimation, where it led to
developments of new methods for signal extraction, for smoothing and seasonal

adjustment, and for renewal interest in structural models (Tsay, 2000).

The second technical advance in recent time series analysis is the use of Markov
Chain Monte Carlo (MCMC) methods, especially Gibbs sampling and the idea of data
augmentation. The applicability of MCMC methods to time series analysis is
widespread and indeed the technique has also led to various new developments in time
series analysis. These include nonnormal and nonlinear state-space modeling and
inference and prediction of autoregressive models with random mean and variance
shifts, including using explanatory variables to estimate transition probabilities in mean
and variance. The MCMC methodology also led to increasing use of simulation
methods in time series analysis, especially in tackling complicated problems that were

impossible to handle a few years ago (Tsay,2000).

The past several decades also brought many important advances in time series
methodology. One of it is for the multivariate process. Methods for analyzing
multivariate series have been developed, especially in structural specification of a vector
system. The usefulness and need of considering jointly several related time series were
recognized a long time ago (Quenouille, 1957). However, multivariate analysis is often
confined to vector autoregressive (VAR) models. Two reasons for this lack of progress

arc:

(1) The generalization of univariate ARMA models to vector ARMA models
encounters the problem of identifiability.
(i1) Multivariate models are much harder to estimate and to understand, and

there is a propensity to use perceived simpler models.

A related development in multivariate time series analysis is the cointegration of

Engle and Granger (1987). Cointegration means that a linear combination of marginally
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unit-root nonstationary series becomes a stationary series. It has become popular in
econometrics because cointegration is often thought of as the existence of some long-
term relationship between variables. In the statistical literature, the idea of a linear
combination of unit-root nonstationary series becoming stationary was studied by Box
and Tiao (1977). Associated with cointegration is the development of various test
statistics to test for the number of cointegrations in a linear system. Despite the huge
literature on cointegration, its practical importance is yet to be judged. This is due
primarily to the fact that cointegration is a long-term concept that overlooks the practical

effects of scaling factors of marginal series (Tsay, 2000).

Since the last decade, multivariate forecasting methods have given rise to more
research than univariate methods have. This is partly because computational advances
have made them more feasible in practice. It seems natural to try to improve forecasts of
one variable by including appropriate explanatory variables in the model. Identifying all
the relevant variables may not be easy and it is important to study the context, to ask
questions and to look for previous empirical regularities. There is always the contrary
danger of including unnecessary explanatory variables, which appear to improve the fit
but actually lead to poorer out-of-sample forecasts. Although most people expect
multivariate forecasts to be better than univariate forecasts, this is not necessarily the
case. However, they may still improve our understanding of the interrelationships

between variables.

There are many types of multivariate models. One basic question is whether
there is a causal relationship between the explanatory variables and the response
variable, and also whether the system is of open loop structure or whether changes in the
response variable feed back to affect the explanatory variables in a closed loop way.
Multiple regression is still the most commonly used method but there can be problems in
fitting such models to economic time series data where the variables can be correlated
with each other and with time, and where feed-back may be present. Although a good fit
can often be obtained, poor forecasts may still result. It is arguable that this is partly

because the error structure of regression models is overly simplistic for use with time
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series data and there has been much work on alternative classes of multivariate time
series model notably vector ARMA (VARMA) models. Software has become available
but VARMA models are still not easy to fit even with only two or three explanatory
variables. Partly because of this, many analysts prefer to restrict attention to vector
autoregressive (VAR) models or even further to low order VAR models. Empirical
evidence does suggest that restricted VAR models give better out-of-sample forecasts
than unrestricted VAR models.

Multivariate methods are worth considering when appropriate expertise is
available and when suitable explanatory variables have been identified and measured,
especially when one or more of them are leading indicators. Multivariate forecasts are
sometimes worth the extra effort that they entail, and multivariate models usually do
give a better fit. However, it is important to realize that out-of-sample forecasts from
multivariate models are not necessarily more accurate than those from univariate models

either in theory or practice, because of the following reasons:

(1) Exogenous variables may have to be forecasted.

(1)) Economic data are generally observational rather than designed data, and
so may be unsuitable for fitting multivariate models.

(iii) 'Simple may be best'. It appears that simple univariate methods are often
more robust to model misspecifications and to changes in the model than

more complicated models are.

Multivariate forecasts are more accurate than univariate extrapolations in many
case studies. Despite the research interest in alternatives, such as VAR models, multiple
regression is still the most commonly used multivariate model. This is because of its

simplicity.

A multivariate autoregressive integrated moving average (MARIMA) model is
more likely to be the same as the autoregressive integrated moving average (ARIMA)
model. However, instead of analyzing only a series, we observe simultaneously several

series. Such time series data may be available on several related variables of interest or
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in other words, there is more than one series involved in such a model. The reasons for
analyzing and modeling such series jointly are to understand the dynamic relationships
among them. They may be contemporaneously related, one series may lead the others or
there may be feedback relationships. Another reason is to improve the accuracy of
forecasts. When information of one series is contained in the historical data of another,
better forecasts can be obtained when the series are model jointly (Tiao and Box, 1981).
In this view, the operational use of MARIMA model was suggested by Montanari et al.
(1994), who highlighted how a multivariate scheme could remarkably improve the

forecasts.



CHAPTER 3

METHODOLOGY

3.1 Convective Rainfall

To analyse and characterize convective rain in Klang Valley, the temporal
pattern and the spatial distribution between meteorological radar data and surface rainfall
(rain gauge) need to be explored. This chapter presents the methodologies used in this
research with focus on characterization of rain properties, establishment of criteria for
separating convective from non-convective storms and checking discrepancies or
similarity between meteorological radar data and observed surface data (rain gauge).

The source of data and limitations are also described.
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Research Design and Procedure

The research procedure of this study is summarised in Figure 3.1 below:
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rain based on short rainfall
duration data

- Intensity
- Duration
- Total rainfall

v
2nd objective

Establish criteria for
separating convective

v

3rd objective

Compare observed areal
rainfall with those derived

-slightly convective
-moderately convective

from non convective from radar
storms
\ 4 \ 4
Rain gages Radar

Rainfall contours
derive from kriging
- strongly convective method l l

Rainfall contours
derive from radar

to compare and evaluate the spatial
distribution between rain gages and
radar

to see the movement of rainfall

to make relationships between rainfall
depth and area of rainfall contour

A 4

Analyse the results

v

Report writing

Figure 3.1 : Flow chart of research design and procedure
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3.2.3 Study Area

The study area covers the whole Klang Valley, comprises Kuala Lumpur and its
surroundings and suburbs. Klang Valley is surrounded by hilly areas especially to the
east and northeast and the Port Klang coastline to the west. Based on the most recent
census, the population in the Klang Valley has expanded to 26.64 million (Statistics
Bulletin, 2006 June), and it has an area of about 3200 sq. Km.(Norhan and Mazian,
1997) The climate of the area is tropical with averages temperature range from 22°C to
33°C throughout the year and the relative humidity as high as 90%. Being located in the
equatorial zone, the climate is governed by the northeast and southwest monsoons. The
northeast monsoon usually commences in early November and ends in March and the
southwest monsoon is usually established in the later half of May or early June and ends
in September. These two main monsoon seasons are separated by two relatively short
inter-monsoon seasons which usually recorded heavy rainfall. The annual rainfalls vary
between 2,000 mm and 2,500 mm and the mean monthly rainfall between 133 mm and

259 mm (Desa et al., 2005).

Peninsular Malaysia

Figure 3.2 : The study area in Klang Valley



49

Figure 3.2 shows the area of Klang Valley (inset) from the map of Peninsular

Malaysia and rainfall station 3117070-JPS Ampang which supplies data for the study.

3.1.3 Terminal Doppler Radar

The radar images were derived from the Terminal Doppler Weather Radar (TDR)
located at Bukit Tampoi, about 10 km north of Kuala Lumpur International Airport
(KLIA). The TDR is primarily used for the detection and warning of wind shear and
micro bursts in the vicinity of KLIA. RADAR stands for Radio Detection and Ranging
and it’s used for detecting the position, velocity and characteristic of target (bearing,
range, and altitude). The difference between a conventional weather radar and Doppler
weather radar is that the former can only detect the characteristic, size, direction and
distance of precipitations while the latter can detect not only the characteristic, size,
direction and distance of precipitations but also radial wind speed, wind shear and
microburst. Figure 3.3 shows the TDR at KLIA. Table 3.1 summarizes the principle

characteristics of this radar.

Figure 3.3 : Terminal Doppler Radar at KLIA



50

Table 3.1 : Main characteristics of KLIA Terminal Doppler radar used in this study

Radome - 12 m. diameter

Parabolic Reflector - 8.5 m. diameter
Wavelength -10 cm

Frequency -2874.5 MHz

Peak power - 750 KW

Pulse Width -1.0 us /3.0 ps

Pulse Repetition - 1000Hz (1.0 ps pulse width)
Frequency - 300 Hz (3.0 ps pulse width)
Azimuth Resolution -0.7°

Range Resolution -125m

Doppler Velocity - 1.0m/s

The colours on radar images represent the values of energy reflected toward the
radar. The reflected intensities or echoes are measured in dBZ (decibles of z). The scale
of dBZ values is also related to the intensity of rainfall. Typically, light rains have dBZ
value of less than 20. The higher the dBZ, the stronger the rain intensity. The Doppler
radar does not determine where rain is located, only areas of returned energy (National
Weather Service, 2006). The “dB” in the dBZ is logarithmic and has no numerical
value, but is used only to express a ratio. The “z” is the ratio of the density of water

drops (measured in milimeters, raised to the 6™ power) in each cubic meter (mm®m?).

Mathematically:

dBZ = 10*log (z/z0) (3.1)
where,

z = reflectivity factor

70 = 1 mm®/m’

When the “z” is large (many drops in a cubic meter), the reflected power is large. A
small “z” means little returned energy. In fact, “z” can be less than 1 mm®mm’ and
since it logarithmic, dBZ values will become negative, as often in the case when the

radar is in clear air mode and indicated by earthtone colours (National Weather Service,
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2006). Figure 3.4 shows rainfall image from Doppler radar at KLIA. The intensity was
measured in two units. On the left side, the scale is in dBZ and on the right in mm/hr.
In this study, rainfall intensity in mm/hr was used to show the rainfall rate in digitized

image. The Doppler radar image has too many colours for

dBZ
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Figure 3.5 : Various level of reflectivity colour derived from radar image (a) and (b)

simplified rainfall intensity colour after digitization



52

various intensity scales. However, it is visually difficult to differentiate these colours.
To simplify the data analysis, the colour scales were reduced to seven by redigitizing the
radar image. The new intensity scales and the corresponding radar intensity values are
shown in Figure 3.5. These scales were used in determining of rainfall contours. These

scales were used to construct rainfall contours.

3.1.4 Data Source and Collection

In order to analyse convective rain of the study area, several different data
sources are used. In the first stage, a five year (2000-2004) rainfall data recorded from
hydrological data bank, Department of Irrigation and Drainage (DID) at station
3117070-JPS Ampang was extracted. All data from this station were used to execute
first and second objectives. In the second stage, rainfall data from 20 raingauges (9
raingauges in Wilayah Persekutuan and 11 raingauges in Selangor) were selected to
achieve the fourth objective, which is determine the spatial distribution between
meteorological radar data and observed surface data (raingauge). Ground data was
obtained from DID, while radar data were taken from Malaysian Meteorological
Department (MMD), KLIA in Sepang. Heavier rainfalls were selected for this analysis.
These events coincided with major flood events. These events occurred on June 10,
2003, Nov 5, 2004, Jan 6, Feb 26, Apr 6, and May 10, 2006. Table 3.2 lists the various
data sources of Klang Valley.



Table 3.2 : Data sources
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Data Description

Year/Date

Sources

Method  of
data
collection

1%t and 2™

objectives

Rain
3117070 — JPS Ampang
gauge

2000-2004

3 and 4™

objective

WILAYAH PERSEKUTUAN
3116003 — Ibu Pejabat JPS

3116006 — Ldg Edinburgh Site 2
3216001 — Kg. Sg Tua

3217001 — KM 16, Gombak
3217002 — Emp. Genting Klang
3217003 — KM 11, Gombak
3217004 — Kg Kuala Sleh
3317001 — Air Terjun Sg Batu
3317004 — Genting Sempah
Rain
gauges
SELANGOR

2917001 — JPS Kajang

3014084 — JPS Klang

3014091 — UiTM Shah Alam
3018101 — Emp. Semenyih
3115079 — Pt Penyelidikn Sg Buloh
3117070 — JPS Ampang

3118102 — SK Kg Lui

3119104 — JIn Genting Peres
3216004 — SMJK Kepong

3315037 — Tmn Bukit Rawang
3315038 — Country Home

Radar The whole Klang Valley

10™ Jun 2003

05" Nov 2004
06™ Jan 2006
26™ Feb 2006
06™ Apr 2006

10™ May 2006

Department of
Irrigation &
Drainage

(DID),

Malaysia

Hydrological
data bank

Malaysian

Meteorological
Department
(MMD), KLIA,

Sepang

Radar data




54

3.1.5 Data Analysis

3.1.5.1 Separation of Rainfall Events

Rainfall events must be isolated before they can be analysed. The period without
rainfall or interevent time definition is a typical criterion used to isolate an individual
rainfall event from continuous rainfall. The criterion is also well known as minimum
interevent time (MIT) (Figure 3.6). Many researchers used MIT values between 0 and
50 hours to separate rainfall events (e.g. Hydroscience, 1979; Bedient and Huber, 2002)
while Adams et. al., (1986) suggested MIT values between 1 and 6 hours for urban
applications. In this study, a rainfall event is defined from Minimum Interevent Time
(MIT) method. The annual numbers of rainfall events were plotted against different
MIT values and an appropriate MIT value is selected from the graph at point after which

increases in the MIT do not result in significant changes in the number of event.

4 Since the temporal
separation between the two

rainfalls is greater than the
MIT, the rainfalls are MIT The temporal separation
considered to belong to — between the two rainfalls
different storm events is less than the MIT, the
/_ — 7 rainfalls are considered
— - > // to be the same storm

] event
MIT 4‘4/

—‘ » Time

-+ -+ -
Event i Event j

Rainfall Intensity

Figure 3.6 : Separation of rainfall events based on minimum interevent time (MIT)
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3.1.6 Analysis of Convective Rain
3.1.6.1 Temporal

The aim of this study is to characterize convective rain in Klang Valley. Initially
rainfall data is analysed in terms of intensity, rainfall duration and total rainfall. Short
interval rainfall data recorded between years 2000 and 2004 were used. In year 2000,
DID has installed automatic raingauges that can record short intervals of 1-minute or 5-
minutes rather than 15-minutes intervals as previously recorded. Shorter rainfall
aggregation can give more accurate information about the duration of a storm and thus
short intervals data is needed for analyse convective rain. This is because convective

storms usually lasted over a short period of time.

A five year rainfall data recorded at JPS Ampang (3117070) was analysed. In
the beginning, the diurnal and monthly rainfall patterns at Ampang station were studied.
The separation between non-convective and convective event were carried out based on
a 35mm/hr threshold for each 5 minute interval. This threshold is very often used in
precipitation models for engineering applications to set apart non-convective from
convective precipitation (Llasat, 2001). Five minute intensity is used because rainfall
data are already collected in 5 minutes interval. The convective characteristics were
clearly shown in storm shape where 10 storms were selected to show the rainfall pattern.
Next, convective event was divided into four classes based on the 3 parameter. This
classification is according to their greater or lesser convective character (Llasat, 2001).

The B parameter is determined using equation (3.2):

{i I(ti,ti + AT) > L}
Biar == (3.2)
D I(ti,ti+ AT)

i-1

where,

AT

time interval of accumulation of the precipitation

I(ti,ti+AT) = precipitation measured between ti and ti+AT
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L = 1s set at 35 mm/hr

z
I

total number of AT integration steps into which the

episode is divided

Llasat further divided the storms into four categories based on the 3 values as follows:
B = 0 non-convective
0 < B< 0.3 = slightly convective
0.3 <B< 0.8 = moderately convective

0.8 < B< 1.0 = strongly convective

3.1.6.2 Spatial Distribution

The spatial distribution of rainfall derived from meteorological radar data was
compared with surface rainfall data (rain gauge) using Geographical Information System
(GIS). There are a number of softwares available in GIS, for example ArcView, Arclnfo
and ArcGIS. All of these softwares are developed by ESRI, which is one of the most
analytically developed GIS products. In this study, ArcGIS 9.1 is used to digitize radar
data and displaying the image in rainfall contour. Radar data need to be digitized first
because the image which is taken from KLIA Meteorological Station is in JPEG format.
This format is the end product of Interactive Radar Information System (IRIS), the radar
software used at KLIA and IRIS cannot give rainfall image in GIS format. Figure 3.7

shows radar image taken from KLIA Meteorological Station.

The digitized images using ArcGIS can give the area of every colour code and
the corresponding rainfall intensity. On the other hand, the isohyetal line for surface
rainfall was constructed using TIDEDA database. TIDEDA is a computer program for
processing time-dependent data, particularly hydrological data. Comparison was made
based on a 5-minutes rainfall. For similar event and time four heavier rainfalls were
selected for this analysis. These events coincided with major flood events. These events
occurred on 10™ Jun 2003, 05™ Nov 2004, 06™ Jan, 26™ Feb, 06™ Apr, and 10™ May

2006. For every event, several images at different time were selected and digitized. By
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matching the same occurrence time, line rainfall contour from surface data (Kriging)
were compared with rainfall contour radar image (digitized image). Finally, a
relationship between areas of rainfall contour (derived from Kriging) with rainfall depth
was examined. Table 3.3 shows the time of images, which are selected for spatial

comparison and correlation.

Figure 3.7 : Radar image in JPEG format

During these events, twenty rain gauge stations in Klang Valley exhibited
relatively good continuity of rainfall data. All of the rain gauges are selected to compare
spatial distribution between radar data and surface rainfall data. Figure 3.8 shows the

locations rainfall stations used in this study.

Table 3.3 : Times during which the digitized images were captured by TDR

Date of events
Jan 6, Feb Apr 6, May
2006 26, 2006 2006 10, 2006
18:19 03:23 15:08 15:01
18:25 04:55 15:13 15:12
Capturing
) 18:30 06:21 15:19 15:28
Time
18:36 06:32 15:29 15:33
(hh:mm)
06:38 15:35 15:39
06:43 15:41
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Figure 3.8 : Locations of twenty rain gauge stations selected in this study

3.1.6.3 Procedure To Derive Rainfall Contour from Radar and Raingauge Data
Using GIS

As already noted in section 3.6.2.2, radar images which is taken from KLIA
Meteorological Station is in JPEG format. All images need to be digitized before
rainfall contours is created. Radar images need to be digitized with layer by layer
according to the colour of intensity in that image. Due to the number of intensities, it is
visually to differentiate those colours. To simplify the data analysis, the colour scales
were reduced to seven by redigitizing the radar image (see Figure 3.5). The new
intensity scales and the corresponding radar intensity values were used in radar’s
contour. Figure 3.9 shows the flow chart to produce rainfall contour derived from radar.

The process of digitizing radar image is shown in Appendix A.
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Raw data from radar
(JPEG image)

A 4

Digitize radar image
using GIS - ArcGIS 9.1
(digitize layer by layer)

v
|

(merge all layers)

A 4

Rainfall contours

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
Red Orange Yellow Green Dark Dark Blue
80— 100 35-80 8-35 3-8 Green Blue 0.3-0.6
mm/hr mm/hr mm/hr mm/hr 09-3 0.5-0.9 mm/hr

mm/hr mm/hr
I I I I I I I
A 4
Union

Figure 3.9 : Flow chart of making rainfall contours derived from radar

Rainfall contours from surface rainfall were derived by GIS also where Kriging

Method was used in ArcGIS 9.1. As noted in Chapter 2, Kriging produces an estimate

of the underlying (usually assumed to be smooth) surface by a weighted average of the

data, with weights declining with distance between the point at which the surface is

being estimated and the locations of the data points. Since raingauge station is selected,

the location of rainfall station in Klang Valley was shown in point features in GIS. All

intensities for every raingauge station were key-in in GIS. Using ArcGIS, Kriging

Method can be implemented in two ways either Spatial Analyst or Geostatistical

Analyst. In this study, Geostatistical Analyst is chosen because the Matern model (now

it is recognized as K-Bessel) tends to produce surfaces that are smoother locally (on a

very fine scale) than some other models (such as the exponential or spherical). Beside
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that, among the advantages of the implementation of kriging in Geostatistical Analyst
relative to that in Spatial Analyst are the ability to handle directionality in the data and
the ability to make plots of prediction errors as a way of assessing uncertainty. There
have four steps to execute kriging in Geostatistical Analyst. Figure 3.10 shows the flow
chart of producing rainfall contours by ground data. The four steps during interpolate
the rainfall contour in ArcGIS can be seen in Appendix B. After both of rainfall
contours were created, the spatial distributions of rainfall were compared in term of

intensity and area. The area of rainfall contours also determined by GIS.

Key-in ground data in ArcGIS
(from 20 raingauge stations)

A 4
Choose Geostatistical Analyst

1st 2nd 3rd 4th
Geostatistical Semivariogram / Seraching Cross
Method Selection Covariance Neighborhood Validation
(Ordinary Kriging) Modeling
(Matern model /
K-Ressel)

\ 4
Rainfall contours

Figure 3.10 : Flow chart of making rainfall contours derived from ground data

3.1.6.4 Storm Movements and Depth Area Relationship

The movement of rainfall pattern also observed. In this study, four flash flood
events that had occurred in the Klang Valley were chosen. The storms bringing rains

leading to the flash floods had exhibited convective characters. These events also are a
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good example of unusually strong convective events responsible for heavy rainfall. To
identify convective rainfall in radar images, a value of 35 dBZ is taken as reflectivity
threshold. This technique was developed by Dong and Hyung (2000), where they were
used this value in study of heavy rainfall with mesoscale convective systems over the
Korean Peninsular. Beside that, this value also is already noted in radar’s rate, so it is
easy to read the reflectivity according to radar’s colour code. The highest reflectivity,
which is greater than 35 dBZ is chosen as centre of the storm for convective events. The
centre of the storm is used as reference to show the movement of the storms. The
coordinates of every movements of centre of the storms were plotted in RSO (Rectified
Skew Ortomorphic) Malaysia, which is one of coordinate system and it is interpreted

from GIS (ArcGIS 9.1).

Next, in order to get the relationship between area and rainfall depth, surface
rainfall data from eleven raingauge stations were used. The rainfall depth pattern and
the area for every color code of rainfall contours in small catchment were presented in
six selected storms. The area of catchment is about 241.34 km®. The areas between all
pairs of neighbouring isohyets of the six selected storms were computed by ArcGIS 9.1.
These rainfall contours also derived by Kriging Method as stated in section 3.6.2.3.
After all of the area of every colour code were calculated, mean area precipitation
(MAP) were computed. MAP is the mean areas between all pairs of neighbouring
isohyets. Then, the percentage reduction of storm depth is determined and lastly, areal
reduction curves for all storms were plotted. All calculations to produce areal reduction

curves were shown in Appendix C.

3.1.7 Limitations in Analysing Convective Rainfalls

The above sections have described the research methodologies for analyzing

convective rains. The data used in this analysis has some limitation as follows.
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(a)

(b)

(©)
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Some rainfall stations in Klang Valley are no longer in operation and
some stations have missing data. This limit the numbers of rainfall

stations used in this study.

Although a number of flash flood events occurred between year 2001 and
2006, complete sets of rainfall data for both surface rainfall and radar
rainfall are not always available.

Due to the small numbers of rainfall stations, rainfall contours derived by
Kriging Method cannot give a smooth contour. This is because Kriging
works best with large input data and prediction errors are larger in areas

with small number of samples.

Stochastic Modeling of Rainfall Series using Neyman-Scott Rectangular
Pulses Model (NSRP)

This study emphasizes on the single-site rainfall modeling for data collected on

short time scale, that is hourly, both for describing adequately the high variability of

these rainfall processes and for providing a basis for simulating rainfall processes for

longer time scales. The progress made in this area is crucial to the generalization of the

approach to temporal rainfall modeling. The description of the model mathematical

structure will be presented in this section. The presentation will consider many important

features of temporal rainfall processes such as the structure of the rainfall depth,

duration, intensity and occurrence. Some improvements that are proposed in the present

study will be derived in this chapter.

3.2.1 Determining the Best-fit Distribution for the Hourly Rainfall Series

According to WMO, a wet day is defined as a day with a rainfall amount above a

fixed threshold of 0.1 mm. This threshold will be chosen in this study with amount of

greater than or equal to 0.1mm to be identified as wet hours. The sequence of rainfall
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amounts on wet hours is also considered as the intensity process ( Katz and Parlange,

1995).

3.3.2.1 Types of Distribution

In this study, the distribution of hourly rainfall amounts is described by four

functions the Exponential, Gamma, Weibull, and Mixed Exponential distribution.

The probability density functions along with the log likelihood functions are as

follows:
a. The Exponential distribution with parameter A represents mean while x
represents the hourly rainfall amounts.
f(x)= le%’ x,A>0
R ’ (3.3)
b. The Weibull distribution with two-parameters, namely « and /£ to represent
shape and scale parameters respectively while x represents the hourly rainfall
amounts.
a1 (x5 (3.4)
f(x):ﬁ(ﬁj e[ﬁ] a>0,f>0,x>0
AV
C. The Gamma distribution with two-parameters, namely « and £ to represent

shape and scale parameters respectively while x represents the hourly rainfall

amounts.
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1 _I
f(x):—axi“_le A, a>0,>0,x>0 (3.5
(o) p
d. The Mixed-Exponential distribution is a weighted average of two one-

parameter exponential distributions. The mixture distribution has three

parameters, with « representing the mixing probability and S, and
B, representing the scale parameters, while x representing the hourly rainfall

amounts.

o=[Z)et (1220
/) @ { eJ (3.6)

x>0,0<a<1,0<<&<6

3.3.2.2 Parameter Estimation Methods

The maximum likelihood method that is claimed to being a minimum variance
unbiased estimator is used in estimating the parameters of the distributions. However,
the method of moments is still being used to set up the initial points of the maximum
likelihood method. In the maximum likelihood estimation, it is assumed that X;’s are
independent and identically distributed where i=1, 2, ..., n. The function f(X;|9,, ..., 6,) is
the conditional density function of the observations X; given the parameters 6, ..., 6,
When the X;’s are independent, the joint density function of X; is the product of the

marginal densities.

The parameters 6,,..., 6,, are estimated by maximizing the following likelihood

function:

L@,,....0,) = Hf(Xl. 16,.,...,0,) (3.7)
i=1
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The parameters are determined by taking the partial derivative of L(é,,...,0,) with
respect to each parameter setting the resulting equations to zero. These m partial
derivative equations are solved for the m unknown parameters. In order to get the
unknown parameters, it is easier to maximize the natural logarithm of the likelihood

function because most of probability distributions involve the exponential function.

a. Exponential :
The first-order moment about the origin is

M,=E(X)=2 (3.8)

The corresponding sample moment is

Mean X = lei (3.9)

n i

A

The estimate of the parameter 4 is X .

The log-likelihood is

10gL:ZlogBe4} (3.10)

i=1
b. Gamma:

The first two moments about the origin is

M =EX)=p/4 (3.11)
+1

M,=E(X?) :% (3.12)

The corresponding sample moments are
X =lle- (3.13)

N

2 1 < 7\2

st=——> (x,—X) (3.14)
n—143

Equating the population and sample moments, the parameters are
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A= L__— 3.15
M,-M? s G139
s s M X’
=AM, = 1 = 3.16
d M- M] S 10
The log-likelihood is:
n 1 _r
logL="> lo x“ e ” (3.17
el=2, g{F(a)ﬂ“ } :
c. Weibull
The first two moments about the origin is
1
M, :E(X):ar(—+lj (3.18)
Y
2 o[ 2
M,=E(X")=«a F(—+lj (3.19)
v

The above equations are nonlinear and cannot be solved directly. The coefficient

of variation (COV) and the shape parameter J is used to estimate the parameters (Cohen,
1965):
2 1
1 2 1/2
- I'—+)-I"(—+1
(Variance)> (M,-M)"* _ ¢ 7 )-TX 7 )
Mean M, F(l 1)

CovV = (3.20)

The log-likelihood is

logL = anlog{%[%ja ei[i] ] (3.21)

d. Mixed Exponential

The first three moments about the origin are

M, =E(X)=aé+(1-a) (3.22)
M,=E(X*)=2a& +2(1-a)&’ (3.23)
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M,=E(X’)=6a& +6(1-a)d’ (3.24)

The corresponding sample moments are

n
in
=

K, = (3.25)
n
K, = lef (3.26)
1z
K, = lz X’ (3.27)
o

The log-likelihood is

logL = anlog{[%j e_?xi +(1 ;aje; } (3.28)

3.2.1.3 Goodness of fit tests

In determining the best-fit distributions five quantitative methods are used in this

study.

a. The mean and median absolute difference between the hypothesized distribution

F(x) and the empirical distribution, F, (x).

n

|7 (o) = F . 0)

Mean = = (3.29)
n

Median

F,(x)~F(x,,0)

b. Kalmogorov-Smirnov (KS) test calculates the maximum difference between the

hypothesized distribution and empirical distribution.
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D* =max {l/n-Z}, D™ =max{Z,—(i—1)/n}
KS =max(D",D").

(3.30)

c. Cramer-Von-Mises (CVM) calculates the squared difference between F(x)and
F,(x).

]
wr=N4Z —i-1)/2n" +— 331
(2 -@i=h/2n + o (331)

i=1

d. Anderson-Darling (AD) test calculates the squared difference between F(x)and

F,(x), and divided them by the weight function [ F(x)(1- F(x))]’1 .

A =-n —li[(Zi—l) log Z, + (2n+1-2i)log(1- Z,)] (3.32)

n o

e. Akaike Information Criterion (AIC) is derived by minimizing the Kullback
Leibler distance between the proposed model and true one. The best model is the

one having the smallest AIC. The AIC is given by

AIC = -2 log (maximum likelihood) + 2 & (3.33)
=-2MLL + 2k

in which & denotes the number of parameters.

3.2.2.4 Exceedance Probability

The exceedance probability is defined as the probability of a rainfall amount
occurring greater than that of a given amount. Example, the probability of rainfall
exceeding a low amount (< 1 mm) would be high, while the probability of rainfall

exceeding above 100 mm is a more unlikely event. This probability is plotted on a semi-
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log scale and it is a qualitative tool to assess the performance of distributions considered.

The horizontal axis represents the wet hours amount and the vertical axis represents the

[1-F(x)] and [1-F,(x)] where F(x) represents the hypothesized distribution and the
F (x) represents the empirical distribution. This plot will display every wet hours data

distinctly.

3.2.3 The Neyman-Scott Rectangular Pulses model (NSRP)

The theoretical basis of stochastic point processes is needed in order to understand
the Neyman-Scott model properly. This will focus on special processes of potential

importance in applications related to rainfall.

3.2.2.3 Theory of Point Processes

The use of point process theory have received widespread attention by scientists
for the development of realistic rainfall models (e.g.,Rodriguez-Iturbe et al.1987a,b;
Entekhabi et al. 1989; Islam et al.1990; Cowpertwait, 1991; Onof and Wheater,1993;
Onof et al. 1994; Velghe et al. 1994; Cowpertwait et al. 1996a,b; Khaliq and Cunnane,
1996; Cowpertwait, 1998,2002,2004) since the pioneering work of Kavvas and Delleur
(1981); Waymire and Gupta (1981a,b,c); Rodriguez and Iturbe et al. (1984); Waymire et
al. (1984); Smith and Karr (1985b,a); Valdes et al. (1985). A point process is a model of
points randomly distributed in some space £. The points may represent times of events,
locations of objects or paths followed by a stochastic system. One example of a point
process event is the emission of radioactive from a source that occurs in an irregular
sequence in time. FEach emission defines a time distant. When a point process is
defined, it is often of interest to count the numbers of points in subsets of the space E .

Let assume a realization 7 of a random point process on E is a denumerable point set
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of E. This mean that T can be enumerated as T = {¢,,1,,.....} where each ¢, denotes the

coordinate of a pointin £ . Let 4 be a subset of £ .Then

N(A,T) =D 1,(1), (3.34)

is the number of points that lie in 4 and each ¢, is the coordinate of a pointin 7. 7 ,(¢)

denotes the set characteristic function of 4 and is defined as follows:

1 ifgeR

IR(q)z{O ifg¢R (3.35)

N(A4,T) defines a non-negative, integer-valued random process on E. This process is

called a counting process.

3.2.2.4 The Poisson Process

Consider the process as defined over the whole time axis (—oo,0). Let H,

denotes the history of the process at time ¢, i.e. a specification of the positions of all

points in (—oo,¢]. For u<v, let N(u,v)be a random variable giving the number of
points in (u,v]. Then for a given constantp with dimensions [time]’, the Poisson

process of rate p is defined by the requirements that for all 7, as 6 - 0+,

P{N(t,t +S)[H,} = 16+ 0(S), (3.36)
P{N(t,t+5)[H,} = 0(5) (3.37)

so that
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P{N(t,t +8)=0[H,} =1- 18 + 0o(5). (3.38)

From Eqgs.(3.36) to (3.38), the probabilities concerned do not depend on H,. It follows
that the probability of finding a point in (¢,t+ 0] does not depend on the number of

points occurring just before ¢. In fact, the expression of Eq.(3.37) excludes the possibility
of multiple simultaneous occurrences. However, there are two important results that can

be deduced from the above specifications of the process.

1. Consider the points 0<7, <7, <7, <...... building a Poisson process of a constant

rate A. The random variables X, =T7,.....T =T —T (n=2) are independent and

n n

each has probability density function of f,(.) = Aexp(—Ax). This property provides

the interval specification of the process.

ii. Consider the number of events N(a; b;) of the process that falls in a, <b, <a,,, . The

i+l

Poisson process on the line is completely defined by the following equation.

P{N(a,b)=n,i=1,... ,k}=H;))mexp(—/1(bi—ai)) (3.39)
n

This counting specification includes three important features: the number of points in
each finite interval [a;,b;] has a Poisson distribution ; the number of points in disjoint
intervals are independent random variables; the distributions are stationary and are

dependent upon the respective lengths b, —a; of the intervals.

Cox and Isham (1980) defined the above Poisson process with three mutually
equivalent specifications: the intensity specification Eqs.(3.36-3.37), the interval
specification, and the counting specification. The interplay between the three
specifications of the Poisson process is a recurring theme in the study of point processes.
Note that the intensity specification can be used for building a realization of a Poisson

process while the interval specification gives an efficient basis for such a construction.
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3.2.2.3 Some basic definitions

The complete intensity function is an important characteristic of point processes.

It is defined as

p(t;H,) = lim 5'P{N(t,t +5) > O[H,}. (3.40)
50"
where H, specifies the point process up to and including . For the Poisson process, the
complete intensity function is equal to p(t;H,)=A. The probability of a point in

[¢,t+0] given the fact that there is a point at the origin is specified by the conditional

intensity function

h(t)= lim &'PIN(t,1+3,)>0|N(=6,,0) > 0} (3.41)

The conditional intensity function will be used to derive the covariance of the counting

process later.

Stationarity and orderliness are another two important properties in point
processes. The intuitive notion of stationarity means that the distribution of the number
of points lying in an interval depends on its length but not on its location; that is
P{N(t,t+x)=k} (x>0,k=0,1,2,.....) (3.42)
depends on the length x but not on location .

The following definitions explain the characteristics in stationarity.

Definition 1
A point process is stationary when for every » = 1,2,....., and all bounded Borel subsets

A, A, ... ... A, of the real line of the joint distribution of

[N(A +1),.ccs N(A, +1)) (3.43)

does not depend on ¢ (—o0 < f < 0).
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Definition 2

A point process is interval stationary when for every » = 1,2,..., and all integers ij,.....i,

the joint distribution of {z, +£,......7, +k} does not depend on k, (k=0, +1,....).

The non-existence of a multiple simultaneous occurrences in a process is called
orderliness, that is

P{N(t)>1 forsome te; } =0, (3.44)

It can be shown that (3.36) implies (3.43) and for most point processes they are in fact

equivalent.

The probability generating functional (pgf) is a generalization of the probability
generating functions that provides a complete description of the random variable and is

useful in the calculation of moments. G, (.) 1s defined by (see Cox and Isham (1980,

eq.(2.42))

Gﬁkﬂ{mej%émWW0ﬂ=Ehjﬁ0} (345)

where {#;} are the random co-ordinates of the points. The two forms of G[&] are
equivalent because N is a step function. In Eq.(3.43) the product is unity if » = 0, and

zero if n > 0 and £(#,) =0 for any i. In order for the expectation to exist, 0 <&(¢) <1 is

required to be imposed.

A more intuitive approach for the probability generating functional (pgf) is

obtained by taking 4, A4,,....... , 4. to be a measurable partition of £ and setting:

£ =51, (), (346

where [I4(x) is the indicator function of the set A and |zl,|£1 for 1= 1,...... 7

Substitution in (3.43) leads to

G{XZ,JA[_ (.)} = E[H zﬁ“ﬂ} (3.47)

i=1
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that is the multivariate probability generating function of the number of points in the sets

of the given partition.

An example is given by Cox and Isham (1980) with the probability generating

functions for non-homogenous Poisson process with rate function A(¢),

G[e]=exp (-] (1-c@nadr), (3.48)

which is equal to the probability generating function for a Poisson variable with

parameter A, given by G(z) =exp(—A(1—2z2)).

Superposition of process is concerned with two or more independent processes
that are superposed in term of summation. Let say there are two independent processes,

namely N; and N,. and N(A4)=N,(4)+ N,(A4) for all sets A. The resulting generating
functional satisfy the relation G [&]= G, [§]G,, [§]. This is in fact a useful property of

probability generating function and is shared by the probability generating functional as
well..
3.2.2.5 Moments

In this section the theory related to the moments of the counting process which

will be used to derive the cross-covariance of the rainfall process is presented.

Consider the first two moments of the counting process in the arbitrary sets A and B:
E[N(A)],V[N(A)],Cov[N(4),N(B)] (3.49)
For stationary orderly processes of finite and fixed rate 4,

E[N(A)]=4|4], (3.50)
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where |A| is the Lebesgue measure of the set A. Considering the covariance for the

counting process for two disjoint sets A and B, we have
2Cov [N(A), N(B)] =Var [N(A v B)] —Var [N(A)] —Var [N(B)] (3.51)

This is the simplest case of a point process on a line. Lets consider A has the interval of

[0,].

N(t) = de(z). (3.52)

Applying the above formula,

O<us<t—z

Var[N(1)]= jVar[dN(z)]+2 [[ oeocs Cov[aN(z),aN(z+u)], (3.53)

where the integral is to be considered as the limit of a sum.

The definition of orderliness implies that N(z,z+0) can take only the values of zero
and one. Hence, for an orderly manner, we get (Cox and Isham, 1980)
Var[N(z,z+8)|= E[ N(z,z+6)* |~ (E[N(z,z+8)])
= P{N(z,z+6)=1}~(P{N(z,z+5)=1}) +0(5) (3.54)
=A0+0(0),
u>0,
Cov[N(z,Z+5l),N(z+u,z+u+52)]
=E[ |E[N(z+u,z+u+08,)|N(z,z+3,) ] -
E[N(z,z+8)|E[N(z+u,z+u+5,)]
=P{N(z,z+8) =1} P{N(z+u,z+u+3,)=1|N(z,z+5,) =1
—P{N(z,z+6,) =1} P{N(z+u,z+u+36,) =1} +0(6,5,)
= Ah(u)o,6, — 1,0,0, + 6(6,0,),

(3.55)
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where /(.) is the conditional intensity function. Merging the above in the limit as 6, and

0, move simultaneously to zero, we can now evaluate

Var [N(t)] = j/ldz + 2j. dth.Z (Ah(u)—A*)du

t (3.56)
= At+2A j (t —u)h(u)du — A°1.
0
Hence, the variance can be written as follows
Var[N()] = [ dz[ c(u—z)du (3.57)
0 0
where

c(u)=A0w)+ Ah(u)— A%, u=>0,

with 6(.) being the Dirac delta function.

3.2.2.5 Cluster Processes

Kavvas and Delleur (1975,1981), Kavvas (1982a,b), Gupta and Waymire
(1979), and Waymire and Gupta (1981a,b,c) have popularized the use of cluster models.
Amorocho and Wu (1977) and Burlando (1989) suggested that cluster models are able to
simulate the cellular structure of actual precipitation fields and able to preserve
theoretically at least the relevant statistics on a wide range of temporal aggregation
scales. Shaw (1983) found that cluster models were more appealing for rainfall time
series simulation as they are able to preserve rainfall statistics over a range of time
scales, and they have built into their structure the capability of representing rain cells,
which are known to exist in actual rainfall events. Hence, the discussion of what is

cluster process is discussed as follows.
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The general structure of cluster processes involves the existence of a point
process of cluster centers. Each cluster center is associated with a random number of
points forming a subsidiary process or cluster. These subsidiary points are being
distributed about the cluster center in some specified ways. The cluster process then
consists of the superposition of all the separate clusters, points belonging to the same

cluster are not being identified as such.

Let say N, denotes the counts connected with the process of cluster centers.
N»(A4) 1s the number of subsidiary points in 4 arising from a cluster given to have center

at z. The total number of points N(4) in 4 is
E{N(A)} = [ E{N,, ()} E{dN, (1)} (3.58)

Suppose that the cluster centers have occurred at points 7. The independence of the
separate clusters implies that the conditional probability generating functional of the

point process is

[1£[exw([l0gan;, )= [ TG0 (3.59)

1=—00

where G [&;t] is the probability generating functional for a cluster centered at # . An

immediate consequence obtained by taking the expectation of Eq.(3.57) is

G[&1=G.[G[&: ] (3.60)

where G [£]=E [H, & (Tl.)} refers to the process of cluster centers.

The cluster process based on the Poisson process is the most frequently used and
the simplest is obtained by treating the Poisson point as sites and locating at each site a
random number of points. Neyman-Scott process is one of an example of the cluster-

based Poisson process and it is sometimes called the center-satellite process (Neyman
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and Scott, 1958).This process uses Poisson points as centers or parents. At each center,
independent of other centers, a random number of satellites are generated. The number
of satellites per center is given by independent, identically distributed non-negative
random variables. Each satellite is displaced from the center according to some dispersal
distribution.  Hence, in the Neyman-Scott process the points in a cluster are
independently and identically distributed around the cluster. Besides Neyman-Scott
process there is another process called the Bartlet-Lewis process. In this process, at each
center point a renewal process generates satellites. In relation to that, in the Bartlet-
Lewis process, the intervals between successive points in a cluster are independently and

identically distributed (idd).

The second-order counting properties of the Neyman-Scott and the Bartlett-
Lewis can be derived with the conditional intensity function h(.). Cox and Isham (1980)
derived this function for the Neyman-Scott process in considering two cases depending

on the position of two points (they either belong to the same cluster or not):

E[C(C-1)]

h(u) = E[C]A, + i

j“; £ f e+ u)dx (3.61)

where /. 1s the rate of the Poisson process of the cluster centers.

The probability generating functional for both processes can be obtained from Eq. (3.48)
and Eq. (3.61) as

Gle1=exp(~2 [ (1-Gl:ea]

The generating functional for a cluster with center at ¢+ may be expressed for the

Neyman-Scott process as (see Cox and Isham (1980, eq. (3.58))
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G.[:01= E| exp [ log )N, )|

“Yg, [ rwpearuydu...[” f@,)E@+u,)du, (3.62)

m=0

-G, (j“; E(t+u) f(u)du).

3.2.4.6 Description of the Neyman-Scott Rectangular Pulses Model (NSRP)

The first proposed rainfall modeling scheme, referred hereafter as the Neyfitan-
Scott Rectangular Pulse (NSRP) model is a clustered point process model. This model is
used in modeling the rainfall event where in any event there exists a generating
mechanism called the storm origin. The storm origin may be passing fronts or some
other criteria for convection storms from which rain cells arise. The Neyman-Scott

models are described by 3 independent elementary stochastic processes: They are

e A process that sets the origin of the events;
e A process that sets the number of rain cells generated by each event;

e A process that sets the origin of the cells.

Storm origins are governed by a Poisson process with parameter A. At a point on
the ground the storm is conceptualized as a random number C of rain cells. Natural
candidates for the distribution of the number of cells C are the Poisson distribution and
the geometric distribution. The cell origins are independently separated from the storm
origin by distances that are exponentially distributed with parameterd . It is assumed
that there is no cell origins being located at the storm origin. A rectangular pulse is
associated independently with each cell origin with its duration and intensity (depth)
being independent. The duration is assumed to be exponentially distributed with

parameter/ . The intensity is assumed to be exponentially distributed with

1 .
parameter—= 1/x. In summary, the NSRP model reproduces the characteristics of
mX

intermittency, persistency and periodicity of the rainfall series.
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3.2.2.7 Mathematical Representation of the NSRP model

The precipitation intensity at time ¢, ¥(¢), is given by the sum of the intensities of

the individual active cells at time t:

Y(=9 :Xt_ L(W)dN(t- u) (3.63)

u=

where X (k)is the random depth of the pulse originating at time u measured a time &

later and {N(¢)} counts occurrences in the Poisson process of pulse origins. Note that the

intensity of N(#) is / m,, where m_ denotes the mean number E[C] of cells per storm.

The derivative of the counting process is
if there is a cell origin at 7- u

% 1
dN(t- u)= 3.64
(- ) % 0 otherwise ( )

and for the rectangular pulses, we have

i X with probability R(x
X,_u(u)=§ p y R(x)

3.65) 80
$0  with probability 1- R(x) ( )

where X, (u)is the intensity of the rectangular pulse triggered at time u and N(¢)

represents the counting stochastic process of the arrivals of the individual cells. R(x) is

the survival function of X.

The moments of the counting process N(f) have been obtained by Waymire and
Gupta (1981c) by derivation of the probability generating functional of the Neyman-
Scott process defined in Eq.(3.61). The second order properties of ¥(¢) can be derived in
various ways, most simply through (3.61). This method has been used by Rodriquez-
Iturbe et al. (1987a). The mean of the depth process can be represented directly as the
product of the rate at which cell origins occur, the mean length of a cell and the mean

depth of a cell, that is,
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E[Y(?)]= %mm (3.66)

The variance and auto covariance at lag-¢ have been expressed in terms of the
conditional intensity function A(.) of the Neyman-Scott process defined in Equations

(3.60) which leads to the following expressions (Rodriguez-Iturbe et al., 1987a)

VarY (1)) = %mcE[Xz]Jr L ?hfb[i }'Z)C]

¢, (t)= CoVY(2),Y(t+ t)]
[

L b*myE[C*- CO Ibme " E[C*- C] (3.67)
h

2b%- h) B 2b,- hy)

- ht & 2
e gmcE[X 1+

Since rainfall data are usually available only as rainfall depths in discrete time intervals
(e.g. historical records of hourly or daily totals), the aggregated properties are needed to
estimate the parameters of the model. The aggregated process at time scale h (the total

depth in a time interval h) is given by:
" _ ih
Y™ = Op 1y Y(t)dt (3.68)
The second-order properties of the aggregated process (Rodriguez-Iturbe et al., 1984 lare
E[Y"]= hE[Y(1)],
h
VarlY"]= 20 (h- u)e,(u)du, (3.69)
0
itk

h
Cov[Y ", Y 1= ¢ cy(kh+ v)(h- Vv,

Thus, if h is measured in hours, the series {Yf =1, 2,....}is a rainfall time series at the

h-hour level of aggregation, i.e. an h-hourly rainfall time series. The second-order

properties of the aggregated process [Rodriguez-Iturbe et al., 1987a] are

Mean:
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E{Y"Y = hAE{CYE{X}/n (3.70)

Variance:
Var{Y"} = An~(nh—1+ e ™)[2u E{X*}+ E{C* = C} . * (B* —1°)]

h 2 2 p-1 2 2 (3'71)
—UPh—=1+e™ME{C* =Cyul B~ N(B* =11)

Covariance:
COV{Y(h)Y(hk)} = /177*3 (1- e*ﬂh) o1k
1
A X+ S BACT = Chac o /B = 17)] (3.72)

_ /1(1 _ e—ﬁ'h) e—ﬂ(k—l)hE{Cz _ C},Uj /[218(182 _ 772)]

From now on, E{Y"}, Var{Y"},Cov{Y”, Y’} will be denoted as
a(h), y(h), 7(h,k) respectively for convenience. The lag k autocorrelation function
p(h,k) is given by y(h,k)/ y(h).

3.2.2.8 The choice of distributions for the rain cells numbers, C and the rain cell

intensities, X.

For the model to be completely defined distributions need to be chosen for C and
X. Natural candidates for C are the Poisson distribution and the geometric distribution.
Velghe et al. (1994) found that geometric N-S performed better than the Poisson N-S
with regards to its ability to reproduce several properties of rainfall, but the result may

not be representative since it was only applied to one station.

In this study the Poisson distribution is chosen to represent the distribution for C.

Following Velghe et al. (1994), the derivations of £( C) and E(C*-C) are as follows:

Assume that C is strictly positive, then C-1 is said to have a Poisson distribution. Let y

be a Poisson distribution with probability density function f{y) given by



The mean E(y) and variance V(y) of the above distribution are both £.

Since C is strictly positive, then

C=1+y

the expected value for C and C” is given as follows:

E[Cl=pu. =1+p
E[C*]=E[(1+y)’'1=1+2f+E[y’]
From the above

E[y’1=Var[yl+E[yY =+’
E[C*1=1+3p+p°
E[C’-Cl=p+2B=1’ -1

Therefore from (14), if we let ¢, =v ,then
E[C-1]=v-1

E[C]=u, =v

E[C*-C]=v*-1

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)
(3.78a)
(3.78b)

(3.79a)
(3.79b)

(3.79¢)
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The rain cell intensity X in the model is following the exponential distribution. The

cumulative distribution function is,

— e_éx

F(x):P{XSx}zl—P{X>x}:{O

and the probability distribution function is,

0 if x<O0,

7 :{ge-‘f’f it x>0.

The expected values for X and X° are

if x<0,

if x>0.

(3.80)

(3.81)
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E[X]= and E[X’]== respectively.

Therefore in Eqs.(3.68) to (3.70) the followings have to be substituted in order for the

mean and the second order properties are to be defined:

u =EC)=v;E(C*-C)=v’-Liu =E(X)=EE(X)=2&7.

With the above properties, the NSRP model has five parameters

0., =4V, 8.1,8). (3.82)

The parameters A represents the storm origin, v represents the number of cells, S
represents the position of cells, 7 represents the duration of cells and ¢ represents the
intensity of the rain cells. Therefore, the model structure is based on the following

assumptions. The diagram in Figure 3.11 explains the following structure in details.

1. The inter-arrival time of the storm origin follows the exponential distribution:
P, (I)=1-¢" (3.83)
il. The number of rain cells is described by Poisson distribution:
C —w
©="a '
11l. The waiting times from the origin to the rain cells origin is described by

exponential distribution:

P, (b,)=1-¢"" (3.85)

iv. The duration of the rain cells is also described by exponential distribution
function:
P()=1-¢e™ (3.86)

V. The intensities are described by exponential distribution:

P(x)=1-¢* (3.87)
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3.2.2.9 The proposed distribution for the rain cell intensities, X.

The choice of the distributions to represent the rain cell intensities in the NSRP
model is arbitrary. The exponential distribution was selected so that the model would
have only a small number of parameter. However, a heavier-tailed distribution could be
used to model the cell intensity to improve the fit to the historical extreme values. An
obvious alternative to the exponential distribution which could be used to improve the fit
to the extremes is the Weibull distribution (Cowpertwait,1996,2002) or Gamma
distribution (e.g. Onof and Wheater ,1993,1994). Whether such distributions are needed

would depend on the intended application for the model.

In this study the mixed exponential distribution is proposed to represent the rain
cell intensities. This distribution is chosen following the results obtained for the fitting
of the hourly amount using the goodness of fit test. It was found that the mixed
exponential distribution was the best among the other candidate distributions namely

exponential, Gamma and Weibull in describing the hourly rainfall amount used in this

study (Fadhilah et. al. 2007).

The probability distribution function for the mixed exponential distribution is given as:
_a 3], (-2) (7]
f(x)—ge g (3.88)
x>0,05a<1;),0<&<0

The mixed-exponential distribution is a weighted average of two one-parameter
exponential distributions. The mixture distribution has three parameters, with «

representing the mixing probability, & and 6 representing the scale parameters and x
representing the hourly rainfall amounts per hour. The distribution function F(x) is

given as:

—-Xx —x

Fx)=ae® +(I-a)e? (3.89)
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Storm origins (O ) arrive according to a Poisson Process

O

)
p\

ii)

Ly

Each storm origin generates a random number of rain cells beginning at ( X)

B

iii)

O

The duration and intensity of each rain cell are exponentially distributed

PN
i
L]
=
0
|

O

The total intensity at any point in time is the sum of the intensities due to all
active rain cells at that point

)
N\

)
N\

Figure 3.11: A scheme for the Neyman-Scott rectangular pulses model.



87

The exceedence probability function R(x)= 1-F(x) is defined as :
R(x)=1- [ae‘f +(1- a)e‘9] (3.90)

The first three moments about the origin are

M,=E(X)= T xf (x)dx =aé +(1- )0 (3.91)
M,=E(X*)= T X’ f(x)dx =20&° +2(1- )6’ (3.92)
M,=E(X’)= T X f(x)dx =6a&’ +6(1—a)6’ (3.93)

Hence, the mean rain cell intensity 4 = E(X) and E(X*) for the NSRP model are
given by Egs. (3.68) and (3.69) respectively. In addition, the E(C) and E(C’-C) are

u =E(C)=v (3.94a)
E(C*’-C)=p’-1=v?-1 (3.94b)

With the above properties, the NSRP model with mixed exponential distribution has
seven parameters, namely A, v, B, 1, o & and @ that characterize respectively the
origin of storm, the number of cells, the positions of cells relative to the storm origin,
the duration of rain cells, the mixing probability and the intensity of the rain cells that is

described by the last two parameters. Hence,

O=1,v,B,n,a,¢,0) (3.95)

With the mixed exponential distribution to represent the rain cell intensities, the model

structure follows Equations (3.82) to (3.85) but the rain cell intensities is described by:
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}}anfxﬂ:If(ﬂdxza(L—éz]+U—a)®—e;] (3.96)

3.2.2.10 Probability of dry periods

The expression for the probability of an arbitrary interval of any chosen length
being dry is a useful property to be derived as it may be used in fitting the model or
comparing the model with field data. Cowpertwait (1991) derived this expression in the

case where the rain cells are distributed according to Poisson law.

—Ah+ A '(v =)l —exp[l-v+(v-1e "]}

P(7," =0)=exp (3.97)

2f0= py(o1dn)

in which

i) = (e 1= (e = pe (- B} x

eXp {—(V — l)ﬁ(e‘ﬁf _ e—f7t ) /(77 _ ﬂ) _ (V _ l)e—ﬁt + (V _ l)e—ﬁ(t+h)}

and

o0

Jur=py(enar = %{7 #Inf( T e (- 1)]}

where y is a Euler's constant = 0.5772.

The transition probabilities, P(Y} > O‘Yi“’) >0) and P(Y" = O‘Yi“’) =0), denoted as
@,w(h) and @,,(h), respectively, can be expressed in terms of the probability of dry

period P(K(h) = 0) = @(h) as follows (Cowpertwait, 1996):

Pop (h) = #(2h)/ p(h) (3.98)
() = G (WP() + {1 = By (R)} {1 = P(h) (3.99)

so that
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Gy (h) = {1 =20(h) + $(2h)}; /{1 = p(h)} (3.100)

3.2.2.11 Parameter Estimation

The fitting of the parameters and the assessment of the adequacy of the fit raise
many statistical questions. The different methods of parameter estimation of the NSRP
model have been discussed extensively in Chapter 2. However, the method of moments
is the most frequently used for estimating the parameters of the NSRP(Rodriguez-Iturbe
et. al., 1987a,b; Entekhabi et.al.,1989; Cowpertwait, 1991). Following Cowpertwait et.
al.,(1996) the historical hourly series of rainfall data is aggregated at three different
temporal scales that is, 1,6 and 24 hours scales using the expressions of the mean at 1-
hour (3.69), the variances at 1, 6 and 24-hour (3.70), lag-1 autocorrelation at 1, 6 and 24-
hour(3.70) and probability of dry at 24-hour (daily) (3.96). The using of mean of more

than one level of aggregation is not possible since E[Y"]=kE[Y"]. Therefore, in this

study parameter estimation procedure is to be achieved by minimizing the sum of

squares, where the squared terms are the differences between the selected expressions of

the model and their equivalent historical sampled values. Let M, =M (A,v, 5,1,&)

be a function of the original NSRP model, and let M l.s be its historical sampled value.

2
S:Zwi[ —ﬁ;} m>5 A,B,nE>0,v>1 and M > 0. (3.101)

i=1

w; is a weight and it allows greater weight to be given to fitting some sample moments
relative to others. The use of a ratio of model function is to ensure that large numerical
values do not dominate the fitting procedure. Cowpertwait (1996) applied a weight of
100 to the term relating to the sample mean to ensure that this is matched almost exactly
by the model. He also suggested the use of a larger set of sample moments (e.g. mean,

variances and autocorrelations at different aggregations, probability of dry days and
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transition probabilities), assigning weights to different statistics. However, in this study,

there are two proposed fitting procedures to be used:

3.2.2.11.1 Model parameter estimation using autocorrelations

As suggested by Rodriguez-Iturbe et al. (1987), Entekhabi et al. (1989) and
Cowpertwait (1991, 1996), the sample moments to be used are 1 hour mean [ z(1)],

variances at 1, 6 and 24 hourly [ 7(1), 7(6),7(24) ], lag-1 autocorrelations at 1, 6, and 24
hourly [ p(1,1), p(6,1), p(24,1) ], and probability of dry days [¢?(24)]. The following

estimators of u(h), y(h),y(h,1) were employed to avoid bias (e.g. see Trenberth, 1984):

n H,((h )

Mean: [(h) = Y /{n{"n} (3.102)
i=l j=1
n P )
Variance : 7(h) = (Y0 = i ()} 1 {n"n} (3.103)
i=l j=1
n n,((h)—l
Covariance: 7(h,1) = Y =i (Hx2,, —,&k(h)}/{(n,(f)—l)n} (3.104)

i=l  j=1

Where £ is a calendar month index (k=1 for January, 2 for February, etc), ¥") is the j"

h-hourly total in year I for month k, n\" is the number of A-hourly totals in month k and

n is the number of years of record. The autocorrelations of lag-k is

p(h k) =y(h.k)/ y(h).

The weight of 100 is applied to term relating to sample mean and one to the
others (Cowpertwait et. al.,1996). Therefore, in this study, based on procedures
proposed by Cowpertwait et.al (1996) the following equation is optimized to estimate

the parameters.
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S=> w(l-M,/M)

i=1

:100'(1—&j2+w -(1—&]2+w (1——'0(1’1)J2+w -[l—@}z
an) U pm) T U ) U e

@@) (I@j w[le w[le (3.105)
p£(6,1) 7(24) p(24,1) #(24)

3.2.2.11.2 Model parameter estimation using transition probabilities

Cowpertwait et.al. (1996) found that NSRP model matched poorly the historical
proportion of dry days when autocorrelations were used in the fitting procedures. The
possible explanation for this is that the model is unable to match both the
autocorrelations and the proportions of dry days. Moreover, autocorrelations tend to
have large sampling errors due to large number of zero depths. Hence, the lag-1
autocorrelations are excluded and transition probabilities in Eqgs. (3.97) and (3.99) are
used. The choice of sample moments in this study was based upon G. Calenda
Napolitano (1999) where the choice of aggregation scale must not be too close or else
the optimization procedure may fail. Hence the sample moments and the transition

probabilities used were one-hour mean [ Z(1)], variances at one, six and 24 hourly
[7(1),7(6),7(24)], transition probabilities of P00 (dry-dry event) and PII(wet-wet
event) at hourly and daily scales [d,,(h),¢,, (h)] and the probability of dry days
[#(h)]. The estimators for the mean and variances are given in Equations (3.100) and

(3.101) respectively. The observed transition probabilities were computed using the

following formulas:

o

Poo (1) = oo 0 = o e )
A (3.106)
Ay (H)

¢?WW (h) = ﬁWW (h)=

Ay () + iy, ()
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Where a,(h) denotes the number of times in the sample of observations of rainfall

occurrences that a transition from state i on the 4™ hour to state j on the (4+1}™ hour
occurs and
G, = ap(h)+ ay (h). (3.107)

Equal weights are given to all terms. Therefore the following equation is to be

optimized:

S=>w(l-M,/M)

i=1

- -(1-&]2 o, .(l_zﬂf - .(l_yf_ﬂz o i- 424)}2
Ai(1) 7(1) 7(6) 7(24)
+w; .[]_MJ + W, ,(1_ ¢ZDD(24)] +w, .[1_ ?WW(I)]
Boo () Pop (24) By (1)

1828 20
By (24) $(24)

(3.108)

3.2.2.12 Optimization Techniques

The parameters of the model are to be estimated by minimizing Eqs.(3.104) or
(3.107). There are many methods discussed in literature on minimizing the objective
functions. However in this study the Shuffled Complex Evolution-University of Arizona
(SCE-UA) method by Duan et. al.(1992) is used in minimizing the model function. The
SCE-UA is a global optimization method that has been shown to be able to provide more
accurate and more efficient search for the optimal solution of complex nonlinear
objective functions as compared to the local optimization technique such as Nelder and
Mead Simplex or Quasi Newton Search (Duan et al.,1992). This algorithm requires the
knowledge of the model parameters upper and lower bounds before it can be

implemented.

The SCE-UA method starts with a population of points sampled randomly from

the feasible space and the population is partitioned into several communities. The
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communities evolve based on a statistical reproduction process that uses the simplex

geometric shape to direct the search in an improvement direction. As the search

progresses, the entire population are shuffled and points are reassigned to communities

to ensure information sharing. If the initial population is large enough, the entire

population tends to converge to the neighborhood of the global optimum.

The SCE-UA method combines the strengths of the simplex procedure with the

concepts of controlled random search, competitive evolution and the newly developed

concept of complex shuffling. The strategy of the SCE-UA method is as follows (Duan
et.al., 1992):

11.

iii.

1v.

vi.

Initializing process

To select p > 1 and m > n+1, and to compute the sample size s = pm where p is
the number of complexes, m is the number of points in each complex, and n is
the dimension of the problem.

Generation of a sample

To sample s points x;, ..., x, in the feasible space and to compute the function
value f; at each point x; using a uniform sampling distribution.

Rank of points

To sort the s points in order of increasing function value and to store them in an
array D={x; f, i =1,..., s}.

Partition of array D

To partition D into p complexes A4, ..., 45, €ach containing m points, such that 4
=5 = Xpgn 1] = fiopg J=1 s m.

Evolution

To evolve each complex 4% k = 1,..., p, according to the competitive complex
evolution algorithm.

Shuffling the complexes

To replace 4,,..., A, into D, such that D = {4;, k=1,..., p} and to sort D in order

of increasing function value.
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vii. Convergence

To stop if the convergence criteria are satisfied, or to return to step (iv).

The population is portioned into several communities (complexes), each of which
is permitted to evolve independently. After a certain number of generations, the
communities are mixed and new communities are formed through a process of shuffling.
This procedure enhances survivability by a sharing of the information (about the search
space) gained independently by each community (Duan et al., 1992). This strategy uses
the information contained in the sub complex to direct the evolution in an improved
direction. The processes of competitive evolution and complex shuffling inherent in the
SCE-UA algorithm help to ensure that the information contained in the sample is
efficiently and thoroughly exploited. They also help to ensure that the information set
does not become degenerate. These properties provide the SCE-UA method with good

global convergence properties over a broad range of problems.

As mentioned earlier the SCE-UA method requires the knowledge of the upper
and lower bounds of the model parameters before the algorithm can be implemented.
Based on the results by Cowpertwait et.al. (1996) and Calenda et.al. (1999), Table 3.4
presents the range of parameter values used in this optimization computation. The
mixed exponential distribution is represented by parameters ¢ and 8 with a represents the
mixing probabilities. The ¢ is always smaller than 6. Table 3.5 presents the SCE-UA
method options in optimization program. These options are part of the requirements in
the SCE-UA algorithm before the parameters could be estimated. The parameters
obtained will be used in the generation of hourly rainfall data. Since seasonal variations
are considered in this modeling the parameters are evaluated for each month with twelve

sets of parameters for the calibrated NSRP model.
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Parameters | Description Parameter
ranges
A Inter-arrival times of storms 0.001 - 0.05
v Number of rain cells 1-20
)i Waiting times from the origin to the rain cell 0.01-0.5
n Rain cell duration 0.1-5
¢ Rain cell intensities (Exponential) 0.01- 4
¢ Rain cell intensities (Mixed Exponential) 0.001 - 20
a Mixing probabilities 0-1
0 Rain cell intensities (Mixed Exponential) 10-100
Table 3.5: SCE-UA method options in optimization program
Option Description Value
MAXN Maximum number of trials 10000
KSTOP Number of shuffling loops 10
PECNTO Percentage by which the criterion value must change in the | 0.01
specified number of shuffling loops
NGS Number of complexes used in optimization search 2
ISEED Random seed used in optimization search -1
INIFLG Flag on whether to include the initial point in the starting | 1
population
3.2.3 Simulation of the hourly rainfall series

The MATLAB program was designed to simulate the rainfall data based upon

the Neyman-Scott Rectangular Pulse (NSRP) model.

processes for describing the following properties:

The NSRP model consists of five

i. Numbers of storms from inter-arrival times - Storm origins occur as a Poisson

process with a mean rate A/hour.

i1. Number of rain cells - Average number of rain cells per storm is v.
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iii. Waiting times from the origin to the rain cell - Average waiting time from the

origin to the rain cell is 1/B hours.

iv. Rain cell duration - Average rain cell duration is 1/n hours.

v. Rain cell intensities - Average rain cell intensity is 1/& if the rain cells intensities

are described by the Exponential Distribution. If the rain cells intensities are

described by the mixed exponential distribution, then the average rain cell

intensity is 1/ and 1/6 with a mixing probability of a.

The program includes Poisson and exponential random number generation procedure.

The hourly rainfall simulation procedure of the NSRP model is illustrated in Figure 3.3.

The following steps are followed in generating the hourly rainfall:

ii.

iil.

1v.

Vi.

Vil.

Vviii.

1X.

Generate the number of storms in which the arrival rate is a Poisson process.
Generate a number of rain cells based upon the Poisson distribution
originated from the storm origin.

Generate the time intervals, ¢, between the rain cells and the storm origin
where 7 is exponentially distributed.

Generate the duration for each rain cell based upon the exponential
distribution.

Generate the intensities for each rain cell based upon the exponential or the
mixed exponential distribution.

Calculate the position of the storms by adding up the waiting time between
the storm origins.

Calculate the position of each rain cells by adding up the position of storm
origin and the intervals between rain cells and storm origin.

Calculate the duration and the intensities of each storm.

Calculate the total intensities of the storm.

Calculate the hourly intensities generated by the storms.
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Series of rainfall data will be generated depending on the number of simulation chosen.
Data is generated according to months. Sample of MATLAB programs are given in

Apendix D.

3.24 Models Assessment

In this study, the performance of the traditional NSRP using the exponential
distribution for the rain cell intensities will be assessed and compared with the
performance of the proposed NSRP using the mixed exponential. For each model, two
fitting strategies were adopted, using autocorrelations or using transition probabilities as
mentioned previously. More specifically, the following cases of NSRP model

calibration are considered.

1. The NSRP model with exponential distribution to describe rain cell intensities.
1. Using autocorrelations in the fitting procedure and is referred hereafter as the
EXP.
ii. Using transition probabilities in the fitting procedure and is referred hereafter

as the EXPTRAN.

2. The proposed NSRP model with mixed exponential distribution to describe rain

cell intensities.

1. Using autocorrelations in the fitting procedure and is referred hereafter as the
MEXP.

ii. Using transition probabilities in the fitting procedure and is referred hereafter
as the MEXPTRAN.

The flowchart of the working strategies for the NSRP models is given in Figure 3.14
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3.2.4.1 Graphical Method

Graphically, the simulated rainfall properties represented by the box-plots
(Figure 3.12) are compared with the observed properties (represented by the dots
connected by the dashed lines). If the observed value is comparable to the median value
(the middle 50% value) of the boxplots, then the proposed model is said to have an
“excellent” or “very well” ability in preserving the properties of the historical data. If
the observed value falls on the whiskers and within the range defined by the simulated
minimum and maximum, then the proposed model is said to have a “fair” ability in
preserving the properties of the historical data. Otherwise, the model either
underestimates or overestimates the observed statistical characteristics. Figure 3.12 show

the characteristics of a box plot.

3.2.4.2 Root-mean-square error (RMSE).

Quantitatively both models are compared using the root-mean-square errors

(RMSE) calculated for each property tested. The root-mean-square error formula is as

follows:

RMSE=R, =4 (3.109)

~

where § is statistics of the observed, S, is the median of the simulated, » is the number
of simulated statistics.
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3.2.4.3 Statistical Properties

Statistical properties of 30 synthetic hourly time series produced by each model were
analyzed graphically using box plots for the monthly comparisons of the 30 simulated

series with the observed. The statistical properties examined include:

a. One-hour series

The mean, variance, autocorrelation, coefficient of skewness of the hourly rainfall
amount are to be computed from the generated hourly series. These properties will
determine the model’s suitability and accuracy in preserving the observed at the same

scale as the generated series using the generated hourly series.

b. Six-hour series

The generated hourly series are lumped or aggregated to six- hourly rainfall series. The
mean, variance, autocorrelation and coefficient of skewness of the six-hour rainfall will
be computed. These properties will determine the ability of the model in preserving the

six-hour rainfall process.

C. Twenty-four or Daily series

The generated hourly series are then lumped or aggregated to 24-hourly series. This is
equivalent to the daily scale. The mean, variance, autocorrelation and the coefficient of
skewness of the 24-hour rainfalls will be computed. These are daily rainfall properties
and the properties will determine the model ability in describing the daily rainfall

process.
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Figure 3.12: Characteristics of a Box plot

d. Monthly series

The generated hourly series are lumped or aggregated to become monthly series. The
lumping is done by accumulating from hourly to 24 hourly, then to one-month scale.
Only the mean and variance will be computed to represent the statistical characteristics
of the monthly scales. These properties will determine the model ability to describe the

rainfall process at monthly scale.
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3.2.4.4 Physical Properties

The physical properties of the rainfall series will represent the underlying process of

rainfall events. The properties identified as physical properties are:

a. One-hour series

The physical properties include the distribution of the maximum rainfall amounts, the
probability of dry hours and the hourly transition probabilities of rainfall occurrences
P00 (dry-dry hours) and PI0 (wet-dry hours). These describe the rainfall process
physically at hourly scale.

b. Twenty-four-hour or daily series

The physical properties include the distribution of the maximum rainfall amounts, the
probability of dry days and the hourly transition probabilities of dry-dry days and wet-
dry days. These are important physical characteristics that are required in the daily series
and also crucial in the water management planning. This will determine the model

ability in describing the physical process of daily rainfall.

C. Monthly series

The physical properties include the distribution of the maximum and minimum rainfall

amounts. These properties are important for water management planning.
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Figure 3.13: Flowchart of simulation procedures of the NSRP model
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Figure 3.14: Flowchart of the working strategy for the NSRP models
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3.3  Stochastic Rainfall Modeling using Markov Chain Mixed Exponential Model
(MCME)

3.3.1 Introduction

A rainfall model based on daily precipitation is attractive because relatively long
and reliable records are readily available and such a model is frequently efficient for
many practical problems. Stochastic models of daily rainfall are usually divided into
two parts, a model of rainfall occurrence which provides a sequence of dry and wet days,
and a model of rainfall amounts, which simulates the amount of rainfall occurring on
each wet day and then both are superimposed to form the overall rainfall model.

(Eagleson, 1978; Woolhiser et.al, 1982, Roldan et.al, 1982, ).

One of the popular stochastic modeling of daily rainfall is the Markov Chain-
Mixed Exponential (MCME). The first-order two-state Markov Chain model is used to
describe the hourly rainfall occurrence process and the Mixed Exponential distribution is
used to describe the hourly amount distribution.). Many studies have used the
combination of Markov Chain and Mixed Exponential MCME) to model daily rainfall
series and the combined model had proven to be the best in describing rainfall processes

(Woolhiser and Pegram. 1979, Woolhiser et.al, 1982, Han, 2001).

An effort on modeling the hourly rainfall series using the two parts modeling was
done by Katz and Parlange (1995) that fitted stochastic models to time series hourly data
by using an extension of chain-dependent process commonly fit to daily rainfall amount,
and the amount distribution is described by a power transformation of the normal. The
model was said to be competitive to the so-called conceptual model (pulse-based) but
failed to reproduce the statistics of 12h and 24 h aggregation. However using MCME on
hourly series has never been reported in literature yet. Han et al (1982) pointed out that
rainfall for short time intervals, is more difficult to model than long time period because

of the sequential persistence between rainfall amounts, and also because the time-series
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are dominated by zero values (intermittent process). Therefore, this study will explore

the possibility of using MCME in modeling the hourly rainfall process.

3.3.2 The Hourly MCME Model Derivation

According to Pattison (1965), a first-order Markov Chain could be used to model
hourly rainfall observations during sequences of nonzero rainfall (wet hours). Using the
WMO guideline, a wet day is defined as a day with a rainfall amount above a fixed
threshold of 0.1 mm. This threshold will be used as well for defining the wet hours with
rainfall amount of greater than or equal to 0.1 mm.

In this study the MCME is to be applied on the hourly rainfall series with two
states: dry or wet hours; modeled as either a 0 or 1 respectively with a first order Markov
Chain explaining the dependence between wet and dry hours on successive hours. The

rainfall amounts is modeled using the mixed exponential distribution.

3.3.2.1 The Occurrence Process

Let assume the amount of precipitation falling on 7™ hour and " day is a random

variable

Z,(h) = X,(h).,(h) (3.110)

where X; (h) represents the occurrence process and Y, (k) represents the amount of

precipitation when X; (/) is wet.

The hourly occurrence process {Xt (h):h=1,2,..,24;t =1, 2,....} 1s defined as

1 if ith hour of 7th day is wet
X, (h)= (3.111)

0 otherwise
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where wet hour refers to one on which measurable precipitation occurs. The

conventions adopted are as follows:
X.(-)=X,,(23),X,(0)=X, ,(24), X, (25 =X,,,(1), X,(26) = X,,,(2),.......

It is assumed that the process X(/) constitutes a two-state, first order Markov

Chain with transition probabilities

P(hy=P{X,(h) = j|X,(h=D)=i} i,j=0.1
t=1,2,.....365 (3.112)

P,(h)y=1-P,(h) i=0,1
Let Y (#) be the amount of rainfall that falls on day t and hour h when X, (h)=1. We
assume that Y (k) is serially independent and independent of X,(h#—1)=1. This means that

there is dependence on rainfall occurrence from hour to hour but that the amount is
independent of previous occurrences and amounts. The assumption of independence
between the amounts of rainfall on successive days leads to significant simplifications in
the model structure and has been used by several previous researchers (Coe and Stern,

1982; Richardson and Wright, 1984).

Woolhiser and Pegram [1979] recommended the maximum likelihood method to
estimate the parameters of the Markov Chain using the daily series. Therefore, the same

procedures are applied to the hourly series. The log likelihood function:

1 24

nL({X,})=4 & & a,(WnF ()

i=0 j=0 h=1

, . (3.113)
:g' gloo(h)lnﬁ)o(h)+ ay, (h)In(1- Ry (h) 3
=1 g*'alo(h)lnplo(h)"F a,, (h)In(1- Plo(h)g
where
a,(h)
Py(h)I S A (3.114)

a. (h)

1.
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and a,(h) denotes the number of times in the sample of observations of precipitation

occurrences that a transition from state i on the h™ hour of the day to state j on the

(h+1}™ hour occurs and

a, = a,(h)+ a,(h). (3.115)

In relation to the above definition, the maximum likelihood estimates of Markov Chain
parameters that are calculated by computing the observed number of transitions a;;(h)
from state (i=0 or 1) on hour 4 to state (=0 or 1) on hour 4+ in period k across the
entire length of record where 0 represents a dry hour and 1 represents a wet hour are
represented as follows by substituting equation(3.102) to equation (3.101). The two

parameters to be estimated are Py, and P and the definitions are as follows:

) = dyy . (h)
pOO,k( )= Ay (M) +ay, , (h)
’ ’ (3.116)
Ay, (h)
Piox (h)= ;

Aok (h)+ ay (h)

The unconditional probability of being wet on day ¢/ and hour h can also be

approximated by:

[1 - pOO,t (h)]
1+ py, (h)— Poo,s (h)

P{X,(h) =1}~ (3.117)

3.3.2.2The Amount Process

In describing the rainfall amounts of the hourly series, the empirical observed
frequency distribution were fitted to the theoretical probability density function. The
mixed exponential distribution was found to be the most accurate for describing the
distribution of hourly rainfall amounts as compared to other popular candidate

distributions such as simple exponential, gamma and Weibull (Fadhilah et al. 2007).
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Let Y,(h) denotes the precipitation amount on the A" hour of the /* day. If
Xi(h)=1, then Y,(h) > 0 and is referred to as intensity. The convention is adopted that

Y(-1)=Y,_,(23).7,(0) = Y_,(24).%(25) = Y,,,(1).Y,(26) = ¥,,,(2)....

t

The distribution of the hourly rainfall amounts is described by the Mixed Exponential

function.
Y.(h) = Me[é%)] n (1 -4 (h)) e[@%i)]
& (h) 0, (h)
y> 0,0 <, (h)<13),0 < E(h) < O(h) (3.118)
h=1,.24.
t=1,.... 365

The mixed exponential distribution can be interpreted as the result of a random sample

from two exponential distributions where the smaller mean &(4) is sampled with
probability a(h#)and the distribution with the larger mean @(4)is sampled with
probability (1—a(4)). he maximum likelihood estimates of the parameters of the mixed

exponential distribution were obtained by maximizing the log likelihood function :

N(k) =i (h) _ —yi; ()
L (0= 3 | 20 50 () [

3.119
= S (h) 0, (h) G119

where o, (h),&, (h),and 6, (h) are the parameter values for the K" period, y,; is the

amount of rainfall for the /™ wet hours in period &, and N(k) is the number of wet hours

in period k.



109

3.3.3 Parameter Estimation

The hourly data is pooled according to calendar months. Instead of using a local
optimization technique as in most previous studies, the Shuffled Complex Evolution
(SCE) global optimization method (Duan et.al.,1992) is employed for finding the
optimal solution of the minimization of the likelihood function. This global optimization
technique was found to be able to provide more accurate and more robust results than the
local optimization procedures (Peyron and Nguyen, 2004). The SCE-UA technique has

been discussed at length in section 3.4.6.

There are five parameters in which the two is used to describe the transitional
probabilities and three explaining the mixed exponential can be found for 12 sets of
monthly data. Each parameter set is then fitted to a finite Fourier series (Woolhiser and
Pegram, 1979), where the parameters change periodically through the 12 months of the

year. The parameter set for the rainfall process for each month m can be written as:

y(m) = { poy (m), pio(m), a(m), &(m), O(m)} (3.120)

The same orientation as in the daily MCME model is used in estimating the parameters

of the model. The parametric monthly Fourier series representation of the parameters

form =1, 2, .....,w where w = 12 can be written as:
h . .

o +2{Ai cos(z’”’"jwj sin(mJ} (3.121)
= w w

Here, & is the maximum number of harmonics needed to specify the variation of
parameter concerned, it is however set to a constant # = 5 for the purposes of this
research based on the research of Sang-Yoon Han (2001). Thus, a maximum of 24 + /

coefficients are needed to describe each parameter , To make a parsimonious estimation,
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a maximum of 24 +1 coefficient are needed to describe each parametery, . /i, is defined

as the sample estimate of the unknown population periodic parameter y, where

N
A, == H, (3.122)
Wm:l

The coefficients of the Fourier series in Equation (3.108) are determined through

maximum likelihood estimates as follows, for all j = 1, 2,....h harmonics specified as:

2 27 jm
A =— cos 3.123
; W;um [ ” j (3.123)
2 . (27 jm
B =— sin 3.124
! W;ﬂm ( ” ] (3.124)

An alternate polar form of the Fourier series were also considered but not applied to the

final model.

h .
v :[,HZ{Q cos(z’”mwjﬂ (3.125)

j=1 w

3.4.4 Simulation of Hourly Rainfall Process

MATLAB functions were developed to create a software package to simulate
hourly rainfall using the MCME model for any time series data. The stochastic model
was created such that the occurrence and amounts on any given hour would be random.
The software package for the hourly series was created based on the daily series
software package developed by Hussain (2007). Sample of this hourly MCME

simulation programs are found in Appendix D.
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Figure 3.15: Flowchart of the simulation procedures of the MCME model.
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3.3.4.1 Hourly Scale

In hourly simulation model, a day contained 24 values for occurrences and
amounts. All the hourly data are separated into monthly data sets and twelve sets of
monthly parameters are derived for the hourly rainfall MCME model. The data handling
and random number generation procedure was much more computationally intensive for
generating rainfall series for the hourly scale as compared to the procedure for the daily

scale.

The parameters obtained for each month will be used to simulate hourly rainfall
series. The simulation program uses the first-order, two-state Markov Chain for hourly
rainfall occurrences and the mixed exponential for hourly rainfall amounts.  The
procedure for generating simulated hourly rainfall series is shown in Figure 3.15. The

algorithm for the simulation of the hourly MCME model is as follows:

1. For any given hour, a uniform random number, u between 0 and 1 is
generated.

2. The parameter set of the month to which the simulated hour belongs is
extracted.
1. If the preceding hour is dry and u < pgy, then the current hour is said

to be dry and the process restart at step 1. However, if u > py, the
hour is said to be wet and a rainfall amount is then required to be
generated.

ii. If the preceding hour is wet and u < p, then the current hour is said
to be dry and the process restarts at step 1. However, if u > pj, the
hour is said to be wet and a rainfall amount is then required to be

generated,
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3. If step 2 determined a wet hour, another uniform random number, v is

generated.

For the mixed exponential distribution, &(n) and #(n) are means of the smaller and the
larger exponential distributions, respectively. If u(n) is the mean of the hourly rainfall

amount, it can be described by the following relation:

u(n) = a(me(n)+1-a(n))0(n). (3.126)

If v <a(n), the depth, y, is generated from an exponential distribution with smaller

means, &(n), using the transformation:

v =-&(n)logv +threshold (3.127)

If v>a(n), the depth y is generated from an exponential distribution with larger

means, &(n)

y=—6(n)logv +threshold (3.128)

where threshold value in this study is equal to zero because a non-zero amount is

considered as wet hour.

3.3.4.2 Daily Scale

The daily simulation MATLAB software package has been created by Hussain
(2007). The same algorithm as stated above for the hourly process was used to describe
successive day states and rainfall amounts. As expected, the data handling and random

number generation was less intensive computationally.
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3.4.5 Assessment of the MCME Model

The assessment of the MCME model performance is carried out for both hourly

and daily rainfall simulations.

3.3.5.1 Assessment of the Hourly MCME Model

The MCME stochastic hourly rainfall generator was calibrated with the hourly
data from 1981 to 1990 available at the Gombak. The mixed exponential goodness of fit
test was assessed using observed hourly rainfall frequency within each month. Based on
this calibration, a set of 50 simulated rainfall series were generated. Both graphical and
numerical comparisons were used in the comparisons of simulated and observed
statistical and physical properties as described in sections (3.3.14.1) and (3.3.14.2). The

following parameters will be considered in this assessment.

a. Hourly series

The statistical properties consist of mean, standard deviation, coefficient of skewness,
autocorrelations and hourly correlogram. The physical properties consist of maximum

hourly rainfall amount and number of wet and dry hours.

b. Twenty-four hourly or daily series

The hourly series are lumped or aggregated to 24 hourly series rainfall. The statistical
properties consist of mean, standard deviation, coefficient of skewness, autocorrelations
and daily correlogram. The physical properties consist of maximum daily amount of

rainfall and the number of wet and dry days.
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C. Monthly series

The hourly series are lumped or aggregated to a one-month series rainfall. Statistical
properties consist of mean and standard deviation while the physical properties consist

of monthly maximum and minimum rainfall amount.

3.3.5.2 Assessment of the Daily MCME Model

Similarly, the daily model was applied to daily data from the Gombak station for
the 1981-1990 period. The mixed exponential goodness of fit was assesses using
observed daily rainfall frequency within each month. Based on the calibration, 50
simulations were generated. For each simulation output, a set of statistical and physical
properties describe above were used to evaluate the ability of the MCME model in
preserving the observed characteristics of rainfall. Therefore, similar assessments as for

the hourly model were carried out for the daily model.

To test the accuracy of the hourly model in describing daily rainfall
characteristics, the hourly simulations were lumped to form daily simulations and
compared to the observed daily series. Similarly, to evaluate the performance of both
hourly and daily models in preserving monthly rainfall properties both simulations were
lumped to form monthly simulations and compared to the observed monthly rainfall

series. The same statistical and physical criteria were used in these assessments.

3.5 NSRP and MCME Model Comparisons

Following assessment of the accuracy of the NSRP and MCME models in
preserving observed rainfall characteristics, the performance of these two models can be

compared. The comparisons to be made are as follows:
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a. To compare the performance of NSRP with MCME hourly model
b. To compare the performance of NSRP with MCME daily model

To compare the model performance, only the properties at one-hour and 24-hour (daily)
scales are chosen.  While these two series have many applications in the water
management process, they are also important in understanding the underlying process of

any rainfall events.

a. Hourly series
The statistical properties consist of mean, standard deviation, coefficient of skewness,
and autocorrelations. The physical properties consist of maximum hourly amount and

probability of dry hours.

b. 24-hourly or daily series

The statistical properties consist of mean, standard deviation, coefficient of
skewness and autocorrelations. The physical properties consist of maximum daily
amount and probability of dry days. Both graphical and numerical comparisons were
used in this evaluation as discussed in sections 3.3.14.1 and 3.3.14.2 to determine the

best stochastic model that could describe the rainfall process at the study site.

3.6 NSRP and MCME Model Validation

Much of the work done in this study was done in the calibration period, assessing
the descriptive ability of both models. To assess the predictive ability, the validation of
the best NSRP hourly model and hourly MCME model can be carried out using
available data from the 1991-2000 period at WP station. The monthly descriptive

statistics for rainfall data are given in Appendix B. For this validation purposes, each
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rainfall simulation was generated for 20 years. The first 10-year simulated rainfall series
were used for assessing the descriptive (calibration) ability of the models while the
second 10-year series were used for evaluating their predictive (validation) ability.
Statistical and physical properties of the observed and synthetic hourly and daily time
series considered in the model validation are similar to the properties used to compare
models. Both graphical and numerical comparisons discussed in sections 3.3.14.1 and
3.3.14.2 were used to evaluate and compare both models in the validation period in order
to determine the best stochastic model that could predict the rainfall process at the study

site.

3.6  Stationary and Nonstationary Stochastic Models

Stochastic means being or having a random variable. A stochastic model is a
tool for estimating probability distributions of potential outcomes by allowing random
variation in one or more inputs over time. The random variation is usually based on
fluctuations observed in historical data for a selected period. The models for time series

are in fact stochastic models.

An important class of stochastic models for describing time series is called
stationary models. It is assumed that the process remains in equilibrium about a constant
mean level or the process in a particular state of statistical equilibrium. A stochastic
process is said to be strictly stationary if its properties are unaffected by a change of time
origin, that is, if the joint probability distribution associated with m observations

z z, , made at any set times ¢,¢,,...,¢,, is the same as that associated with m

Z[], [2,"" [m, m?o

observations z, ;,z, ,....7 ., made at times ¢, +k, ¢, +k, ..., ¢, +k.

When m=1, the stationarity assumption implies that the probability distribution

f(z,) is the same for all times ¢ and may be written as f(z) Hence, the stationary

process has a constant mean,
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p=Ez]=[ zp(z)a: (3.129)

and a constant variance

o =Hz-if|=[ (- 1(2) . (3.130)

The mean y of the stochastic process can be estimated by the sample mean
Z=—> z (3.131)

of the time series, and the variance o’ of the stochastic process can be estimated by the

sample variance

s 1 i(z[ —zf (3.132)

t=1
of the time series.

The stationarity assumption also implies that the joint probability distribution
p(z,1 »th) is the same for all times #,¢, which are a constant interval apart. The covariance
between z and z,,, that is separated by k intervals of time, which under the stationarity
assumption must be the same for all ¢, is called the autocovariance at lag k. It is defined
by
7 =covlZ,Z, |=E(Z -1 Z 1] (3.133)

Similarly, the autocorrelation at lag & is
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E[(z, - u)Z,.. — u)]

Pr = 2 2
VE(Z, - ) [E| 2., - 1) (3.134)
_ E[(Zt _;u)(ZHk _/u)]
CTZ

z

since for a stationary process, the variance o = y, is the same at time ¢+ as at time

t. Thus the autocorrelation at lag k, that is, the autocorrelation between z, and z

t+k > S

o, =1k (3.135)

70

which implies that p, =1. A number of estimates of the autocorrelation function have

been suggested in the literature but the most satisfactory estimate of the kth lag

autocorrelation p, is

e (3.136)
Co
where
N-
:—Z ~z)z,,, —Z),  k=0,1,2,.,K (3.137)
N3

is the estimate of the autocovariance y,, and z is the sample mean of the time series. It

should also be noted that K should not be larger that N/4. Three conditions that should

be considered are
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~1<r <1 (3.138)

which implies that p, should be in the range [-1,1].

Autocorrelation function is important in model identification because it can
identify whether the model is stationary or nonstationary. Theoretically, the series is
stationary if the estimated autocorrelation function quickly reduces to zero with

increasing lag k.

Generally, there are three basic models for a Box-Jenkins stationary stochastic

model. The models are

(1) Autoregressive model AR( p)
(i1)) Moving Average model MA(q)

(ii1) Mixed Autoregressive-Moving Average model ( p,q).

However, forecasting has been of particular importance in many fields where
many time series are often represented as nonstationary and, in particular, as having no
natural constant mean level over time. Sometimes there are some trends in time series.
Therefore, some simple operators that is the backward difference operators V, as

follows, can be employed to the time series.

y,=Vz, =z, -z, t=23,...n (3.139)

If the series is still nonstationary, then it can be differentiated once again so that it would

be stationary.
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Y :vzzt :V(Zt _thl)

(3.140)
=z,—-2z,,+z,, t=23,...n

Theoretically, if a time series have been differentiated twice, the series will be
stationary. In Box-Jenkins, the model for the nonstationary stochastic model is called

the Autoregressive Integrated Moving Average ARIMA( p,d,q ) model.

3.7 Univariate Box-Jenkins Model

There are two main models in Box-Jenkins. These are seasonal model and
nonseasonal model. Here we will only discuss the nonseasonal model that consists of
the stationary model and the nonstationary model for the univariate time series that is the

Autoregressive model, AR( p), Moving Average model, MA(g), Mixed Autoregressive-
Moving Average model, ARMA(p,q) and the Autoregressive Integrated Moving
Average model, ARIMA( p,d,q).

3.7.1 Autoregressive Model, AR(p)
The general autoregressive model is given by

Z, =4z, +$z, ,+K+¢,z,_, +a (3.141)

t

which is known as AR(p) model or autoregressive model of order p. It is a

transformation from

z, =pu+dz, , +¢,z, , +K +¢pzt_p +a, (3.142)

where
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z, = observation at time ¢
a, = shock at time ¢

M = mean

In (3.14), the variable z is regressed on previous values of itself. If we define an

autoregressive operator of order p by

¢,B)=1-¢ —¢,B* -K — ¢ B” (3.143)

then, equation (3.14) can be written as

Z, =¢,'(B)g, (3.144)

The model contains p +2 unknown parameters u,q,,K ,¢p,0'j , which have to

be estimated from the data. The parameter o is the variance of the white noise process

a,.

3.7.2 Moving Average Model, MA(q)

Moving average model of order ¢ is given by

z, =p+a,—6a,, -6 ,-K-0.a (3.145)

q7t-q

where
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z, = observation at time ¢
a, = shock at time ¢

M = mean
Let zZ, =z, — u. Then, equation (3.18) will be

z,=a,—-6a,,—-60,a ,-K-0.a,, (3.146)

If we define a moving average operator of order ¢ by
6,(B)=1-6B-6,B> -K -6, B’ (3.147)

the moving average model may be written as

z,=(1-6B-6,B> —=K —0,B" Jg, (3.148)
where B(at): a, .

This model contains g +2 unknown parameters u, 6,,K , Hq, af which are

estimated from the data. o is the variance of the white noise process «, .

3.7.3 Mixed Autoregressive-Moving Average Model, ARMA(p,q)

Mixed autoregressive-moving average model, ARMA( p,q) model consists of
both the autoregressive model of order p, AR( p) and the moving average model of
order ¢, MA(g). This model gives some flexibility in the fitting of actual time series

by combining both of the models. Thus, the autoregressive-moving average model of

order p and ¢ is given by
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Z, =9z, ,+¢,Z,,+K +9,Z, +a,-6a,, -0a ,-K-0a, (3.149)
By using the autoregressive operator of order p and the moving average operator of

order g, the ARMA( p,q) model can be written as
¢,(B)Z, =0, (B)a, (3.150)
where

¢p (B) =1-¢B _¢2B2 -K _¢po

6,(B) =1-6B-6,B*-K -6 B’

For ARMA(p,q) model, there are p+qg+2 unknown parameters

ue,6,,K.9,,6,0,,K.,0 0'5 that are estimated from the data. In practice, it is

2 q 2
frequently true that adequate representation of actually occurring stationary time series
can be obtained with autoregressive, moving average or mixed autoregressive-moving

average models, in which p and ¢ are not greater than 2.

3.7.4 Autoregressive Integrated Moving Average Model, ARIMA(p,d,q)

There are many empirical time series that behave as though they have no fixed
mean. However, they exhibit homogeneity in the sense that apart from local level and

trend, one part of the series behaves much like any other part.

Models that describe such homogeneous nonstationary behavior can be obtained
by supposing some suitable difference of the process to be stationary. We now consider

the properties of the important class of models for the dth differences which d<2, of a
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stationary mixed autoregressive-moving average process so that the series will be

homogeneous and stationary. These models are called autoregressive integrated moving

average (ARIMA) process.

The following table shows the dth difference for d <2:

Table 3.6: dth difference for the ARIMA model.

Y1
Y

V3
A

ynfl
Y

d=0 d=1 d=2

34

V2 =V =N

Y3 Z3 = V3 =W Zy=Y; =2y, + )
A A A

Yna \ \

Y Zy =Yy =V z,=2,=2z,,+z,

After differentiating the ARMA( p,q ) model, the model will be the pth order

autoregressive, gth order moving average with dth difference autoregressive integrated

moving average, ARIMA( p,d,q). The ARIMA( p,d,q ) can be written as

with

where

v!=(1-B)

4,(B)=1-$B-¢,B’ -K —¢ B’
6,(B)=1-6,B-6,B> -K - 6,B*

(3.151)
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9, (B) = Autoregressive operator of order p

0, (B) = Moving average operator of order ¢

V? = dth differences

z, = Time series data

a, = Shock at time ¢

B = Backward shift operator

3.8 Multivariate Box-Jenkins Model

Multivariate process arise when instead of observing just a single process X (t),
we observe simultaneously several processes, X, (¢), X, (t), ..., X, (). For example, in an

engineering context we may wish to study the simultaneously variations, over time, of
current and voltage, or pressure, temperature and volume, or seismic records taken at a
number of different geographical locations. In economics we may be interested in
studying inflation rates and money supply, unemployment and interest rates, or the

supply and demand of a particular commodity.

Although this would give us some information about each quantity, it could
never reveal what might, in fact, be the most important feature of the study, namely, the
interrelationships between the various quantities. Just as in probability theory, we
cannot examine relationships between random variables knowing only their marginal
distributions. Instead we also need to know their joint probability distribution. So, in
dealing with multivariate processes we need a framework for describing not only the
properties of the individual processes but also the cross-links which may exist between
them. This is achieved by introducing the notions of cross-covariance or cross-

correlation functions.
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3.8.1 Correlation of Multivariate Stationary Processes

To introduce the new ideas involved in the study of multivariate processes we

consider first the case of bivariate processes.

Suppose we are given two stochastic processes, {X Ly }, {X iy }, t=0,=1,+2,....

We may define the autocovariance functions of {X Ly }, {X Z,I} in the usual way, namely,

11 (S) = EHXL; —H }{Xl,t+s —H }J (3.152)

22(S)=El{X2,t _ﬂz}{Xz,t+s —H }J (3.153)

where u, = E [X L,J, U, =F [X y J The cross-covariance function is defined by

R, (S) = COV{X X ies }

I

X, -] (3.154)
The autocorrelation functions are then
Puls)= Ry, (s)/ Ry, (0) (3.155)
P(s)= R, (s)/ R, (0) (3.156)
and the cross-correlations function is given by
por(s) = —— ) (3.157)

Let R,, (s) denotes the cross-covariance function with “ X, , leading X,,”. For the sake

of symmetry, define the cross-covariance function with “ X, , leading X, ” as
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Rlz(S):EHXz,z —H, }{Xl,t+s —H }J (3.158)

with p,, (s) defined analogously to (3.29). Note that the functions R,, (s), R,, (s) contain

equivalent information since, for all s,
RIZ(S)=R21(_S) (3.159)

The complete covariance properties of the bivariate process {Xl’,,X 2’,} are then

summarized by the sequence of matrices, which is called the covariance matrix of lag s,
s
i )} (3.160)

The correlation matrix of lag s is defined as

ols)= {pn(s) plz(s)} (3.161)

P (s) P (S)

If we have n parameter processes, X,(z), X,(t),... X,(t), we define the

covariance matrix at lag s by

R”(S) RIZ(S) A Rln(s)
R(s)= R”l\(:) R”l\(;) g Rz’i\gf ) (3.162)
R, S) R,, S) A R, S)

where

Ry(s)=ERX,, =, fAX, .. — 11, (3.163)
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If X, denotes the column vector,

Xl,t
X
Xt — 2,t
M
Xn,t
then we may write,
R(s)=E[X,, X, *] (3.164)

where the asterisk denotes both conjugate and transposition, and R(s) clearly has the

property

R*(s)=R(-s) (3.165)

The sample autocovariance function of X, and the sample cross covariance is

given by

N—‘s

. 1 _ _
Rn(s)zﬁ Z(Xi,t _XiXXt,H\s\ _Xi)

1\;1\ (3.166)
éz‘i(s)z% (Xj,t X/XXIHM_)Z)’ s=0,%1, ’i(N_l)

with
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3.8.2 Multivariate AR, MA and ARMA Models

In section 3.2 we discussed the three main types of univariate models, namely the
autoregressive (AR), moving average (MA) and mixed autoregressive-moving average
(ARMA). Each of these models has its corresponding multivariate extension which is
obtained by replacing the scalar parameters in the univariate model by matrix

parameters.

3.8.2.1 Autoregressive Models

The n-variate AR( p ) model is given by

(3.167)

t

X +aX  +.+a,X ,=¢

! !
where X, :[XU,..., X,.|, a,..,a, are nxn matrices, and ¢, :[51,,=---> 5,,,;] s a

p

multivariate shock.

For example, for a bivariate AR(2) model, the a, and a, parameters can be

a =|:911 812:| a :|:¢11 ¢12:|
1 621 622 ’ ’ ¢21 ¢22

defined as

3.8.2.2 Moving Average Models

The n-variate MA( g ) model is

X, =¢+be,  +be ,+..+tbe (3.168)
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where b, ..., b, are nxn matrices. For example, for a bivariate MA(2) model, the b,

and b, parameters can be defined by
b, :[711 712} b, :{511 512}
Y TV 6y Oy

3.8.2.3 Mixed Autoregressive-Moving Average Models

The n-variate ARMA( p,q ) model is written as
X +taX,  +.+a,X ,=¢+be  +be ,+..+be, , (3.169)
or in operator form
a(B)X, = B(B)e, (3.170)

where the matrix polynomials a(B ), p (B ) are defined as

a(B)zuZp(;auB“, (a, = 1)

pB)=> .8 (b =1)

with I, the identity matrix.
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3.8.3 Multivariate Autoregressive Integrated Moving Average Models

For several processes in which after dth differences, A’X i

X,(¢), X,(¢),..., X, (¢) that are nonstationary will be a stationary process. It can then be
modeled by the Multivariate Autoregressive Integrated Moving Average, MARIMA

model. Thus, writing Y,, = A X > Where A= (1 —B) denotes the difference operator,

we may write

a(B)Y, = p(Be, (3.171)
where
Y,
Y.t _ YZ,t
M
Y

The corresponding model for X, is

(1-B) a(B)X, = p(B)e, (3.172)

where

B 0 A O

0 B A O
B=

M MO

0 0 A B



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter will discuss in the results obtained from this study. It begins by
discussing the results on the identification of the convective rainfalls, followed by the
generation of the hourly rainfall series using the stochastic rainfall modeling and proceed

with the method of forecasting the short-term rainfall.

4.2 Identification of Convective Rainfall

4.2.1 Diurnal and Monthly Distribution

In order to characterize the convective storms, historical rainfall of 5-min
intervals was extracted from the hydrological data bank of the Department of Irrigation
and Drainage Malaysia. Station 3117070 — JPS Ampang is chosen because the data sets
have relatively good continuity. Only about 0.66 percent of data was missing. The

rainfall station is located at North 3° 9’ 20” and 101° 45’ 00” East.

Knowledge of the diurnal cycle of rainfall is important for evaluating convective
activity. Previous studies by Ohsawa et.al. (2001) on the diurnal variations of

convective activity and rainfall in tropical Asia suggests a strong possibility that late
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night-early morning maxima of convective activity and rainfall have a great effect on
energy and water cycles. Figure 4.1 shows the diurnal and monthly distributions of
rainfall (greater than 5 mm) in 2004 at Ampang station (3117070). About, 79% of the
total rainfall occurred during the daytime (07:00 — 19:00h). The bulk of the rainfall,
75% occurred between 13:00 and 19:00 and 12.5% fall between 19:00 and 22:00. It
means that most of rainfall occurred in the afternoon. Convective storms are caused by
differential solar heating of the ground and lower air layers, which typically occur during
afternoons when warm moist air covers an area (Hewlett, 1969). Consequently, most

afternoon rainstorms in this area can be classified as convectional storms.
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Figure 4.1 : Diurnal and monthly distributions of rainfall (greater than 5 mm) in 2004 at
JPS Ampang station

4.2.2 Minimum Interevent Time (MIT)

In this analysis, a rainfall event is defined based on the Minimum Interevent

Time (MIT) method. One year rainfall data is used to define this analysis. The annual
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number of rainfall events were plotted against different MIT values and an appropriate
MIT value is selected from the graph at a point after which increases in the MIT do not
result in significant changes in the number of event. An MIT value of three hours is
chosen. As can be seen from Figure 4.2 after an MIT value of 3, changes in the numbers
of events with respect to MIT values has become insignificant. Therefore, rainfall
events used in the analysis must were have a minimum separation time of 3 hours. This
value can be accepted because Adams et. al.,, (1986) suggested MIT values between 1

and 6 hours for urban applications.
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Figure 4.2 : Annual number of rainfall events as a function of MIT

4.2.3 Characterization of Convective Rain Based on Short Rainfall Duration Data

4.2.3.1 Preliminary Analysis

In this stage, the preliminary results on the characteristics of convective and non-
convective storms are presented in terms of total rainfall, intensity and duration. Table
4.1 presents the statistical summary of the event rainfalls between year 2000 and 2004.

The separation between convective and non-convective storms is based on the 35 mm/hr
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threshold intensity as described by Llasat (2001). Convective rain occurred most
frequently in November (45 times). Of the total 297 convective storm events which
exceeded 35 mm/hr, 130 storms or 44% occurred during inter-monsoon months (Oct —
Nov and Apr — May). The southwest and northeast monsoons recorded 27% and 30% of
the events respectively. This is maybe influenced by inter-monsoon process where
during the inter-monsoon period the weather in Malaysia will be typically fair in the
morning with strong convective clouds developing in the late morning and early
afternoon. Beside that, the wind direction during this period is often variable and the
wind speeds seldom exceed 10 knots. The frequency of storms event in different

monsoon period is shown in Table 4.2.

Table 4.1 : Summary statistics of monthly convective and non-convective rainfalls

between 2000 and 2004 at Ampang station

(F:’lfaegsipita“f)” Month Northwest Inter Southwest Inter
and totals Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Nonconvective Total rainfall amounts 696.2 4056 5295 686.8 902.1 360.6 | 409.3 419.1 4509 834.6 824.1 1312.6
precipitation Mean 139.2 81.1 1059 1374 180.4 72.1 81.9 83.8 90.2 166.9 164.8 262.5
(mm) with rate Median 99.9 66.4 66.2 114.8 164.4 80.5 86.0 61.8 50.6 146.6 163.0 263.8
< 35 mm/hr Standard Deviation 121.2 71.1 123.1  88.0 68.3 31.0 60.0 66.4 90.9 92.3 51.3 97.4
Coefficient of variation 0.9 0.9 1.2 0.6 0.4 0.4 0.7 0.8 1.0 0.6 0.3 0.4
Number of event 65 44 39 60 79 38 34 47 46 74 63 99
Precipitation event-1 10.7 9.2 13.6 11.4 11.4 9.5 12.0 8.9 9.8 11.3 13.1 13.3
Convective Total rainfall amounts 483.1 200.1 3312 809.0 716.5 396.9 | 4546 3176 309.0 632.1 917.9 883.5
precipitation Mean 96.6 40.0 66.2 161.8 143.3 79.4 90.9 63.5 61.8 126.4 183.6 176.7
(mm) with rate Median 92.7 27.4 61.3 118.8 139.1 52.8 15.7 79.1 27.2 95.9 192.2 239.2
> 35 mm/hr Standard Deviation 51.0 36.1 24.8 150.9 50.2 60.6 129.3 613 70.7 69.9 102.4 121.1
Coefficient of variation 0.5 0.9 0.4 0.9 0.4 0.8 14 1.0 11 0.6 0.6 0.7
Number of event 18 15 22 33 33 16 18 14 17 30 36 45
Precipitation event-1 26.8 13.3 15.1 24.5 21.7 24.8 25.3 22.7 18.2 21.1 25.5 19.6
Bulk all kinds Total rainfall amounts 1179.3 605.7 860.7 14958 | 1618.6 757.5 | 863.9 764.5 759.9 1466.7 | 1742.0 2196.1
(mm) Mean 235.9 121.1 1721 299.2 323.7 1515 | 172.8 1529 1520 293.3 348.4 439.2
Median 183.9 93.8 129.0 295.0 351.7 1439 | 190.1 1409 1721 3245 359.9 470.5
Standard Deviation 143.4 1025 119.7 176.9 90.4 81.3 1485 1116 97.7 107.7 77.1 136.3
Coefficient of variation 0.6 0.8 0.7 0.6 0.3 0.5 0.9 0.7 0.6 0.4 0.2 0.3
Number of event 83 59 61 93 112 54 52 64 63 104 99 144
Precipitation event-1 13.4 9.0 16.2 15.9 14.6 13.7 14.3 11.6 11.6 14.0 18.1 15.7

Table 4.2 : Frequency of convective storms events during monsoon and inter-monsoon

periods
Monsoon Frequency  %Frequency
Southwest 79 27
Northeast 88 30

Intermonsoon 130 44
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4.2.4.2 Classification of Convective Events

In order to classify convective events, it is useful to have a parameter for each
one of them. As noted in Chapter III, an intensity of 35 mm/hr is taken as the 5 minute
mean intensity threshold (Llasat, 2001). This threshold is useful in order to derive
convective storm properties. Table 4.3 shows the number of non-convective and
convective events between 2000 and 2004. In this analysis, it is found that convective
events were contribute 30.1% from all of rainfall events whereas non-convective events
represent 69.9%. The highest number of convective event was fall in inter-monsoon

months where 9 convective events were recorded in November.

Table 4.3 : Number of convective and non convective events

Season Northwest Inter- Southwest Inter-
monsoon monsoon

Month Dec Jan Feb Mar | Apr May |Jun Jul Aug Sep | Oct Nov

Non-convective events 13 9 8 12 |16 s 7 9 o9 15 |13 20

(< 35 mm/hr)
Convective events

(> 35 mm/hr) 4 3 4 7 7 3 4 3 3 6 7 9

A classification of episodes based on the B parameter is shown in Figures 4.3 and
4.4. This classification is according to their greater or lesser convective character
(Llasat, 2001). The number of event which falls under moderately convective class is
the highest in all months (Figure 4.3). On a yearly basis the percentage of events trend
fall under moderately convective storm range from 51.5 % to 69.3 % (Figure 4.4). All
percentages from Figure 4.4 were not include non convective events. Only for event

which have intensity greater than 35 mm/hr.



Frequency of occurrence convective storm between year 2000-2004

35
30
25

@

£ 20

?

2 15

o

2 10l
5,
O,

Jan Feb Mar  Apr May Jun Jul Aug Sep Oct Nov Dec
Month

‘ I slightly convective O moderately convective B strongly convective‘

Figure 4.3 : Monthly number of event for each class of convective storm

Percentage for classification of Convective Rain
2004
2003
© 2002
>_
2001
2000
} — — ‘ ‘
0 20 40 60 80 100
Percentage (%)
@ slightly convective W moderately convective [1strongly convective

Figure 4.4 : Yearly percentage of occurrence of convective storm

138



139

Storm on 26.05.2000 Storm on 28.02:2000 Storm on 23.02.2000 Storm on 16.9.2000
400 400 400 400
350 350 380 350
300 300 300 300
£
250 = 250 250 250
E
200 = 200 200 200
150 2 x5
c
g 10 =
£
100 00 00 00
50 L 50 o ©
0 ° < 0 0 ¢
0 30 60 90 20 BO B0 20 240 270 300 0 30 6090 20O B0 BO 210 240 270 300 0 30 60 90 120 10 180 210 240 270 300 0 30 60 90 120 150 B8O 210 240 270 300
time (min) time (min) time (min) time (min)
Storm on 3.10.2000 Storm on 9.4.2001 00 Storm on 14.12.2001 200 Storm on 14.04.2002
400 400
350 350 350 350
300 300
300 200
250 250 250
250
200 200 200
200
10 150
150 150
100 100
100 100
50
50
50 50
’ 0
0 30 60 90 120 150 B0 21D 240 270 300 330 0 0 e e s e e Tn w0 20w
time (min) 0 30 60 90 120 |0 180 21 240 270 300) 0 30 60 90 120 150 1BO 21 240 270 300
time (min) time (min) time (min)
400 Storm on 21.08.2003 Storm on 12.10.2004
400
3% 350
300 300 A
250 250 -
200 oo |
150 50 |
100 100 4
50 50
0 0 T T T g T o T T T T
0 30 60 90 120 150 B0 210 240 270 300 0 30 60 90 R0 150 180 21 240 270 300
time (min) time(min)

Figure 4.5 : Convective storms with the highest 5 —minutes intensity for each year



140

4.2.4  Spatial Distribution of Convective Rainfall between Meteorological Radar

Data and Surface Data

In this analysis, the comparison of spatial distribution between meteorological
radar data and surface rainfall were presented in terms of intensity and the area between
isohyetal line. In addition, the movement of storm centre for selected convective events

were observed. Finally, the depth-area relationship was plotted for six single events.

4.3.4.1 Digitizing Radar Image

In order to analyse storm areal coverage, the radar images were finest digitized to
get a layer of isohyetal contour in GIS format. The real images (JPEG image) from
KLIA Meteorological Station were rectified with Klang Valley Map. Then, the colours
of rainfall image are digitized one by one until a rainfall contour is produced. Figure 4.6

shows the image of rainfall contour after being digitized using GIS (ArcGIS 9.1).

Legend
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| | union0604061535
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Figure 4.6 : Digitized image using ArcGIS 9.1
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4.2.4.2 Comparison on Intensity

A temporal comparison on intensity values between surface rainfall data and
meteorological radar data was carried out for selected events. Tables 4.4, 4.5, 4.6 and
4.7 show the rainfall intensity between radar data and surface rainfall of the events.
From Table 4.4, four times (18:19, 18:25, 18:30 and 18:36) was selected on January 6,
2006 to compare the rainfall intensity. All of these times were chosen during heavy
rainfall. There have four raingauge stations (R4, RS, R12 and R13) were got missing
data. Between this comparison, there was no similarity in intensity values from all
selected times. Table 4.5 shows event on February 26, 2006 and six times was selected
(06:21, 06:32, 06:38, 06:43, 04:55 and 03:23). There was no missing data observed but
the case is same with Table 4.6 where differences in intensity value between raingauge
and radar are too large. Some intensity values from raingauge are bigger than radar data
and vice versa. Two more events April 6 and May 10, 2006 (Tables 4.6 and 4.7) also
had shown a bad comparison between raingauge and radar data. Even though many

times were chosen to make this comparison, the results were still the same.

Overall, it is observed that both data produced remarkable different in intensity.
For a given storm, the radar data can both overestimate or underestimate the surface
rainfall. The differences in intensity value between raingauge and radar are too large.
The main challenge in getting close approximately between radar rainfall and surface
rainfall is the difficulty in establishing the relationship between decibel of, Z-R in unit
mm®/m’ and rainfall, R in unit mm/hr (Ray et., al 1988). Another factor leading to error
is evaporation of precipitation before reaching the ground, which could happen
frequently in the tropics. Also, winds may carry precipitation away from beneath the
producing cloud. Beside that, the discontinuities in the vertical distribution of
precipitation in the cloud affect radar reflectivity and thus are also sources of error (Ray

et al., 1988).
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In this analysis, the spatial distributions of the rainfall were derived by Kriging
Method using intensity data for every raingauge. However, out of four storms, only one
event or January 6, 2006 produced smooth circular isohyetal lines. The rainfall contour
patterns for this event exhibits very similar patterns with radar data. This storm started
at 06.10 pm lasted about two hours. Figure 4.7 comprises the spatial distribution
between Kriging and the observed radar data for event on January 6, 2006 at different
times. This storm also shows increasing intensity as the storm centre moves from the
northeast to the southwest. However, the other three storms, fail to show good

agreement between radar and raingauge data (February 26, April 6 and May 10).



143

Table 4.4 : Surface and radar rainfall intensity on January 6™ 2006

R1 | 3217001-KM16 Gombak 3.2680 101.7291 |0 0.6 0 0.5 0 0.8 6 2.0
R2 [ 3116006-Ldg Edinburgh Site 2 3.1833 101.6333 | 0 norain |5 1.5 0 10 0 20.0
R3 | 3217003-KM11 Gombak 3.2361 101.7139 | 0 0.5 0 0.7 0 1 6 0.8
R4 ] 3216001-Kg Sg Tua 3.2722 101.6861 | ? 0.5 ? no rain | ? 0.6 ? 0.7
R5 [ 3116003-JPS Msia 3.1514 101.6847 | ? norain | ? no rain | ? 2 ? 8.0
R6 [ 3018101-Emp. Semenyih 3.0856 101.8892 | 0 4 0 0.8 0 1.5 0 1.5
R7 | 3118102-SK Kg Lui 3.1736 101.8722 | 21 0.5 21 0.9 4 3 1 2.0
R8 311104-JIn Genting Peres 3.1403 101.9297 | 4.8 1 48 2 84 4 3.6 9.0
R9 | 2917001-JPS Kajang 2.9917 101.7972 | O 0.9 0 0.3 0 norain | 0 0.7
R10 | 3117070-JPS Ampang 3.1556 101.7500 | O norain |72 03 72 3 8.4 7.0
R11 | 3115079-Pusat Penyldkn Sg Buloh | 3.1583 101.5597 |[22.8 20 228 20 52.8 35 504  25.0
R12 | 3315037-Tmn Bkt Rawang 3.3014 101.5008 | ? 35 ? 20 ? 20 ? 5.0
R13 [ 3315038-Country Homes 3.0167 101.5022 | ? 0.9 ? no rain | ? no rain ? 0.7
R14 | 3217004-Kg Kuala Sleh 3.2583 101.7903 | 6 1 6 0.3 0 0.7 0 0.8
R15 | 3217002-Emp. Genting Klang 3.2361 101.7528 | 0 norain |0 0.6 6 0.5 0 2.0
R16 | 3216004-SMJK Kepong 3.2319 101.6361 |0 15 0 20 0 10 0 0.8
R17 | 3317001-Air Terjun Sg Batu 3.3347 101.7042 | 6 3 0 3 0 1.5 0 2.0
R18 [ 3317004-Genting Sempah 3.3681 101.7708 | 0 2 0 2 0 3 0 0.7
R19 | 3014091-UiTM Shah Alam 3.0022 101.4019 | 156 2 10.8 1 8.4 1.5 792 6.0
R20 | 3014084-JPS Klang 3.0389 101.4444 | O norain | 0 norain [ 1.2 04 1.2 0.3

= missing data

RG = rain gauge
RDR

radar



Table 4.5 : Surface and radar rainfall intensity on February 26™ 2006
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Time 6:21 6:32 6:38 6:43 4:55 3:23
Raingages Latitude | Longitude | RG [ RDR [ RG | RDR | RG | RDR RG | RDR RG | RDR | RG | RDR

R1 | 3217001-KM16 Gombak 3.2680 101.7291 12 9 18 6 18 4 18 6 48 04 0 0.3

R2 | 3116006-Ldg Edinburgh Site 2 | 3.1833 101.6333 0 norain | 0 no rain | 0 0.3 0 0.4 20 6 5 20

R3 | 3217003-KM11 Gombak 3.2361 101.7139 | O 9 0 2 0 1.5 6 3 12 0.6 0 3

R4 | 3216001-Kg Sg Tua 3.2722 101.6861 6 6 24 6 24 15 12 15 0 0.6 48 65

R5 | 3116003-JPS Msia 3.1514 101.6847 | O 2 6 0.8 0 0.3 0 norain | 6 1.5 6 0.9
R6 | 3018101-Emp. Semenyih 3.0856 101.8892 | 0 norain |0 norain | 0 0.8 0 4 0 4 0 no rain
R7 ] 3118102-SK Kg Lui 3.1736 101.8722 (0O norain | 33 0.9 28 10 28 8 0 norain |0 no rain
RS 311104-JIn Genting Peres 3.1403 101.9297 |0 norain |0 0.5 0 norain | 21.6 norain |0 norain | 0 no rain
R9 | 2917001-JPS Kajang 2.9917 101.7972 | 0 norain |0 norain | 0 norain | 0 norain | 0 5 0 no rain
R10 | 3117070-JPS Ampang 3.1556 101.7500 | 50.4 20 192 5 6 3 36 4 1.2 05 1.2 norain
R11 | 3115079-Pt Penyldkn Sg Buloh | 3.1583 101.5597 |0 norain | 0 norain | 0 norain | 0 norain | 0 4 18 2

R12 | 3315037-Tmn Bkt Rawang 3.3014 101.5008 | 4 0.8 0 0.5 0 0.3 0 0.3 0 norain |25 50
R13 | 3315038-Country Homes 3.0167 101.5022 1 0.9 0 0.8 0 0.6 0 0.5 0 0.3 6 1.5
R14 | 3217004-Kg Kuala Sleh 3.2583 101.7903 |30 4 6 1.5 6 0.7 12 1.5 0 0.6 0 7

R15 | 3217002-Emp. Genting Klang 3.2361 101.7528 | 30 6 18 1.5 6 9 6 20 0 1.5 0 0.6
R16 | 3216004-SMJK Kepong 3.2319 101.6361 6 0.4 6 1 6 1 6 0.4 6 15 6 50
R17 | 3317001-Air Terjun Sg Batu 3.3347 101.7042 18 2 6 6 48 5 42 5 0 0.4 0 no rain
R18 | 3317004-Genting Sempah 3.3681 101.7708 12 0.8 6 0.8 6 1.5 6 1 6 norain |0 no rain
R19 | 3014091-UiTM Shah Alam 3.0022 101.4019 |0 norain |0 norain | 0 norain | 0 norain | 7.2 0.8 16.8 2

R20 | 3014084-JPS Klang 3.0389 101.4444 |0 0.7 0 norain | 0 norain | 0 norain | 0 0.5 0 no rain

? = missing data
RG = rain gauge
RDR = radar




Table 4.6 : Surface and radar rainfall intensity on April 6™ 2006
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R1 3217001-KM16 Gombak 3.2680 101.7291 |72 65 42 7 12 6 6 0.3 6 0.3 0 0.3

R2 3116006-Ldg Edinburgh Site 2 | 3.1833 101.6333 5 0.5 15 0.8 5 norain | 5 norain | 5 norain |0 no rain
R3 3217003-KM11 Gombak 3.2361 101.7139 |0 0.4 0 0.3 0 0.4 12 3 90 15 48 9

R4 3216001-Kg Sg Tua 3.2722 101.6861 108 50 54 65 30 35 24 50 18 50 12 10

RS 3116003-JPS Msia 3.1514 101.6847 |0 0.9 6 6 6 15 24 35 24 6 12 9

R6 3018101-Emp. Semenyih 3.0856 101.8892 | 0 0.5 0 2 0 20 0 15 0 15 0 7

R7 3118102-SK Kg Lui 3.1736 101.8722 |0 0.6 11 norain | 1 norain | 1 0.7 0 0.4 0 0.6

RS 311104-JIn Genting Peres 3.1403 1019297 |12 1 12 1 48 0.7 252 15 204 2 6 0.9

R9 2917001-JPS Kajang 2.9917 101.7972 | ? norain | ? no rain | ? 4 ? 50 ? 7 ? 1.5
R10 | 3117070-JPS Ampang 3.1556 101.7500 [2.4 15 36 35 72 20 10.8 35 84 35 144 35

R11 | 3115079-Pt Penyldkn Sg Buloh | 3.1583 101.5597 |0 0.4 0 0.3 0 no rain | 0 norain | 0 norain |0 no rain
R12 | 3315037-Tmn Bkt Rawang 3.3014 101.5008 0 norain | 0 no rain | 0 norain | 0 norain | 0 norain |5 no rain
R13 | 3315038-Country Homes 3.0167 101.5022 | 0O norain | 0 norain | 0 norain | 0 norain | 0 norain | O 0.3
R14 | 3217004-Kg Kuala Sleh 3.2583 101.7903 | O norain | 0 norain | 0 0.6 0 50 0 35 0 65
R15 | 3217002-Emp. Genting Klang | 3.2361 101.7528 | ? 65 ? 50 ? 20 ? 1 ? 1 ? 0.9
R16 [ 3216004-SMIJK Kepong 3.2319 101.6361 0 norain | 0 0.4 0 norain | 0 0.4 0 norain |0 no rain
R17 | 3317001-Air Terjun Sg Batu 3.3347 101.7042 |12 6 6 3 0 1.5 0 0.5 0 0.4 0 0.5
R18 | 3317004-Genting Sempah 3.3681 101.7708 | O 0.5 6 norain | 0 norain | 0 0.6 0 norain | 0 no rain
R19 | 3014091-UiTM Shah Alam 3.0022 101.4019 |0 norain |0 no rain | 0 norain | 0 norain | 0 norain | 0 no rain
R20 | 3014084-JPS Klang 3.0389 101.4444 | 0 norain | 0 norain | 0 norain | 0 norain | 0 norain | 0 no rain
? = missing data

RG = rain gauge

RDR = radar
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Table 4.7 : Surface and radar rainfall intensity on May 10™ 2006

R1 3217001-KM16 Gombak 3.2680 101.7291 | ? 0.8 ? 80 ? 35 ? 65 ? 50

R2 | 3116006-Ldg Edinburgh Site 2 3.1833 101.6333 | 45 20 20 35 0 50 0 35 0 50

R3 | 3217003-KM11 Gombak 3.2361 101.7139 | ? norain | ? 6 ? 35 ? 15 ? 7

R4 | 3216001-Kg Sg Tua 3.2722 101.6861 102 6 66 9 6 2 0 4 6 7

RS | 3116003-JPS Msia 3.1514 101.6847 | 90 65 20 65 10 50 10 15 10 7

R6 | 3018101-Emp. Semenyih 3.0856 101.8892 | ? 50 20 ? 2 ? 2 ? 0.9

R7 | 3118102-SK Kg Lui 3.1736 101.8722 | O norain |0 0.5 0 35 0 5 0 5

R8 311104-JIn Genting Peres 3.1403 101.9297 |0 1 0 35 0 6 0 0.8 0 3

R9 | 2917001-JPS Kajang 2.9917 101.7972 15 15 10 9 0 1.5 0 0.7 0 no rain
R10 | 3117070-JPS Ampang 3.1556 101.7500 | 21.6 15 42 0.4 0 0.3 0 norain | 0 0.3
RI11 [ 3115079-Pusat Penyldkn Sg Buloh | 3.1583 101.5597 |0 norain | 0 0.3 23 0.3 5 1 11 2

R12 | 3315037-Tmn Bkt Rawang 3.3014 101.5008 | 25 norain |5 norain |5 no rain 5 norain | 7 no rain
R13 | 3315038-Country Homes 3.0167 101.5022 | O 15 0 4 1 norain |3 norain | 2 no rain
R14 | 3217004-Kg Kuala Sleh 3.2583 101.7903 | 0 80 0 20 0 65 0 10 0 7

R15 | 3217002-Emp. Genting Klang 3.2361 101.7528 | O 20 0 80 0 35 6 35 24 50
R16 | 3216004-SMJK Kepong 3.2319 101.6361 | ? 20 ? 7 ? 0.3 ? 0.3 ? 0.3
R17 | 3317001-Air Terjun Sg Batu 3.3347 101.7042 | O 0.3 0 20 12 65 18 50 36 50
R18 | 3317004-Genting Sempah 3.3681 101.7708 | O norain | 0 0.3 0 20 6 7 12 9

R19 | 3014091-UiTM Shah Alam 3.0022 101.4019 0 norain |0 norain | 0 no rain 0 norain | 0 no rain
R20 | 3014084-JPS Klang 3.0389 101.4444 0 norain |0 norain | 0 no rain 0 norain | 0 no rain

? = missing data
RG = rain gauge

RDR = radar
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Most of the isohyetal lines derived from raingauge data are not smooth as those
derived from digitized images. Moreover, there was no similarity in the spatial
distributions between the radar and surface rainfall. This might be due to the small
number of raingauge station employed in the study and further complicated by the
occurrence of missing data for some of the events. Kriging methods require a large
number of rainfall stations to produce smooth curves. Prediction errors tend to be larger
in areas with small number of station. Beside the small number of rainfall station, the
discrepancies arise from rainfall data but it also the way Doppler radar estimate rainfall
intensity. Doppler radar does not determine actual rainfall intensity, but only areas of
returned energy. It means the energy that is reflected back toward the radar (National
Weather Service, 2006). The more intense the precipitation, the greater the reflectivity
(Ray et al., 1988). Figures 4.8, 4.9 and 4.10 show the spatial distribution of rainfall on
February 26, April 6, and May 10, 2006.
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Figure 4.8 : Comparison of rainfall distribution derived from raingauge and radar for

event on February 26,2006
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Figure 4.9 : Comparison of rainfall distribution derived from raingauge and radar for

event on April 6,2006
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Figure 4.10 : Comparison of rainfall distribution derived from raingauge and radar for

event on May 10, 2006
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4.3.5 Comparison of Area Rainfall between Radar and Surface Rainfall

A comparison on the areal rainfall derived from radar and surface rainfall is
computed using GIS software (ArcGIS 9.1). The colour represents the intensity level.
The analysis used four selected storms. Three of the storms analysed occurred in the
afternoon. Table 4.8 compares the areal coverage of rainfall intensity derived from radar
against those from raingauge. For event on January 6, 2006, the heaviest rainfall was
detected at 18:36 pm. Both of centre of the storms occurred in the western part of Klang
Valley. The area distribution between radar and surface rainfall is different. The area of
centre of the storm for rainfall contour derived from raingauge is bigger than those
derived from radar (red colour). This might be due to the number of raingauge station is
small and rainfall data which is recorded the highest rainfall amount is less. From twenty
rainfall data which is recorded from twenty raingauge station, only one raingauge (R19)
shows the highest intensity compared to the others with value of 79.2 mm/hr (red colour).
This situation was made the interpolation process in Kriging did not produce smooth
rainfall contours as those derived from digitized images (radar). This is also caused the

centre of the storm was not captured accurately by ground data.

Comparison of area distribution for event on February 26, 2006 was taken at
04:55 am. It is indicated that the highest intensity was within 35 — 80 mm/hr. The area
distribution still differs between ground data and radar data. Most area of rainfall contour
from ground data was bigger than those derived from radar. This situation might be same
with event on January 6, 2006 where the number of raingauge station is small and rainfall
data which is recorded the highest rainfall amount is less. This is caused the centre of the
storm was not captured accurately by ground data. The highest intensity at this time is
only 48 mm/hr and that is why both of rainfall contours were show that orange colour in
each image as the highest rainfall amount in that area. The total rainfall at this moment is
8.9 mm. From surface rainfall data, only 8 raingauge stations were recorded rainfall

amount.
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For event on April 6, 2006, there have two centres of the storm (red colour) with
intensity within 80 — 100 mm/hr at 15:29 pm. From Table 4.8, it is indicated that low
intensities were give a bigger area compared to high intensities from surface rainfall data.
This is might be influenced by ground data where no high intensity value is recorded at
this moment. From rainfall contour which is derived from surface rainfall (Figure 4.11),
there have three centres of the storm in that area. All of centres of the storm were
occurred at raingauges numbered R4, RS and R8 with intensity values of 24, 24 and 25.2
mm/hr respectively. Both of these spatial distributions were give a different result. It
seems that radar shows more accurate than surface rainfall. This might be due to the
effectiveness of radar detecting rainfall area. The colours of radar represent the values of
energy reflected toward the radar. The higher the dBZ, the stronger the rain intensity.
Beside that, only eight raingauges was recorded rainfall intensity. This is also might be
one of factor that why rainfall contour from ground cannot capture accurately. This is
because contour from ground needs more raingauge stations to interpolate in Kriging.
Wind also could be one factor. Wind can bring rain far from the location where it is start

to fall.

Event on May 10, 2006 is quiet similar with event on April 6, 2006. There have
only one centre of the storm in ground contour but in radar contour shows two centres of
the storm at 15:12 pm. Low intensities were giving a bigger area than high intensities.
The location of centre of the storm between both of contours is also different. Rainfall
contour derived from radar shows more accurate compared to those derived from surface
rainfall. Beside that, only six raingauges was recorded rainfall amount. This is caused
the interpolation process cannot give a smooth rainfall contour because the more data
used for interpolation, the better contour can be produced. Figure 4.11 comprises the

area distribution between radar and surface rainfall for four selected storms.

Overall, it is evident that the two analyses produced remarkably different results.
Such discrepancies could be due to interpolation process in Kriging Method where the
procedure of spatial interpolation require an estimate of unknown values of a variable at

unsampled points by using measured values from other points (Weise, 2001). Moreover,
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a few raingauges had missing data. This has worsen the interpolation process in Kriging

compared to the digitized images (radar). Beside that, it is not only due to the raingauge

data but other factor also impacted to this result.

Another factor leading to error is

evaporation of precipitation before reaching the ground, which happen frequently in

tropics. Also winds may carry precipitation away from beneath the producing cloud. All

of these are sources of error.

Table 4.8 : Areal distribution of storm intensity obtained from radar and raingauge

Date 6-Jan-06 26-Feb-06 6-Apr-06 10-May-06

Time 18:36 4:55 15:29 15:12

Intensity | Area (km?) Area (km?) Area (km?) Area (km?)

(mm/hr) [ Radar | Raingauge | Radar | Raingauge | Radar | Raingauge | Radar | Raingauge

0.3-0.5 309.86 767.68 463.11 893.28 303.83 765.27 213.81 1270.45
277.37 560.18 408.87 331.33 159.15 2234 189.88 375.71
457.4 425.49 539.74 306.71 167.55 1423.71 237.34 999.32
555.11 206.00 370.48 411.08 128.86 408.68 239.36 151.87
234.24 285.05 202.63 500.26 240.51 29.07 303.98 44.42
186.24 549.19 94.90 413.16 362.60 5.42 284.56 11.11
5.76 62.24 0.00 0.00 3.03 0.28 2.38 2.95
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Figure 4.11 : Comparison of areal distribution of intensity between surface rainfall and

radar
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4.3.6 Storm Movement

In is interesting to investigate the movement pattern of convective storms by
tracking the centre of the storm. It is known that an area situated in the tropics
experiences predominantly convective precipitation, which is an active component of the
tropical weather system (Hastenrath, 1991). Two features of storms which receive
attention from researchers are the velocity and direction storm cells movement. It was
found that the storm velocities and directions change seasonally (Niemczynowicz and
Dahlblom 1984; Chaudry et. al., 1994). The movement and intensity of convective storm
are important to predict the magnitude and location of flash flood (Doswell et. al., 1996).
This section is to investigate what are indicators and predictors were in the evolution and
movement of convective storms resulting in heavy rainfall, and the reliability of radar
retrieved rainfall data to improve very short-range forecasts. In this analysis, four flash
flood events that had occurred in the Klang Valley were chosen. The storms bringing
rains leading to the flash floods had exhibited convective characters. These events also
are a good example of unusually strong convective events responsible for heavy rainfall.
Radar images were used to perform this analysis. Figures 4.12, 4.13, 4.14 and 4.15

tllustrate the storm movement for the events.

Pascual et al., (2004) used 30 to 45 dBZ to differentiate convective and stratiform
precipitation. On the other hand, Rigo and Llasat (2002) used 43 dBZ to analyse
convective event derived from meteorological radar. Whilst Dong and Hyung (2000)
used 35 dBZ in study of heavy rainfall with mesoscale convective systems over the
Korean Peninsular. In this study a value of 35 dBZ is taken as reflectivity threshold to
identify convective rainfall from radar images. This value also corresponds with the
radar’s rate, thus ease the reading the reflectivity according to radar’s colour code. The
highest reflectivity, (> 35 dBZ) is chosen as centre of the storm. The centre of the storm
is used track the movement of the storms (Figures 4.12, 4.13, 4.14 and 4.15). The
coordinates of storm movement were then plotted in Malaysia’s RSO (Rectified Skew
Ortomorphic), which is a coordinate system in GIS (ArcGIS 9.1). Tables 4.9 and 4.10

present the coordinates of the storm centre and the corresponding reflectivity values. For
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storm on January 6, 2006, the storm centre developed at 18:03 hr with reflectivity of 65
dBZ or 90 mm/hr. This storm exhibited decreasing reflectivity as it move from northeast
to the southwest (Figure 4.12). The duration of this movement was 1 hour and 5 minutes.
The storm on February 26, 2006 moved from northwest to southeast and the storm centre
at 03:39 hr (Figure 4.13). The storm duration was 1 hour and 16 minutes until the centre
of the storm disappeared. Initially, the reflectivity was 65 dBZ or 90 mm/hr and

decreased to 35 dBZ until the storm ceased.

Storm on January 6, 2006
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Figure 4.12 : Storm movement on January 6, 2006
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Figure 4.13 : Storm movement on February 26, 2006
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Table 4.9 : The coordinates and intensity of storm centres on 6.01.2006 and 26.02.2006

6-Jan-06 26-Feb-06
No | Time goordinate }(Ijoordinate dBZ 1 Time )((Soordinate }(Ijoordinate dBZ 1
1 18:03 | 403611.86 | 366344.86 | 65 90 3:39 | 363432.7 371967.6 65 90
2 18:09 | 395780.33 | 364193.73 | 65 90 3:50 | 366902.1 367303.8 65 90
3 18:14 | 394085.73 | 363303.39 | 50 80 3:55 | 370233.0 364128.4 65 90
4 18:30 | 393554.94 | 359183.38 | 50 80 4:06 | 371106.8 360999.8 65 90
5 18:36 | 392603.98 | 356918.98 | 35 65 4:11 | 372464.8 358668.4 35 65
6 18:47 | 391620.26 | 346201.21 | 35 65 4:17 | 374450.8 357020.6 35 65
7 18:52 | 387676.04 | 340387.28 | 35 65 4:22 | 379764.0 355024.8 35 65
8 19:08 | 381964.49 | 332887.73 | 35 65 4:28 | 383585.9 353876.2 35 65
9 4:33 | 387431.4 351956.7 35 65
10 4:38 | 395388.3 349947.7 35 65
11 4:44 | 398607.4 348651.6 35 65
12 4:49 | 400997.3 347367.0 35 65
13 4:55 | 405145.4 343049.8 35 65
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For the other two storms, their durations were very short, only 20-30 minutes and
over short paths. As such it is difficult to determine the centre of these storms. Beside
that, an observation from radar images was shown that during convective storm
developed in some part of Klang Valley, the convective lines (the movement of
convective storms) were broken abruptly and another strong convective storms were
generated at different location and then pre-existing convective storms began at a new
time (not shown). The boundaries of convective storm developed into a very complex
shape with time. Figures 4.14 and 4.15 show the storm movement on April 6 and May
10, 2006. These figures show the movement of very strong convective storms during
those events. Table 4.10 presents the storm centres coordinates and their reflectivity

values.

From overall analysis, it is showed that an area situated in the tropics experiences
predominantly convective precipitation. Heavy rainfall was resulted from strong
convective events. The movement could be one line and varied. The duration of this
movement was taken about 20 minutes to 1 hour until the centres of the storms were
shrunk. Sometime, the evolution of centre of the storm is difficult to predict especially
for short duration movement. This is because the centre of the storm abruptly initiated
and broken rapidly then new strong convective storms were produced and begans at a
new time. Beside that, it is indicated that the storm movement for short duration was
very limited. The highest intensity of centre of the storm from all events analysed is 80

dBZ or 100 mm/hr in events on April 6, and May 10, 2006.
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Table 4.10 : The coordinates and intensity of storm centres on 6.04.2006 and 10.05.2006

6-Apr-06 10-May-06
N Time Coordinat | Coordinat | dB i Time Coordinat | Coordinat | dB | mm/h
0 €X ey Z €X ey Z r
15:4 14:3
1 6 408014.4 | 354555.7 | 80 100 9 407001.2 | 3571504 | 80 100
15:5 14:4
2 1 403815.7 | 351078.0 | 65 90 5 406613.6 | 357002.2 | 80 100
15:5 14:5
3 7 403583.0 | 350619.2 | 65 90 0 406296.3 | 349207.7 | 65 90
16:0 15:0
4 |2 405663.6 | 349146.6 | 35 65 1 403297.0 | 349818.1 | 65 90
16:0
5 8 409915.8 | 345370.8 | 50 80
16:1
6 3 409608.4 | 343723.8 | 35 65
Storm on April 6, 2006
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Figure 4.14 : Storm movement on April 6, 2006
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Storm on May 10, 2006
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Figure 4.15 : Storm movement on May 10, 2006

4.3.7 Depth-Area Relationship

In order to obtain information on the size of rainfall cells and on the areal volume
distribution during a single event depth-area relationships were derived. This analysis
focused on a smaller area using eleven raingauges which cover 241.34 km®. The areas
between all pairs of neighbouring isohyets of the six selected storms computed by
ArcGIS 9.1 are shown in Figure 4.16. As shown, four of the storms (on January 6, 2006,
February 26, 2006, May 10, 2006 and November 5, 2004) have the highest rainfall depth
at the southwest and decrease as the storm move to the northestern part of the catchment.
However, the storms on April 6, 2006 and June 10, 2003 exhibited no direction of rainfall
depth. It is observed that six raingauges had missing data in these events and might be
one of factor that made the interpolation process in Kriging did not produce smooth
rainfall contours. The percentages reduction of rainfall depth is plotted against the

cumulative area from the storm centre (Figure 4.17). The shapes of the areal reduction
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curves were different for all the storms analysed. An average curve for all six storms was
also drawn. Despite the large differences in the depth area curve patterns, the graph
generally show that total rainfall depth decrease as the area increase. This finding is
consistent with the property of convective events in section 4.5.1 where the highest

intensity covers a small fraction of area.

From all curves plotted, it seems that the Areal Reduction Factors (ARF) values
are consistent among each curve. Next, the ARF curve was then determined and
compared with the ARFs from other areas. Figure 4.18 shows other curves derived by
Desa (1997), Niemczynowicz (1984) for Lund in Sweden and by Shaw (1989) in the
United Kingdom (1986). Desa (1997) was plotted ARF curve in small urban area (23
km?) in Kuala Lumpur region. In his study, it is shown that the average ARF curve is
lower than average ARF curve in this study but the curve almost similar with study by
Niemczynowicz (1984). This is might be due to similar time and space resolution,
similar size of area and of raingauge density and both catchments are situated in urban
areas (Desa, 1997). From the graph also, it can be noticed that the area reduction curve
derived in this study is quiet similar with previous curve derived for Malaysia by Yan and
Lin (1986) for 1 hour. Nevertheless, the difference between this study is their curves
were derived from data with poorer temporal and spatial resolution: 0.5 mm per tipping
bucket with a weekly paper chart recorder and 23 raingauges covering an area of 200km”.
This study used 0.2 per tipping bucket with 20 raingauges covering an area of 241.34
km®. Therefore, this graph possibly more accurate than graph by Yan and Lin (1986).
However, further studies need to be done because the used of 20 raingauges might be not

sufficient for an area of more than 200 km?>.

The results indicate that the shapes of such curves can only be compared between
other locations if the temporal and spatial resolutions of the measurements are similar.
This conclusion must be verified by more detailed analyses of areal and dynamic

properties of single rainfall cells.
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Figure 4.16 : Spatial variation of rainfall depth (mm) of six selected storms



162

100

—(06.1.06

26.02.06
06.04.06
10.05.06

Percentage reduction (%) of storm depth
a
o

10.06.03
05.11.04

m— m=maverage

0 25

50 75 100 125 150 175 200 225

Cumulative catchment area (km2)

250

Figure 4.17 : Depth-area relationships for six selected storms.
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4.4  Stochastic Modeling of Hourly Rainfall Series

The modeling of hourly rainfall begins by finding the best-fit distribution for the

hourly rainfall series.

4.3.1 Fitting the Best-fit Distribution for the Hourly Rainfall Amounts

Several methods have been proposed in literature for modeling rainfall amounts at
the daily scale. The most common approach is to assume that rainfall amounts on
successive days are independent and fit some theoretical distribution to the rainfall
amounts (Todorovic and Woolhiser, 1975; Woolhiser and Roldan, 1982). However,
there is no attempt so far to extend the method to the hourly rainfall amounts. Hence, this
study will explore the methods proposed by Todorovic and Woolhiser (1975)
andWoolhiser and Roldan (1982) for the hourly rainfall amounts in the Wilayah
Persekutuan area. The best fitting distribution for the hourly rainfall amounts based upon
several criteria of goodness-of-fit tests is to be determined. Four theoretical distributions

considered include the Exponential, the Weibull, the Gamma and the Mixed-Exponential.

4.3.2 Fitting Distributions

There are 13 rainfall stations located in the vicinity. Historical rainfall data of
every 15 minutes and daily amount are supplied by Department of Irrigation and
Drainage (DID) Selangor for this study. The 15 minutes data are then aggregated to
become hourly data. For this study, twelve stations were chosen based upon the
completeness of the data. The study period ranges from 1981-1991 with most stations
having a ten-year period hourly data (see Figure 4.1 and Table 4.1 for further details
regarding these data).
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The summary of the descriptive statistics for the stations used in this study is
shown in Table 4.1. The means and variances are ranged from 3 mm/h to 4.3mm/h and
from 5.5mm/h to 7.3mm/h respectively. As a result, the coefficients of variations are
rather consistent throughout the state ranging from 1.533 to 1.794. This shows that the

hourly rainfall variability over the whole state is quite homogenous.

In the ten-year periods, station 3217003 (KM 11 Gombak) shows the highest
hourly maximum amount followed by station 3217001(KM 16 Gombak) having the
lowest hourly maximum. However, station 3217001 experienced the highest number of
wet days. All stations are positively skewed with the values of the coefficients are

consistent throughout the stations.

Four theoretical distributions namely the Exponential, the Gamma, the Weibull
and the Mixed Exponential are used in determining the best-fit distribution to describe
the hourly rainfall amounts in Wilayah Persekutuan. Using the goodness-of-fit tests that
has been discussed in Chapter 3, the best-fit distribution is chosen based upon the
minimum error. The distributions are ranked according to these criteria. Table 4.12 shows

the results of the tests.

Among the four distributions tested, the Mixed-Exponential was found to be the
best fitting distributions for all stations where almost all the criteria of goodness-of-fit
tests resulted in a minimum error to the Mixed-Exponential. This is followed by the

Weibull, the Gamma, and finally the Exponential distributions.

The above results can be verified further by presenting the graphical
representations through the plot of the exceedance probability. From the graphs given in
Figures 4.19a to 4.19d, the Mixed-Exponential plot has the nearest plot to the observed.
Hence, the Mixed-Exponential distribution was found to be the best in describing the

hourly rainfall amounts in the Wilayah Persekutuan.
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The estimated parameters for the Mixed-Exponential distribution are shown in
Table 4.3. The mixing probability that indicated the percentage of variation of the hourly
rainfall amounts in the Wilayah Persekutuan has shown an approximate value of between
0.6 to 0.7. The weighted average of two exponential distributions in the mixed-
exponential distributions may refer to the two types of rainfall, namely “light” or
“heavy”. Hence, it can be interpreted that between 60% and 70% of the hourly rainfall
series in the Wilayah Persekutuan is contributed by the light rain. Hence, the remainder is
being contributed by the heavy rain. This is true due to the higher frequency of light rain
for the hourly data.

However, the total estimated mean shows that about 80% is attributed to heavy
rainfall. This implies that most of the rainfall amounts recorded in the study area is
received from heavy rains even though there is a higher occurrence of light rainfall. The
hourly duration used indicates short duration heavy rainfall has a large impact on the

rainfall amount received and potentially is the main contribution to flash flood events.
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Table 4.11: Descriptive statistics of the rainfall amounts for the Wilayah Persekutuan .

No.of Max.
Station Station Hourly | Std. wet amou
no. names Duration | Mean | Dev. | CV Skewness | Kurtosis | hours nt
rainf
all
(mm)
3015001 | Puchong 1982- 1.794
Drop 1990 3.997 7.17 3.712 18.814 4057 82.10
3116005 | Sek.Ren. 1981- 1.73
Taman 1990 3.663 6.337 3.768 20.946 6466 92.50
Maluri
3116006 | Ladang 1981- 1.698 5598
Edinburgh | 1990 3.68 6.249 3.808 20.234 72.70
Site 2
3216001 | Kampung 1981- 1.533 6074
Sg. Tua 1990 3.98 6.102 3.28 14.504 69.60
3216004 | SMJK 1982- 43 7 346 1.708 3736 10277 4328 —
Kepong 1991
3217001 | KM 16 1981- 1.692 7102
Gombak 1990 3.359 5.682 3.815 20.313 58.20
3217002 | Empangan | 1981- 1.747 6819
Genting 1990 3.145 5.495 3.901 20.313 57.70
Kelang
3217003 | KM11 1981- 1.672 5551
Gombak 1990 3.779 6.318 3.789 21.830 92.90
3217004 | Kpg. Kuala | 1981- 1.694 4549
Saleh 1990 4.16 7.046 3.682 18.399 72.30
3217005 | Gombak 1982- 3768 | 6753 | 1792 | 3m 18954 | 3447 70.10
Damsite 1991
3317001 | Air Terjun | 1985- 1.666 5279
Sg.Batu 1994 4.042 6.732 3.524 16.986 69.70
3317004 | Genting 1981- 1.747 7484
Sempah 1990 3.018 5.272 4.2 27.805 83.00
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Table 4.12: The ranking of distributions using AIC and goodness-of-fit tests

No. | Stations | AIC KS CVM AD Means | Median
1 3015001 | 1.MEX | 1.MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM |3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4 EXP
2 3116005 | I.MEX | 1.GM 1.MEX | 1.MEX | .MEX | 1.MEX
2.WE 2.MEX | 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM |3.GM
4EXP | EXP 4EXP | 4EXP | 4EXP | 4 EXP
3. 3116006 | 1.MEX | 1.MEXP | 1. MEX | I.MEX | I.MEX | 1. MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM | 3GM |3.GM | 3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4.EXP
4. 3216001 | 1.MEX | 1.MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3GM |3GM |3GM |3.GM
4EXP | 4 EXP 4EXP | 3. EXP | 4 EXP | 4.EXP
5. 3216004 | 1.MEX | 1.GM 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.MEX | 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM |3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4 EXP
6. 3217001 | 1.MEX | 1.MEX 1.MEX | 1.MEX | .MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM | 3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4 EXP
7. 3217002 | 1.MEX | 1.MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM | 3GM |3.GM | 3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4.EXP
8. 3217003 | 1.MEX | 1.MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3GM |3GM |3GM |3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4 EXP
9 3217004 | 1.MEX | 1.MEX 1.MEX | 1.MEX | .MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM |3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4 EXP
10. | 3217005 | 1.MEX | 1.MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM |3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4.EXP
11. | 3317001 | 1.MEX | 1. MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3.GM |3GM |3.GM | 3.GM
4EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4.EXP
12. | 3317004 | 1.MEX | 1.MEX 1.MEX | 1.MEX | 1.MEX | 1.MEX
2.WE 2.GM 2.WE 2.WE 2.WE 2.WE
3.GM | 3.WE 3GM |3GM |3GM |3.GM
4 EXP | 4 EXP 4EXP | 4EXP | 4EXP | 4 EXP
MEX=MIXED-
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EXPONENTIAL;WE=WEIBULL;GM=GAMMA;EXP=EXPONENTIAL;AIC=AIKAK
E INFORMATION CRITERION;KS=KOLMOGOROV-SMIRNOV;CVM=CRAMER-
VON-MISES;AD=ANDERSON-DARLING



Table 4.13: The estimated parameters for the Mixed Exponential distribution

Mixing probability | Scale 1 | Scale 2 | Estimated
Station no. | Station names
() (B) (fB,) |mean
3015001 Puchong 0.6772 1.137 | 9.996 | 3.997
Drop [19%] | [81%]
3116005 Sek.Ren. 0.6504 1.077 | 8.474 | 3.663
Taman
Maluri
[19%] | [81%]
3116006 Ladang 0.6261 1.108 | 7.985 | 3.68
Edinburgh
Site 2
[19%] | [81%)]
3216001 Kampung 0.6218 1.44 8.154 | 3.977
Sg. Tua [23%] | [77%]
3216004 SMIJK 0.6302 1.253 | 9.48 4.295
Kepong [18%] | [82%]
3217001 KM 16 0.687 1.193 | 8.114 | 3.359
Gombak [24%] | [76%]
3217002 Empangan 0.702 1.114 7.93 3.145
Genting
Kelang
[25%] | [75%]
3217003 KM11 0.6433 1.211 8.409 | 3.778
Gombak 21%] | [79%]
3217004 Kpg. Kuala 0.6482 1313 |94 4.158
Saleh [20%] | [80%]
3217005 Gombak 0.6477 1.002 | 8.853 | 3.768
Damsite [17%] | [83%]
3317001 Air Terjun 0.6245 1.178 | 8.804 | 4.042
Sg.Batu [18%] | [82%]
3317004 Genting 0.6998 1.066 | 7.57 3.019
Sempah [25%] | [75%]
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The percentages in the brackets refer to the estimated means of the hourly rainfall amounts contributed by

both scales.
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435 Summary

The distribution of the hourly rainfall amounts in the Wilayah Persekutuan is best
described by the Mixed-Exponential distribution. The Weibull and the Gamma
distribution are ranked second and third respectively, and the last in the ranking is the
Exponential distribution. These are based on the goodness-of-fit tests performed on the

studied station, as discussed in section 3.3.

From the estimated parameters of the Mixed-Exponential distribution obtained, it
could be interpreted that between 60% and 70% of the wet hourly series in the Wilayah
Persekutuan is contributed by the light rainfall and the remainder by the heavy rainfall.
However the total estimated mean shows that about 80% is attributed to heavy rainfall.
This implies that most of the rainfall amounts recorded in the study area are received
from heavy rains even though there is a higher occurrence of light rainfalls. The hourly
duration used indicates short duration heavy rainfalls have a large impact on the rain
amounts received and potentially could be the main contribution to flash flood events.

These would indeed provide grounds for further studies on convective rainfall and flash
floods.

4.3.4 NSRP model with mixed exponential distribution

The model is referred as the MEXPTRAN in this study. Figure 4.20 shows the
comparison between the observed and the simulated statistical properties of rainfalls for
the one-hour scale. The model simulation accurately preserved the observed values of the
one-hour mean and variance. The one-hour rainfall coefficients of skewness and

autocorrelations were matched very well the observed values for some of the months.

Figure 4.21 shows the comparison between the observed and the simulated

physical properties of rainfalls for the one-hour scale. The model matched fairly well the
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one-hour maximum rainfall for the whole year. The transition probabilities of rainfall
occurrence P10 (wet-dry hour) and P00 (dry-dry hour) were matched poorly by the
model. Similarly, the model underestimated the probability of dry hours of rainfall.

Figure 4.22 shows the comparison between the observed and the simulated of
rainfalls for six-hour scale. The mean, variance and coefficients of skewness of six-hour
rainfalls were preserved accurately by the model simulation. However, autocorrelations

of six-hour observed rainfalls were overestimated.

Figure 4.23 shows the comparison between the observed and the simulated
statistical properties of rainfalls for the 24-hour scale. The mean, variance and the
coefficients of skewness of the 24-hour rainfalls of the observed were accurately
reproduced by the model. The autocorrelations of 24-hour rainfalls were adequately

preserved.

Figure 4.24 shows the comparison between the observed and the simulated
physical properties of rainfalls for the 24-hour scale. The 24-hour maximum rainfalls
were preserved fairly well by the model. However, the probability of dry days of the
observed rainfalls were preserved very well by the model. Similarly, the daily transition
probabilities of rainfall occurrences P70 (wet-dry day) and POO(dry-dry day) of the

observed could be preserved accurately by the model simulation.

Figure 4.25 shows the comparison between the observed and the simulated at the
properties of rainfalls for the monthly scale. The observed monthly mean had close
agreement with the medians of the box plots for the whole year. However, the standard
deviations, maximum and minimum monthly rainfalls of the observed were fairly

matched by the model.
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In general, the MEXPTRAN performed very well in preserving the observed
means and variances of rainfalls at various time scales. The model has also managed to
describe accurately the probability of dry days and the transition probabilities of rainfall
occurrences for the the whole year. However, the autocorrelations and the coefficients of
skewness of rainfalls at various timescales were only fairly preserved, but within the
range of the simulated properties considered. Nevertheless, the MEXPTRAN simulation

preserved the seasonal trend of the observed properties very well.
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435 MCME model

The Markov Chain Mixed Exponential (MCME) model is a daily rainfall model.
The performance of the model on the daily rainfall series was extensively acknowledged
in literature (e.g. Woolhiser et al. 1984, Eagleson, 1978; Woolhiser et.al, 1982, Roldan
et.al, 1982, Richardson, 1981). However, in this study the model was modified and
applied to the hourly rainfall series. This chapter basically discussed the suitability and
applicability of the modified hourly MCME model. The performance of the model on the
daily series was also evaluated and compared with the performance of the modified

hourly MCME model..

4.3.5.3 Performance of Hourly MCME model

The Markov Chain process for hourly series was applied from 1981-1990
obtained from Station 3217001 at KM 16 Gombak. The Mixed-Exponential represents
the hourly rainfall amounts from the same station. Monthly parameters for the rainfall
distribution and occurrences were estimated using the SCE method. Following Fourier
series fitting of each variable for seasonal variability throughout the year, simulations for
the synthetic time series were conducted for 10-year period using the parameter sets

obtained from the hourly series.

4.3.5.2 Fitting of the Mixed Exponential Distribution to Observed data

In Section 4.3.3, the study on finding the best distribution for the hourly rainfall
amounts in the Wilayah Persekutuan has found that the mixed exponential distribution
was the best distribution. However, to assess the descriptive ability of the mixed
exponential distribution the exceedance probability curves were used for each month. The
exceedence probability of monthly rainfall plotted on a semi-log scale provides a

qualitative tool to assess the performance of the mixed exponential distribution. The
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semi-log scale helps to determine the mixed exponential nature of the data if it exists. The
rainfall distribution of a particular month would follow an exponential function if the
observed probability follows a straight line. In Figures 4.26a and 4.26b, the dots represent
the observed probabilities while the dashed line represents the theoretical values.
However, for all months the exceedance probability curves contain at least two slopes,
which indicate a mixed-exponential distribution. The break in slopes points to the
physical evidence concerning the presence of at least two different types of storm rainfall
(convective and non-convective) and this further supports the use of mixed exponential
distribution (Hussain, 2007). The use of the mixed exponential is the most appropriate
because of its flexibility in capturing the mixture of storm types, as well as a single

exponential pattern.

4.3.5.3 Fourier Series Fit to Parameter Sets.

Two Markov Chain transitional probabilities (P00 and P10) and three mixed

exponential parameters («,& and @) were generated for each month. Thus, a total of

sixty parameters were needed to describe the rainfall process. However, the number can
be reduced by using a truncated polar Fourier series. The seasonal variability of each
parameter through the twelve months of the year was represented by using maximum
likelihood estimates of the periodic parameters using five harmonics (Han, 2001). The
number of harmonics may be reduced or increased to create a more parsimonious model.
If the number of harmonic increases the total parameters to be estimated would also
increase. The use of five harmonics for all five parameters would lower the total number

of parameters from sixty to fifty-five.

The Fourier series fit is compared to the non-fitted transition probabilities and
mixed exponential parameters as shown to determine whether the parameters are well
represented by the Fourier series. As shown in Figure 4.27 the Fourier fits for all
transition probabilities are in very close agreement. The dots represent the MCME

parameters and the dashed lines represent the Fouries series fit. However, the parameter



184

0 that represents the higher (larger) mean is not as well presented as the parameter & that
represent the lower (smaller) mean. This perhaps implies that the larger mean is not be
well predicted by Fourier series fit. Nevertheless, as whole the seasonal variability of the

rainfall process is well described by the Fourier series fit.

4.3.5.4 Simulation Verification

Following the calibration of the rainfall amounts using the Fourier series fits of
the MCME, 50 simulations of hourly rainfall series of the same length were generated.
The statistical properties and the physical properties of the generated series were

compared with the observed series.

4.3.5.5 Simulated Transitional Probabilities

The box plot in Figure 4.28 represents the transition probabilities calculated for
50 sets of monthly data from 50 simulations as compared to the empirical transition
probabilities (represented by dots connected by the dashed line). The simulated transition
probabilities are well preserved and comparable to the empirical values. The median of
the box plots is excellently matched with the empirical value and the spread around the
median represent the variability that exists in 50 simulations. The seasonal variability can
also be seen in general trend of the monthly box plots for the whole year. Therefore, it
can be said that the simulation of the hourly rainfall occurrences is comparable to that of

the observed pattern.

The probability of a dry hour following a dry hour is as expected, very high. A
further investigation of the transition probabilities shows that an hour is more likely to be

dry if the previous hour is wet in the months of June and March.
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Similarly, there is a higher probability of rain on a given hour if the previous hour
was also rainy in September and May. The probability for a wet hour occurring following
a dry hour is very low, but more likely in November and September. Therefore, the
hourly rainfall occurrence characteristics were well described by the MCME hourly

model.

4.3.5.6 Simulated Mixed Exponential Parameters

Figure 4.28 also shows the comparison between the simulated and the empirical
MCME parameters. When comparing simulated mixed exponential parameters to the
empirical (observed values), it can be seen that the median of the simulated box plots and
the empirical parameter values show close agreement in value as well as the trend. There
is also a noticeable seasonal periodic variation in all parameters. The higher mean has
large range of simulated values. However, the empirical values are still in the middle
50% of the simulated values in the box plots. This is consistent with the Fourier series fit

results where the higher mean is not well represented by the Fourier series.
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4.3.6 Properties of Simulated and Observed Series

Following the comparison of the MCME empirical and simulated parameters, the
statistical and physical properties of 50 simulations and the observed hourly rainfall

series were compared as shown in the following.

4.3.6.1  Statistical Properties

The statistical properties to be evaluated in this study include mean, standard
deviation, coefficient of skewness and correlogram of 1-hour rainfall series evaluated on
monthly basis, as shown from Figures 4.29 to 4.30. The observed is represented by the
dots connected by dashed lines and the simulated is represented by the box plots. The
one-hour rainfall mean has close agreement with the medians of the box plots for the
whole year. Similar results obtained for the standard deviation for the one-hour rainfall
where the model performed very well with the observed has comparable values with the
medians of the simulated box plots throughout the years except in February. The model
preserved the one-hour rainfall coefficients of skewness accurately for some of the
months. The time dependence characteristics of the hourly rainfall series is basically
presented using the correlogram (r(k ) which is a plot of lag-k autocorrelation versus the
k. The correlograms, r(k) values were fairly well reproduced by the model except for
lags 1 and 4. Overall, the seasonal variability and trend of the observed properties of
rainfall are comparable to the simulated properties. Therefore, the hourly statistical

properties of observed rainfalls could be described well by the hourly MCME model.

4.3.6.2 Physical Properties

The physical properties include the hourly maximum and number of dry or rainy

hours evaluated on monthly basis. Figure 4.31 shows the physical properties of the

observed and simulated hourly rainfall series. For the one-hour maximum rainfall, the
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observed values were contained in the middle 50% of the box plots for most of the
months except in January, February and June. The hourly number of rainy hours and dry
hours has shown excellent agreements between the observed values and the medians of
simulated properties. The number of rainy hours was the highest in November, followed
by September, while the lowest was in June. The number of dry hours was highest in
January. The seasonal trends of the properties were well preserved. Therefore, the
physical properties of the hourly rainfall were preserved well by the hourly MCME

simulation.

4.3.6.3 Lumping to daily rainfall series

A further analysis was conducted to see whether the hourly rainfall data
could be “lumped” to form a 24 hourly or a daily equivalent. This analysis was done to
determine whether the hourly MCME model is able to reproduce accurately the
properties of the rainfall series for daily scale by lumping the hourly data. The simulated
statistical and physical properties of the 24-hour rainfalls were then compared to the
observed daily data from the same period. Figures 4.32 to 4.33 show the statistical
properties of the simulated 24-hour box plots and the observed daily. It can be seen that
the simulated 24-hour mean of rainfall has an excellent agreement with observed with the
median of the simulated mean has an almost equal value to observed daily mean. The
standard deviations of the observed daily rainfall was preserved only fairly well by the
model. The coefficients of skewness of daily rainfall was underestimated in April and
July but the daily rainfall autocorrelations was underestimated in most of the months by
the hourly MCME model. The daily correlogram only shows an excellent fit with the

medians of the simulated 24-hour correlogram at lags 4, 10, and 15.

In general, the lumped daily performance was not as good as the hourly
performance in preserving the statistical properties of the observed. Nevertheless, the
seasonal trends of the daily rainfall properties were very well preserved by the hourly

MCME model.
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Figure 4.34 shows the physical properties of the 24-hour simulated series and the
daily observed series. The daily maximum rainfall of the observed values were managed
to be captured in the middle 50% of simulated in the box plots in February, March, May,
August, October and November only. However, this is not true for the simulation of the
number of rainy days and the number of dry days, where the middle 50% of the simulated
values in the box plots do not manage to capture the observed values. While the physical
properties of the observed daily series were unable to be matched accurately in the hourly
MCME simulations, the seasonal trend of the observed daily properties was very well

preserved.

4.3.6.4 Lumping to monthly rainfall series

Following the lumping of the hourly to form a daily series, a further lumping was
done to form a 1-month scale data. This analysis was done to determine whether the
MCME hourly model is able reproduce accurately the monthly properties of the rainfall
series as well. The simulated statistical and physical properties of the 1-month rainfalls
amounts were then compared to the observed monthly data for the same period. Figure
4.35 shows the statistical properties of the simulated lumped monthly box plots and the
observed monthly properties. It can be seen that the simulated monthly mean of rainfall
has an excellent agreement with the observed. However, the standard deviation of the
observed monthly rainfall series were unable to be captured in the middle 50% of the box
plots for the whole year. The simulated monthly maximum and minimum or rainfall were
also unable to capture the observed in the middle 50% in most of the months. Hence, the
properties of 1-month scale rainfall amount were not able to be preserved accurately by
the MCME hourly simulations. Nevertheless, the hourly MCME model preserved the

seasonal trends of the observed monthly rainfall series.
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4.3.7 Validation of the NSRP and MCME models

In assessing the predictive ability of the models, the simulations of both models
were extended to 20 years. The first 10 years were used to assess the models’ descriptive
ability which has been covered in Chapter 4, while the last 10 years was used to assess
their predictive ability. The last 10 years simulation was compared with the observed

series from 1991 to 2000.

4.3.7.1 Validation of the NSRP model

The descriptive ability of the NSRP model has been discussed. It was found that
the NSRP model with mixed exponential distribution to represent the rain cell intensity
and combined with the use of the transition probabilities of rainfall occurrences in the
estimation of parameters procedures also referred, as the MEXPTRAN was the best
model to represent the NSRP. Therefore, to determine the strength of the model in
extrapolating beyond the data points (1981-1990), the predictive ability is to be assessed
to ensure that the model has the ability to be used in simulating the hourly rainfall series

at any length and at any data points.

Figure 4.36 shows the comparison between the observed and the simulated
statistical properties of rainfall for the one-hour scale. The one-hour observed rainfall
mean was matched very well only in January, July and October. However, the standard
deviation of one-hour rainfall was matched within the range of the maximum and
minimum value of the box plots in most months except in February, June and July. The
coefficients of skewness of one- hour rainfall could be adequately preserved for January,
February, May and July. However, the autocorrelation of one-hour rainfall was

underestimated in most of the months.
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Figure 4.37 shows the comparison between the observed and the simulated
physical properties of rainfall for the one-hour scale. The maximum of one-hour rainfall
was matched well and within the range in all months except in September. However, the
probability of dry hours of rainfall series was poorly matched and underestimated in most

of the months.

Figure 4.38 shows the comparison between the observed and the simulated
statistical properties of rainfall at the 24-hour scale. The mean of 24-hour rainfall was
matched excellently in January, July and October. The variances, autocorrelations and
coefficients of skewness of the 24-hour rainfall were fairly matched within the range of

the simulated properties.

Figure 4.39 shows the comparison between the observed and the simulated
physical properties of rainfall at the 24-hour scale. The maximum 24-hour rainfall. was
matched fairly well for the whole year. However, the probability of dry days was either

overestimated or underestimated for some months.
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Figure 4.39: Validation of Monthly Physical Properties of 24-Hour Rainfall (mm) of
MEXPTRAN

In general, the performance of the NSRP model in the validation period was not
as good as in the calibration period. The model was unable to predict the properties of
the observed rainfall accurately at various timescales. However, the model preserved the

seasonal trends of the observed rainfall properties

4.3.7.2 Validation of the MCME model

The validation of this model was done using the hourly and the daily simulation

of the MCME model. Figure 4.40 shows the comparison between the observed and the
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simulated statistical properties of rainfall for the one-hour scale. The means, variances
and coefficients of skewness of one-hour rainfall were fairly matched in which most of
the observed rainfall properties fall outside the box but within the range of the simulated
values. However, the lag-1 autocorrelation of one-hour rainfall was much

underestimated.

Figure 4.41 shows the comparison between the observed and the simulated
physical properties of rainfall for the one-hour scale. The probability of dry hours was
poorly matched in most of the months. However, the maximum one-hour rainfall was
matched very well in most of the months except in September where the observed values

were underestimated.

Figures 4.42 show the comparison between the observed and the simulated
statistical properties for the 24-hour scale (lumped daily). Similar performance as in the
1-hour scale was seen for the mean, variances and coefficients of skewness of the 24-
hour rainfalls where all these properties were only fairly matched. However, the
autocorrelations of 24-hour rainfall could be preserved fairly well by the model

simulation.

Figure 4.43 shows the comparison between the observed and the simulated
physical properties for the 24-hour scale (lumped daily). The maximum 24-hour rainfall
was only fairly matched with the medians of the box plots for the whole year. The
probability of dry days was seen to be either underestimated or overestimated in some of

the months.

Therefore, the performance of the hourly MCME model in the validation period
was also not as good as in the calibration period. The model was unable to preserve the
properties of the observed rainfall accurately at one-hour scale as well as at 24-hour

scale. However, the model could preserve the seasonal trends of the rainfall series.
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The validation of the MCME model was also done using the daily model. Figure
4.44 shows the comparison between the observed and the simulated statistical properties
of rainfall at daily scale. The means, standard deviations, coefficients of skewness and

autocorrelations of the daily rainfalls were only fairly matched in most of the months.

Figures 4.45 shows the comparison between the observed and the simulated
physical properties of rainfall at daily scale. The probability of dry days was also fairly
matched in most of the months. However, the daily maximum rainfall could be

adequately preserved for the whole year.

In general, the performance of the daily MCME model in describing the daily
rainfall process during the validation period was not as good as in the calibration period.
However, the predictive ability of the daily MCME model in predicting the daily rainfall
process can be considered more accurate than the lumped daily from the hourly MCME
model. This may be justified by the RMSE evaluated from the monthly square errors
between the observed and the medians for the daily properties as given in Table 4.14. It
clearly shows that the daily MCME simulation has smaller RMSE in all properties
considered. Therefore, the daily MCME model has better ability in predicting the

properties of daily rainfall series.
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of hourly MCME model
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Figure 4.45: Validation of Monthly Physical Properties of 1-hour Rainfall (mm) of daily
MCME model
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Table 4.14: The RMSE of the MCME models at 24-hour scale in the validation period
(1991-2000)

24-Hour Mean 24-Hour Autocorrelation

Daily
Month | Hourly MCME | Daily MCME Month | Hourly MCME MCME
Jan 0.0259 0.3444 Jan 0.0067 0.0004
Feb 2.5948 6.9634 Feb 0.0003 0.0022
Mar 1.7067 2.2995 Mar 0.0011 0.0004
Apr 2.0155 1.5293 Apr 0.0061 0.0058
May 2.3201 0.6087 May 0.0005 0.0010
Jun 12.1441 9.1436 Jun 0.0079 0.0045
Jul 0.0313 0.5505 Jul 0.0023 0.0003
Aug 3.1964 0.9155 Aug 0.0003 0.0000
Sep 1.8324 0.6572 Sep 0.0029 0.0028
Oct 0.2392 0.5778 Oct 0.0284 0.0225
Nov 1.6205 0.3758 Nov 0.0002 0.0003
Dec 8.6367 5.4281 Dec 0.0252 0.0177
SSE 3.0303 2.4495 SSE 0.0068 0.0048
RMSE | 1.7408 1.5651 RMSE | 0.0826 0.0695
24-Hour Standard Deviation 24-Hour Maximum

Dail
Month | Hourly MCME Daily MCME Month | Hourly MCME MCI\);IE
Jan 2.0274 0.6192 Jan 331.2400 51.8400
Feb 0.0170 10.6289 Feb 33.9889 424.3600
Mar 18.3808 10.3509 Mar 11.6964 142.3249
Apr 11.5406 12.1602 Apr 375.9721 342.2500
May 1.8458 0.9436 May 1437.1681 166.4100
Jun 49.6250 20.5073 Jun 1840.4100 170.3025
Jul 10.5633 1.1452 Jul 676.0000 31.6969
Aug 10.6138 1.3874 Aug 299.6361 25.5025
Sep 0.2263 0.7298 Sep 89.4916 0.0900
Oct 0.0123 1.3482 Oct 7.6729 10.3041
Nov 22.1177 1.9125 Nov 2424.5776 470.8900
Dec 35.3403 4.4554 Dec 2893.3641 123.2100
SSE 13.5259 5.5157 SSE 868.4348 163.2651
RMSE | 3.6778 2.3486 RMSE | 29.4692 12.7775
24-Hour Coefficient of Skewness Probability of Dry Days

Dail
Month | Hourly MCME Daily MCME Month | Hourly MCME MCI\);IE
Jan 0.5660 0.0711 Jan 0.0049 0.0071
Feb 1.1179 0.7333 Feb 0.0154 0.0064
Mar 0.0001 0.2049 Mar 0.0065 0.0010
Apr 0.0052 0.0241 Apr 0.0001 0.0016
May 1.6479 0.2150 May 0.0267 0.0058
Jun 0.2169 1.5146 Jun 0.0016 0.0052
Jul 0.8843 0.0028 Jul 0.0070 0.0004
Aug 0.0456 0.0001 Aug 0.0065 0.0097
Sep 0.1547 0.0024 Sep 0.0374 0.0064
Oct 0.1504 0.0985 Oct 0.0120 0.0019
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Nov 2.7492 0.9045 Nov 0.0069 0.0002
Dec 0.3511 0.4128 Dec 0.0007 0.0100
SSE 0.6574 0.3487 SSE 0.0105 0.0046
RMSE | 0.8108 0.5905 RMSE | 0.1024 0.0682

Table 4.15: The RMSE of the Hourly MCME and the MEXPTRAN models at one-
hour scale in the validation period (1991-2000)

One-Hour Mean One-Hour Autocorrelation

Month | MEXPTRAN | Hourly MCME Month | MEXPTRAN | Hourly MCME
Jan 8.51E-05 4.46E-05 Jan 0.0654 1.24E-01
Feb 4.35E-03 4.59E-03 Feb 0.0890 1.67E-01
Mar 6.38E-04 2.96E-03 Mar 0.0395 1.13E-01
Apr 8.70E-03 7.26E-03 Apr 0.0302 1.73E-01
May 4.55E-03 4.03E-03 May 0.0120 1.17E-01
Jun 1.90E-02 2.11E-02 Jun 0.0268 1.53E-01
Jul 1.27E-04 5.50E-05 Jul 0.0002 1.15E-01
Aug 6.64E-03 0.0055 Aug 0.0626 0.1116
Sep 2.46E-02 0.0027 Sep 0.0260 0.0947
Oct 1.94E-07 0.0004 Oct 0.0569 0.1162
Nov 3.32E-03 0.0008 Nov 0.0155 0.1127
Dec 1.32E-02 0.0150 Dec 0.0189 0.1955
SSE 7.10E-03 0.0054 SSE 0.0369 0.1328
RMSE | 8.43E-02 0.0733 RMSE | 0.1922 0.3644
One-Hour Standard Deviation One-Hour Maximum

Month | MEXPTRAN | Hourly MCME Month | MEXPTRAN | Hourly MCME
Jan 1.3E-03 6.58E-03 Jan 1.3059 3.97E-01
Feb 2.2E-01 1.93E-01 Feb 69.5681 7.08E+00
Mar 1.8E-03 4.91E-02 Mar 639.1593 2.60E-01
Apr 7.2E-02 2.52E-02 Apr 60.4633 9.14E+01
May 3.6E-03 2.73E-06 May 35.5229 1.93E+00
Jun 3.1E-01 2.89E-01 Jun 7.1642 2.69E+01
Jul 4.9E-02 4.11E-02 Jul 40.6068 2.70E+02
Aug 3.61E-02 0.0511 Aug 167.3517 0.7396
Sep 7.13E-01 0.0109 Sep 1947.0774 839.8404
Oct 1.31E-02 0.0482 Oct 159.8663 7.3984
Nov 6.92E-02 0.0610 Nov 41.7323 28.4089
Dec 1.06E-01 0.0866 Dec 101.4613 33.4084
SSE 1.33E-01 0.0718 SSE 272.6066 108.9505
RMSE | 3.64E-01 0.2680 RMSE | 16.5108 10.4379
One-Hour Coefficient of Skewness Probability of Dry Hours

Month | MEXPTRAN | Hourly MCME Month | MEXPTRAN | Hourly MCME
Jan 0.0415 4.68E-01 Jan 1.81E-04 4.05E-07
Feb 0.4754 1.52E+00 Feb 3.39E-03 1.65E-04
Mar 12.7860 9.32E-01 Mar 4.59E-04 2.47E-05
Apr 9.4990 7.22E+00 Apr 1.00E-03 1.44E-06
May 0.1182 1.82E-01 May 8.62E-03 3.02E-03
Jun 52.4319 1.94E+01 Jun 2.68E-06 5.09E-04
Jul 0.2846 7.35E+00 Jul 1.17E-03 6.48E-05




Aug 20.9572 2.8529 Aug 5.79E-04 0.0002
Sep 2.6364 12.8155 Sep 1.20E-04 0.0028
Oct 14.4105 0.1189 Oct 3.88E-03 0.0002
Nov 3.8816 2.9280 Nov 1.24E-02 0.0013
Dec 69.5820 36.2565 Dec 1.64E-04 0.0004
SSE 15.5920 7.6685 SSE 2.67E-03 0.0007
RMSE | 3.9487 2.7692 RMSE | 5.16E-02 0.0266
Table 4.16: The RMSE of the Hourly MCME and MEXPTRAN models at 24-hour
scale in the validation period (1991-2000)
24-Hour Mean 24-Hour Autocorrelation
Month | MEXPTRAN | Hourly MCME Month | MEXPTRAN | Hourly MCME
Jan 0.0492 0.0259 Jan 0.00247 0.0067
Feb 2.4612 2.5948 Feb 0.00550 0.0003
Mar 0.3678 1.7067 Mar 0.00016 0.0011
Apr 0.1500 2.0155 Apr 0.00533 0.0061
May 2.6218 2.3201 May 0.00148 0.0005
Jun 10.9352 12.1441 Jun 0.00315 0.0079
Jul 0.0729 0.0313 Jul 0.00004 0.0023
Aug 3.8253 3.1964 Aug 0.00009 0.0003
Sep 13.3249 1.8324 Sep 0.00408 0.0029
Oct 0.0001 0.2392 Oct 0.02343 0.0284
Nov 3.9482 1.6205 Nov 0.00000 0.0002
Dec 7.6001 8.6367 Dec 0.01229 0.0252
SSE 3.7797 3.0303 SSE 0.00483 0.0068
RMSE | 1.9442 1.7408 RMSE | 0.06953 0.0826
24-Hour Standard Deviation 24-Hour Maximum
Month MEXPTRAN  HourlyMCME Month | MEXPTRAN | Hourly MCME
Jan 0.55 2.0274 Jan 89.8310 331.2400
Feb 5.20 0.0170 Feb 204.9284 33.9889
Mar 3.64 18.3808 Mar 1213.0987 11.6964
Apr 6.19 11.5406 Apr 1.0896 375.9721
May 0.25 1.8458 May 344.0778 1437.1681
Jun 24.49 49.6250 Jun 166.3316 1840.4100
Jul 0.00 10.5633 Jul 527.9208 676.0000
Aug 2.650 10.6138 Aug 7.9073 299.6361
Sep 40.663 0.2263 Sep 1321.4356 89.4916
Oct 0.707 0.0123 Oct 114.1783 7.6729
Nov 5.584 22.1177 Nov 595.1729 2424.5776
Dec 15.482 35.3403 Dec 447.3336 2893.3641
SSE 8.783 13.5259 SSE 419.4421 868.4348
RMSE | 2.964 3.6778 RMSE | 20.4803 29.4692
24-Hour Coefficient of Skewness Probability of Dry Days
Month | MEXPTRAN | Hourly MCME Month | MEXPTRAN | Hourly MCME
Jan 0.1470 0.5660 Jan 0.00 0.0049
Feb 0.2178 1.1179 Feb 0.00 0.0154
Mar 0.6230 0.0001 Mar 0.00 0.0065

214
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Apr 0.0692 0.0052 Apr 0.00 0.0001
May 0.3266 1.6479 May 0.02 0.0267
Jun 2.7179 0.2169 Jun 0.01 0.0016
Jul 0.1023 0.8843 Jul 0.00 0.0070
Aug 0.2163 0.0456 Aug 0.024 0.0065
Sep 0.1405 0.1547 Sep 0.001 0.0374
Oct 0.0799 0.1504 Oct 0.000 0.0120
Nov 1.1461 2.7492 Nov 0.001 0.0069
Dec 1.1760 0.3511 Dec 0.025 0.0007
SSE 0.5802 0.6574 SSE 0.007 0.0105
RMSE | 0.7617 0.8108 RMSE | 0.086 0.1024

Table 4.17:  The RMSE of the Daily MCME and MEXPTRAN models at daily scale in
the validation period (1991-2000)

24-Hour Mean 24-Hour Autocorrelation

Month | MEXPTRAN | Daily MCME Month | MEXPTRAN | Daily MCME
Jan 0.0492 0.3444 Jan 0.00247 0.0004
Feb 2.4612 6.9634 Feb 0.00550 0.0022
Mar 0.3678 2.2995 Mar 0.00016 0.0004
Apr 0.1500 1.5293 Apr 0.00533 0.0058
May 2.6218 0.6087 May 0.00148 0.0010
Jun 10.9352 9.1436 Jun 0.00315 0.0045
Jul 0.0729 0.5505 Jul 0.00004 0.0003
Aug 3.8253 0.9155 Aug 0.00009 0.0000
Sep 13.3249 0.6572 Sep 0.00408 0.0028
Oct 0.0001 0.5778 Oct 0.02343 0.0225
Nov 3.9482 0.3758 Nov 0.00000 0.0003
Dec 7.6001 5.4281 Dec 0.01229 0.0177
SSE 3.7797 2.4495 SSE 0.00483 0.0048
RMSE | 1.9442 1.5651 RMSE | 0.06953 0.0695
24-Hour Standard Deviation 24-Hour Maximum

Month MEXPTRAN Daily MCME Month | MEXPTRAN | Daily MCME
Jan 0.55 0.6192 Jan 89.8310 51.8400
Feb 5.20 10.6289 Feb 204.9284 424.3600
Mar 3.64 10.3509 Mar 1213.0987 142.3249
Apr 6.19 12.1602 Apr 1.0896 342.2500
May 0.25 0.9436 May 344.0778 166.4100
Jun 24.49 20.5073 Jun 166.3316 170.3025
Jul 0.00 1.1452 Jul 527.9208 31.6969
Aug 2.650 1.3874 Aug 7.9073 25.5025
Sep 40.663 0.7298 Sep 1321.4356 0.0900
Oct 0.707 1.3482 Oct 114.1783 10.3041
Nov 5.584 1.9125 Nov 595.1729 470.8900
Dec 15.482 4.4554 Dec 447.3336 123.2100
SSE 8.783 5.5157 SSE 419.4421 163.2651
RMSE | 2.964 2.3486 RMSE | 20.4803 12.7775

24-Hour Coefficient of Skewness Probability of Dry Days
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Month | MEXPTRAN | Daily MCME Month | MEXPTRAN | Daily MCME
Jan 0.1470 0.0711 Jan 0.00 0.0071
Feb 0.2178 0.7333 Feb 0.00 0.0064
Mar 0.6230 0.2049 Mar 0.00 0.0010
Apr 0.0692 0.0241 Apr 0.00 0.0016
May 0.3266 0.2150 May 0.02 0.0058
Jun 2.7179 1.5146 Jun 0.01 0.0052
Jul 0.1023 0.0028 Jul 0.00 0.0004
Aug 0.2163 0.0001 Aug 0.024 0.0097
Sep 0.1405 0.0024 Sep 0.001 0.0064
Oct 0.0799 0.0985 Oct 0.000 0.0019
Nov 1.1461 0.9045 Nov 0.001 0.0002
Dec 1.1760 0.4128 Dec 0.025 0.0100
SSE 0.5802 0.3487 SSE 0.007 0.0046
RMSE | 0.7617 0.5905 RMSE | 0.086 0.0682
Table 4.18: The summary of the RMSE for the NSRP and MCME models in the
Validation Period (1991-2000)
1-hour 1-hour
1-hour | Standard | Coeff. of | 1-hour 1-hour Prob. Dry
Property Mean Devaition | Skewness | Maximum | Autocorr. | Hours
Hourl
MCM)é 0.07326 | 0.26799 2.76921 10.43794 | 0.36440 0.02663
MEXPTRAN | 0.08427 | 0.36430 3.94867 16.51080 | 0.19215 0.05163
Prob.
Daily Daily Coeff. | Daily Daily Dry
Property | Daily Mean | Std.Dev of Skewness | Max. Autocorr. day
Hourl
MCM)I; 1.7408 3.6778 0.8108 29.4692 0.0826 0.1024
Dail
MCI\);IE 1.5651 2.3486 0.5905 12.7775 0.0695 0.0682
NSRP 1.9442 2.9636 0.7617 20.4803 0.0695 0.0857

4.3.8 Numerical Comparison between the MCME and the MEXPTRAN models

Qualitatively, the performance of both models

were not as good as in the

calibration period. Nevertheless, the comparisons between both models were also done

numerically using RMSE. Table 4.15 and 4.16 show the RMSE evaluated from the

monthly square errors between the observed and the medians of the simulated properties
for the MEXPTRAN and the hourly MCME model. Table 4.17 shows the RMSE
evaluated between the daily MCME and the MEXPTRAN for the daily rainfall properties
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and Table 4.18 gives the summary of the RMSE for all properties considered. For the
one-hour scale, the hourly MCME has smaller RMSE values than the MEXPTRAN in all
properties considered, except for the one-hour autocorrelation of rainfalls. When the
hourly series were lumped to daily series, the MEXPTRAN model could provide smaller
RMSE values than the hourly MCME model for most of the daily rainfall properties
considered in the study. The daily MCME model can provide even smaller RMSE values
than the MEXPTRAN for all the properties considered for the daily scale.

From the numerical analysis results, it can be concluded that both models have the
same predictive ability. The predictive ability of the MCME hourly model was found to
be better than the NSRP in predicting the hourly rainfall process. When the hourly series
were lumped to daily series, the NSRP model performed better than the hourly MCME
model in predicting the daily rainfall process. However, the predictive ability of daily
MCME model was even better than the NSRP in predicting the daily rainfall process.
While both models did not perform as well as in the calibration period, both were able to

preserve the seasonal trends of the observed rainfall properties.

439 Summary

In assessing the descriptive ability of the model using the hourly and daily
observed series from year 1981-1990, the performance of both models discussed in
Chapter 4 and 5 was compared using the qualitative and numerical analysis. From the
RMSE values obtained for all properties considered, it was found that the NSRP
(MEXPTRAN) model has the ability to describe the properties of the observed at various
timescales, especially at one-hour and daily scales, even though the model only generate
hourly rainfall series. The MCME model was found to describe better the properties of
the observed when their parameters were estimated using data at the same scale as the
observed. But when the series were lumped to other scales, the performance fails to
maintain. Therefore, the hourly and daily MCME models do preserve well the observed

properties at the respective scales.
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In assessing the predictive ability of both models, the hourly and daily series from
the same station from year 1991-2000 was used in the validation process. In general, both
NSRP and MCME models were found to have the same predictive ability. While both
models did not perform as well as in the calibration period, both were able to preserve the
seasonal trends of the observed rainfall properties. However, the predictive ability of the
daily MCME model was found to be better than the predictive ability of the NSRP and
hourly MCME model in predicting the daily rainfall process.

4.4 Short-term Forecast of Rainfall in Lembah Klang

The data analyzed were an hourly rainfall intensity data. The technique employed
was a short-term forecasting technique where the prediction was only for a one-hour
ahead. According to Burlando (1996), a forecast lead time of a couple of hours, which
was close to the response time of the drainage system to surface runoff, could be useful in
view of an efficient control of pumping stations and hydraulic control of gates that may
prevent flash flood. This can also reduce overflow volumes of water in tanks and

channels of the sewer system, and prevent the water from any damages and pollutions.

4.4.2 Stations Selection Criterion

In the current study, the stations were selected based on the analysis of station-to-
station correlations, performed on the available rain gage data. As suggested in the
literature, the correlation criterion for the correct pairing of stations can be used if long
historical records of data are available. This is to make sure that the stations are truly
correlated. In other words, they are not correlated in only a short period of time.
Although this method of selecting pairing stations is not as good as the one that is based
on the storm movements, this is the only way to select stations for the current study due

to of lack of information on Malaysia storm movements.
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The correlation coefficient p,, between two random variables X and Y with

expected values x, and x,, and standard deviations o, and o, can be written as

E[(X_/UX)(Y_/JY)]

XY_\/E_(X_/UX)Z_E_(Y_IUY)z_ (4.1)
_ E[(X_ILIX)(Y_ILlY)]

If we have a series of n measurements of X and Y written as x, and y, where
t=1,2,...,n, then the Pearson product-moment correlation coefficient, denoted as ryy ,

can be used to estimate the correlation of X and Y. The formula is

D (x —xNy, - 7) 4.2)

where

_ 1
X=—) X,
no
_ 1
y=— Y
n
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7i

3

(x, - XNy, - ¥)

t=1

Sxy

I |~

are the sample means, samples variances and sample covariances.

The correlation is defined only if both of the standard deviations are finite and
both of them are nonzero. It is a corollary of the Cauchy-Schwarz inequality that the
correlation does not exceed one in absolute value. The correlation is one in the case of an
increasing linear relationship, negative one in the case of a decreasing linear relationship,
and some values in between in all other cases, indicating the degree of linear dependence
between the variables. The closer the coefficient is to either negative one or positive one,
the stronger the correlation between the variables. If the variables are independent then
the correlation is zero, but the converse is not true because the correlation coefficient

detects only linear dependencies between two variables.

The results from the analysis of station-to-station correlations for all the stations
are shown in Table 4.19. From this table, the two stations that were highly correlated
compared to other station combinations were station Empangan Genting Kelang with
station Km.11 Gombak, followed by station Empangan Genting Kelang with station
Kampung Kuala Saleh. The correlation values were calculated using hourly rainfall data
from 1% April 2002 till 29" April 2002 as recorded in each station by the rain gages.
This data have been taken because it was during the intermonsoon season where the
convective rains always occurred during this monsoon seasons. It is also because there

was no missing data during this period.

One reason why the stations were highly correlated was because the distances
between the stations were near. Another reason was the storm movements. This can be
concluded from the sample radar maps for the storms on 6" April 2006 and 10" May

2006 where both were during the inter-monsoon season.



Table 4.19: Analysis of station-to-station correlation for all the stations listed.
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ﬁltuarzgr(;r 3015001 3116003 | 3116006 3216001 3216004 | 3217001 | 3217002 3217003 | 3217004 | 3317001 3317004
3015001 1] 0.165326 | 0.233653 | -0.01111 | 0.060295 | 0.163399 | 0.158303 | 0.102992 | 0.111002 | 0.021069 | 0.031556
3116003 | 0.165326 1| 0.372016 | 0.016552 | 0.327303 | 0.248401 | 0.093928 | 0.251626 0.11503 | 0.252736 | 0.085266
3116006 | 0.233653 | 0.372016 1| -0.00803 | 0.461648 | 0.192583 | 0.185403 | 0.181281 | 0.094348 | 0.269431 | 0.068528
3216001 | -0.01111 | 0.016552 | -0.00803 1| 0.028524 | 0.226348 | 0.022059 | 0.414294 | -0.00926 | 0.110088 0.01727
3216004 | 0.060295 | 0.327303 | 0.461648 | 0.028524 1| 0.148068 | 0.044899 | 0.148925 | 0.023438 | 0.205013 | 0.041727
3217001 | 0.163399 | 0.248401 | 0.192583 | 0.226348 | 0.148068 1| 0.186133 | 0.328398 | 0.073964 | 0.401712 | 0.169044
3217002 | 0.158303 | 0.093928 | 0.185403 | 0.022059 | 0.044899 | 0.186133 1| 0.653569 | 0.526572 | 0.117254 | 0.215985
3217003 | 0.102992 | 0.251626 | 0.181281 | 0.414294 | 0.148925 | 0.328398 | 0.653569 1] 0.297141 | 0.284231 | 0.154582
3217004 | 0.111002 0.11503 | 0.094348 | -0.00926 | 0.023438 | 0.073964 | 0.526572 | 0.297141 1| 0.069179 0.15312
3317001 | 0.021069 | 0.252736 | 0.269431 | 0.110088 | 0.205013 | 0.401712 | 0.117254 | 0.284231 | 0.069179 1| 0.197104
3317004 | 0.031556 | 0.085266 | 0.068528 0.01727 | 0.041727 | 0.169044 | 0.215985 | 0.154582 0.15312 | 0.197104 1
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For the reasons stated earlier, the MARIMA model was then employed using rainfalls
data from rain gages taken from two pairing study areas. The first pairing study area was
station Empangan Genting Kelang with station Km.11 Gombak and the second pairing

study area was station Empangan Genting Kelang with station Kampung Kuala Saleh.

4.4.2 Data Modeling

The process starts with model definition and identification, followed by the
process of parameter estimation. The MARIMA model obtained will then be used to

forecast future values for the rainfalls intensity.

4.4.2.2 Data Analysis

Real-time prediction of rainfall by means of stochastic models can be viewed as a
questionable point which is due to the limited persistence of the rainfall intensity as
observed at usual temporal aggregation scales, for example 1 hour. This can be looked as
an effect of the intrinsic unpredictability of rainfall, which can be argued based on the
small decorrelation time that exhibits rainfall when it is observed at a point in space
(Zawadzki, 1987). The dynamics of the rainfall process can explain this effect by
looking at the evolution of the rainfall process at a point in space as a result of two

intertwined mechanisms.

The first mechanism concerns the intrinsic evolution of the storm as observed
from a coordinate system connected to the storm movement. The persistence in this
system can be described by the Lagrangian space-time correlation structure of the process
(Burlando, 1996). The second one concerns the storm movement, that originates the
storm modification normally observed at a fixed point as a result of the continuous
shifting of the rainfall field in the spatial domain. The combination of these two

mechanisms leads to a rapid decay of the Eulerian time correlation at a point in space,
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which is generally smaller than the Lagrangian space-time correlation. This property
comes out from the analysis of actual data (Bacchi and Borga, 1994), as well as of

rainfall fields simulated by space-time models (Waymire et al., 1984).

It is thus expected that a stochastic model of the autoregressive type would be
more successful if based on data recorded by a rain gage hypothetically moving jointly
with the storm, that is based on the Lagrangian cross-correlation structure detected by
radar measurements. However, radar maps do not provide reliable quantitative
estimations of rainfall intensity, which is better estimated based on rain gage
measurements. Rainfall data based only on the use of radar maps could therefore be
misleading in the estimation of the effective depth. On the other hand, forecasting
models based only on the Eulerian cross-correlation analysis of rain data are affected by a
weaker persistence effect than the one that could be observed from a reference system
linked to the storm. Forecasting models based on the Eulerian cross-correlation would
thus benefit of poorer information, thus resulting in poorer performance (Burlando,

1996).

Accordingly, a successful forecasting model should combine rain gage data and
radar maps in order to reduce the limitations that affect both these types of the
measurements. In this view, MARIMA models represent an interesting tool, because
they allow to forecast rainfall intensity at a point in space, that is the rain gage station, as
a function of current and past rainfall occurrences observed at several points in the basin,
including the point itself. They account thus for both the Eulerian and the Lagrangian

correlations of the process (Burlando, 1996).

Setting up this type of model to forecast rainfall at a rain gage station would
therefore require selecting those stations where current and past rainfall occurrences
show the highest level of cross-correlation with the ones observed at the forecasting site.
Such a selection can be better afforded on the basis of the kinematic behaviour of the
storm that can be detected from radar maps. When the storm speed has been estimated,

the time lag for the evaluation of the cross-correlation between rainfall records observed
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at different sites along the storm trajectory can be selected equal or close to the time the

storm takes to travel from those sites to the forecasting one (Burlando, 1996).

However, as mentioned earlier, because of lack of technologies in Malaysian
Meteorological Department, not enough information for the storm movement could be
obtained. Hence, the stations were selected based on the analysis of correlation between

two stations.

MARIMA models allow the computations of future occurrences of a time series

as a linear combination of

(1) past occurrences of the time series itself and of time series which are
cross-correlated to it; that is the autoregressive component
(i1) the present and past occurrences of a random white noise component; that

is the moving average component.

The general form of a MARIMA model with p autoregressive terms and ¢ moving

average terms can be written as

a(B)Y, = B(B)e,

2 g 4.3)
Y, = Zath—i + Zﬂjgt—j
i=1 =0

where ¥, =(I-B)' X, .

X, is the stochastic process under study, where in this case is the rainfall

t
intensity. I is the identity matrix, B is the backward shift operator, and d is the
differencing order of the model. The vector &, consists of N uncorrelated shocks (white

noise) of zero mean and unit variance, and ¢, being uncorrelated with Y, for 7 <¢.

Both ¥, and X, are N-dimension column matrices where N is the number of series
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considered in the time series problem. Both should have zero mean, although X, is
allowed to have non-zero mean if d >0 (Box and Jenkins, 1976). a and f are the

N x N autoregressive and moving average parameters matrices of the model.

4.4.2.2 Model Identification

A change of the values of p and g allows to formulate models of different

orders, each one characterized by different correlation structure and number of
parameters. The model defined by (4.3) is characterized by a number of parameters

which is larger with increasing orders p and ¢g. This can be regarded as a major

limitation with respect to analytical tractability, and to parameter estimation in those
cases where a limited number of actual observations are available for being used in the
estimation process. This is just the case of an event based parameter estimation, which is
generally recognized to lead to better performance of the forecasting model as compared
to the ones obtained from the model estimated using the raw historical continuous

precipitation data set (Burlando et al., 1993). Accordingly, the values of the orders p
and ¢, as well as the number of series, N , which are considered by the model, should be

selected as a compromise result between the conflicting needs of descriptiveness and of

mathematical tractability.

Consider the autoregressive first order model, MARIMA (1,1,0) which can be

written as p =1,d =1,q =0, applied to only two time series requiring the estimation of 4

parameters. An event-based estimation of the model would therefore require a minimum
number of current observations, being necessary to increase this minimum as the number
of parameters increases. A high number of parameters would therefore limit the benefit
from the use of the forecasting model only to long lasting events. Moreover, the time
required for the estimation and forecasting procedure should be negligible with respect to
the lead time of the forecast, which is generally constrained by the flood forecasting and

warning systems. Thus, the need for an operational tool, which can be suitable for
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practical purposes, suggested to limit this study to the first order autoregressive model,
MARIMAC(1,1,0), as applied to a two-sites time series, with the purpose of forecasting

rainfall in one of them.

4.4.2.4 Parameter Estimation

As mentioned earlier, an event-based estimation approach was carried out in this
study. According to this approach, each storm event regardless of the month or season is
considered separately for parameter estimation. A different parameter set is therefore
determined for each storm event considered. Moreover, the data used for estimation are
only those which become available as the storm event evolves in time. For this reason
the model can be run only when the number of current event observations is sufficient to
allow the effective estimation of the parameters. As a new observation becomes
available from the monitoring system, the estimation procedure is repeated and the
updated parameter set is used by the model to issue a new rainfall forecast for the
designed lead time. It is thus expected that forecasts become much more reliable as the

event evolves in time.

The estimation procedure can be set-up following two traditional procedures, that
is the method of moments and the least squares method. In view of the operational
purposes that motivate this study, the method of moments has been preferred, especially
because it performs more rapidly than the latter one, so that a possible use within a

forecasting system could benefit by saving computing time.

For the autoregressive first order model, MARIMA(1,1,0),

Y =aY, _, +¢g (4.4)

where
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Yz :(I_B)Xt
=IX, - BX,
=X -X

Therefore,

X[_Xlilza(thl_Xt72)+£l (45)
Xt :(I+a)Xt—l _aXt—2 TE, |

where ¢ 1s assumed to be a white noise, and stationarity is assumed to hold, the

parameter estimation has been performed by the method of moments. This consists of

solving the system

a=MM, (4.6)

where M, and M, denote respectively the covariance and the lag 1 covariance matrices.

Estimating the parameters for every one hour prediction for each station
repeatedly is a tedious task. To simplify the task, a computer program has been written
using the Microsoft Visual C++. By running the program, the new parameter values will

be estimated each time before a forecast 1s made.

4.4.3 Performance Measure

For the purposes of measuring the forecast performance, two performance
measures will be used that is the average values of the residuals and the root mean square
error (RMSE). Both performance measures are the ways to quantify the amount by

which an estimator differs from the true value of the quantity being estimated.
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This performance measure also can be used to compare the models that been used
for an estimation or forecast process. By comparing the value of both performance
measure for each model, we can determine the best model in terms of the error of the

estimator, where the best model have the lowest performance measure values.

The average values of the residuals can be denoted as ., where

6

My ="

while the root mean square error (RMSE) can be written as

where

0, =i" estimated value

0, =i"™ observed value

n = sample size

45  Prediction of Rainfalls Using the MARIMA Model

After estimating the parameters, the forecast value can be calculated using the
MARIMA (1,1,0) model. However this is only an hour ahead forecasts for each station.
Before the second hour forecast can be made, the parameters need to be estimated again.

This technique was repeated each time before a forecast was produced to ensure that the
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model was used correctly. These tedious works have been simplified by writing a

computer program using the Microsoft Visual C++.

By using the program, the forecast values were automatically calculated by the
model. There was a problem encountered where some of the forecast values obtained
were negative (less than zero). Since rainfalls intensity is never less than zero, it is

considers that there is no rain for that hour.

The scatter plots for the past rainfalls intensity data for each station and the
forecast values cannot be plotted using this program because there were more than 1000
data. Therefore, to solve this problem, the Microsoft Office Excel was used to do the

scatter plots.

45.1 Study Areal

First, we will forecast the rainfalls intensities for station Empangan Genting
Kelang with station Km.11 Gombak. The lead time of the forecast has been assumed to
be equal to one hour. Results for these stations are shown in Figures 4.46, 4.47, 4.48 and
4.49. These figures show the hyetographs of observed rainfall intensity and
corresponding forecasts of one-hour ahead, the observed and forecasted cumulative

rainfall intensities.
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Figure 4.46: The hyetographs of observed rainfall intensity and MARIMA one-hour

ahead forecast for station Empangan Genting Kelang.
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Figure 4.47: The hyetographs of observed rainfall intensity and MARIMA one-hour

ahead forecast for station Km.11 Gombak.
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Figure 4.48: The observed and MARIMA one-hour ahead forecast cumulative rainfall

intensity for station Empangan Genting Kelang.
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Figure 4.49: The observed and MARIMA one-hour ahead forecast cumulative rainfall
intensity for station Km.11 Gombak.
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From Figures 4.46 and 4.47, we can see that the forecasted values for both
stations are most likely the same as the observed values especially for the zero value
observed data. However, if we see the pattern of the forecasted values, those values were
much influenced by the values of its last two hours. The cumulative forecast values for
both station shown in Figures 4.48 and 4.49 shows that it is most likely the same as the

cumulative observed values.

Table 4.20 shows the numerical results for this forecast. In this table, “E”
represents station Empangan Genting Kelang and “G” stands for station Km.11 Gombak
where it includes the observed values (obs.), forecasted values (pre.), the error between
the observed values and the forecasted values (error), the squared error between the
observed values and the forecasted values (error’), the cumulative observed values (cum)
and the cumulative forecasted values (pre.cum) for both stations. The estimated

parameters for these study area will be shown in the appendices.



Table 4.20: Results for MARIMA model forecast of rainfalls intensity for station Empangan Genting Kelang and station Km.11

233

Gombak
days E(obs) E(pre) G(obs) G(pre) | E(error) | E(error®) | G(error) | G(error®) | E(cum) | E(pre.cum) | G(cum) | G(pre.cum)
29 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 5.2000 | 0.0000 | 17.8000 | 0.0000 | -5.2000 27.0400 | -17.800 | 316.8400 5.2000 0.0000 | 17.8000 0.0000
29 66.0000 | 0.0000 | 21.7000 | 0.0000 | -66.000 | 4356.0000 | -21.700 | 470.8900 | 71.2000 0.0000 | 39.5000 0.0000
29 7.9000 | 6.2725 3.2000 | 24.6598 | -1.6275 2.6488 | 21.4598 | 460.5230 | 79.1000 6.2725 | 42.7000 24.6598
29 0.0000 | 68.7757 | 4.8000 | 23.6321 | 68.7757 | 4730.0969 | 18.8321 | 354.6480 | 79.1000 75.0482 | 47.5000 48.2919
29 3.8000 | 0.0000 | 4.8000 | 0.0000 | -3.8000 14.4400 | -4.8000 | 23.0400 | 82.9000 75.0482 | 52.3000 48.2919
29 11.6000 | 0.0000 | 4.8000 | 4.9856 | -11.600 | 134.5600 0.1856 0.0344 | 94.5000 75.0482 | 57.1000 53.2775
29 7.0000 | 4.3131| 4.8000 | 4.9137 | -2.6869 7.2194 0.1137 0.0129 | 101.5000 79.3613 | 61.9000 58.1912
29 2.7000 | 12.6704 | 4.8000 | 5.0290 9.9704 99.4089 0.2290 0.0524 | 104.2000 92.0317 | 66.7000 63.2202
29 5.2000 | 6.3066 | 4.8000 | 4.6485 1.1066 1.2246 | -0.1515 0.0230 | 109.4000 98.3383 | 71.5000 67.8687
29 47000 | 2.0401 | 4.8000 | 4.6420 | -2.6599 7.0751 | -0.1580 0.0250 | 114.1000 100.3784 | 76.3000 72.5107
29 1.0000 | 5.5846 1.2000 | 4.8904 | 4.5846 21.0186 3.6904 | 13.6191 | 115.1000 105.9630 | 77.5000 77.4011
29 0.0000 | 4.6217 0.0000 | 4.7813 | 4.6217 21.3601 | 4.7813 | 22.8608 | 115.1000 110.5847 | 77.5000 82.1824
30 0.5000 | 0.0000 0.0000 | 0.0000 | -0.5000 0.2500 0.0000 0.0000 | 115.6000 110.5847 | 77.5000 82.1824
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 110.5847 | 77.5000 82.1824
30 0.0000 | 0.5875 0.0000 | 0.0188 | 0.5875 0.3452 0.0188 0.0004 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
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days E(obs) E(pre) G(obs) G(pre) | E(error) E(errorz) G(error) G(errorz) E(cum) | E(pre.cum) | G(cum) | G(pre.cum)
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 115.6000 111.1722 | 77.5000 82.2012
30 0.8000 | 0.0000 0.0000 | 0.0000 | -0.8000 0.6400 0.0000 0.0000 | 116.4000 111.1722 | 77.5000 82.2012
30 4.2000 | 0.0000 1.0000 | 0.0000 | -4.2000 17.6400 | -1.0000 1.0000 | 120.6000 111.1722 | 78.5000 82.2012
30 0.0000 | 0.9257 0.3000 | 0.0302 0.9257 0.8569 | -0.2698 0.0728 | 120.6000 112.0979 | 78.8000 82.2314
30 0.5000 | 4.9288 1.2000 1.4296 | 4.4288 19.6143 0.2296 0.0527 | 121.1000 117.0267 | 80.0000 83.6610
30 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.0267 | 80.0000 83.6610
30 0.0000 | 0.7529 0.0000 1.4901 0.7529 0.5669 1.4901 2.2204 | 121.1000 117.7796 | 80.0000 85.1511
30 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
30 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
30 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 121.1000 117.7796 | 80.0000 85.1511
1 0.5000 | 0.0000 1.1000 | 0.0000 | -0.5000 0.2500 | -1.1000 1.2100 | 121.6000 117.7796 | 81.1000 85.1511
1 2.0000 | 0.0000 1.4000 | 0.0000 | -2.0000 4.0000 | -1.4000 1.9600 | 123.6000 117.7796 | 82.5000 85.1511
1 0.5000 | 0.7916 0.0000 1.4504 0.2916 0.0850 1.4504 2.1037 | 124.1000 118.5712 | 82.5000 86.6015
1 0.0000 | 2.2938 0.0000 1.5466 2.2938 5.2615 1.5466 2.3920 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
days E(obs) E(pre) G(obs) G(pre) | E(error) | E(error®) | G(error) | G(error®) | E(cum) | E(pre.cum) | G(cum) | G(pre.cum)
1 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481




235

1 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
1 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 124.1000 120.8650 | 82.5000 88.1481
E(obs) = Observed value for station Empangan Genting Kelang
E(pre) = Forecasted value for station Empangan Genting Kelang
G(obs) = Observed value for station Km.11 Gombak
G(pre) = Forecasted value for station Km.11 Gombak

E(error) = E(obs) - E(pre)
G(error) = G(obs) - G(pre)
E(error’) = (E(obs) - E(pre))*
G(error?)= (G(obs) - G(pre))2

E(cum) = Cumulative observed value for station Empangan Genting Kelang

E(pre.cum) = Cumulative forecasted value for station Empangan Genting Kelang

G(cum) = Cumulative observed value for station Km.11 Gombak

G(pre.cum) = Cumulative forecasted value for station Km.11 Gombak
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To ensure that this model can fit to other study area too, we then applied the

MARIMA(1,1,0) to predict the rainfalls for station Empangan Genting Kelang with

station Kampung Kuala Saleh. Results for these stations are shown in Figures 4.50 4.51,

4.52 and 4.53.
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Figure 4.50: The hyetographs of observed rainfall intensity and MARIMA one-hour

ahead forecast for station Empangan Genting Kelang.
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Figure 4.51: The hyetographs of observed rainfall intensity and MARIMA one-hour

ahead forecast for station Kampung Kuala Saleh.
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Figure 4.52: The observed and MARIMA one-hour ahead forecast cumulative rainfall

intensity for station Empangan Genting Kelang.
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Figure 4.53: The observed and MARIMA one-hour ahead forecast cumulative rainfall

intensity for station Kampung Kuala Saleh.

Figure 4.50 show that the forecasted values were more the same as the observed
values however some of the forecasted values is much the same as its past two hour
observed values. The same results also go for Figure 4.51. However, Figure 4.52 shows
that the cumulative forecasted values for station Empangan Genting Kelang that were
jointly modeled with station Kampung Kuala Saleh were more likely the same as the
cumulative observed values compared to the cumulative forecasted values for station
Empangan Genting Kelang that were jointly modeled with station Km.11 Gombak shown
in Figure 4.48. Figure 4.53 shows that the cumulative forecasted values were slightly

differed from the cumulative observed values.

For these study area, the numerical results are shown in Table 4.21. In this table,
“E” represents station Empangan Genting Kelang and “K” stands for station Kampung
Kuala Saleh where it includes the observed values (obs), forecasted values (pre), the error
between the observed values and the forecasted values (error), the squared error between

the observed values and the forecasted values (error’), the cumulative observed values
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(cum) and the cumulative forecasted values (pre.cum) for both stations. The estimated

parameters for these study area will be shown in the appendices.
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Table 4.21: Results for MARIMA model forecast of rainfalls intensity for station Empangan Genting Kelang and station Kampung

Kuala Saleh
days | E(obs) | E(pre) K(obs) K(pre) | E(error) | E(error®) | K(error) | K(error?) | E(cum) | E(pre.cum) | K(cum) | K(pre.cum)
29 | 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000
29 | 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000
29 | 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000
29 | 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000
29 | 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000
29 | 5.2000 | 0.0000 | 0.0000| 0.0000 | -5.2000 27.0400 | 0.0000 0.0000 5.2000 0.0000 | 0.0000 0.0000
29 | 66.0000 | 0.0000 | 24.3000 | 0.0000 | -66.000 | 4356.0000 | -24.300 | 590.4900 | 71.2000 0.0000 | 24.3000 0.0000
29 | 7.9000 | 6.6008 | 1.2000 | 0.0990 | -1.2992 1.6879 | -1.1010 1.2122 | 79.1000 6.6008 | 25.5000 0.0990
29 | 0.0000 | 72.3596 | 0.0000 | 28.6702 | 72.3596 | 5235.9117 | 28.6702 | 821.9804 | 79.1000 78.9604 | 25.5000 28.7692
29 | 3.8000 | 0.0000 | 2.3000| 0.0000 | -3.8000 14.4400 | -2.3000 5.2900 | 82.9000 78.9604 | 27.8000 28.7692
29 1 11.6000 | 0.0000 | 6.2000 | 0.0000 | -11.600 | 134.5600 | -6.2000 | 38.4400 | 94.5000 78.9604 | 34.0000 28.7692
29 | 7.0000 | 4.6056 | 0.5000 | 2.7657 | -2.3944 5.7332 | 2.2657 5.1334 | 101.5000 83.5660 | 34.5000 31.5349
29 | 2.7000 | 13.2479 | 3.5000 | 7.0210 | 10.5479 | 111.2582 | 3.5210 | 12.3974 | 104.2000 96.8139 | 38.0000 38.5559
29 | 5.2000 | 5.8543 | 4.0000 | 0.0000 | 0.6543 0.4281 | -4.0000 | 16.0000 | 109.4000 102.6682 | 42.0000 38.5559
29| 47000 | 1.8842 | 3.3000 | 4.0555| -2.8158 7.9287 | 0.7555 0.5708 | 114.1000 104.5524 | 45.3000 42.6114
29| 1.0000 | 5.7478 | 0.0000 | 4.1267 | 4.7478 225416 | 4.1267 | 17.0297 | 115.1000 110.3002 | 45.3000 46.7381
29 | 0.0000 | 4.5688 | 0.0000 | 3.1509 | 4.5688 20.8739 | 3.1509 9.9282 | 115.1000 114.8690 | 45.3000 49.8890
30| 0.5000 | 0.0895| 0.0000| 0.0000 | -0.4105 0.1685 | 0.0000 0.0000 | 115.6000 114.9585 | 45.3000 49.8890
30| 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 114.9585 | 45.3000 49.8890
30| 0.0000 | 0.6081 | 0.0000| 0.0052 | 0.6081 0.3698 | 0.0052 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30 | 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30 | 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30 | 0.0000 | 0.0000 | 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
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days | E(obs) | E(pre) K(obhs) K(pre) | E(error) E(errorz) K(error) K(errorz) E(cum) | E(pre.cum) | K(cum) | K(pre.cum)
30| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.0000 | 0.0000| 0.0000| 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 | 115.6000 115.5666 | 45.3000 49.8942
30| 0.8000 | 0.0000 | 1.9000 | 0.0000 | -0.8000 0.6400 | -1.9000 3.6100 | 116.4000 115.5666 | 47.2000 49.8942
30| 4.2000 | 0.0000 | 4.6000 | 0.0000 | -4.2000 17.6400 | -4.6000 | 21.1600 | 120.6000 115.5666 | 51.8000 49.8942
30| 0.0000 | 1.0368 | 0.0000 | 2.2990 | 1.0368 1.0750 | 2.2990 5.2854 | 120.6000 116.6034 | 51.8000 52.1932
30| 0.5000 | 5.0248 | 0.0000 | 5.1891 | 4.5248 20.4738 | 5.1891 | 26.9268 | 121.1000 121.6282 | 51.8000 57.3823
30| 0.0000 | 0.0000| 0.0000 | 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 121.6282 | 51.8000 57.3823
30| 0.0000 | 0.6078 | 0.0000 | 0.0049 | 0.6078 0.3694 | 0.0049 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
30| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
30| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
30| 0.0000 | 0.0000| 0.0000 | 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
1| 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 51.8000 57.3872
1| 0.0000 | 0.0000| 0.5000 | 0.0000| 0.0000 0.0000 | -0.5000 0.2500 | 121.1000 122.2360 | 52.3000 57.3872
1| 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 121.1000 122.2360 | 52.3000 57.3872
1| 0.5000 | 0.0168 | 0.0000 | 0.6028 | -0.4832 0.2335 | 0.6028 0.3634 | 121.6000 122.2528 | 52.3000 57.9900
1| 2.0000 | 0.0000| 1.5000 | 0.0000 | -2.0000 4.0000 | -1.5000 2.2500 | 123.6000 122.2528 | 53.8000 57.9900
1| 05000 | 0.6079 | 0.0000 | 0.0049 | 0.1079 0.0116 | 0.0049 0.0000 | 124.1000 122.8607 | 53.8000 57.9949
1| 0.0000 | 2.3737 | 0.0000| 1.8226 | 2.3737 5.6345 | 1.8226 3.3219 | 124.1000 125.2344 | 53.8000 59.8175
1| 0.0000 | 0.1262 | 0.0000 | 0.0000 | 0.1262 0.0159 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
1| 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
1| 0.0000 | 0.0000| 0.0000| 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
days | E(obs) | E(pre) | K(obs) | K(pre) | E(error) | E(error®) | K(error) | K(error®) | E(cum) | E(pre.cum) | K(cum) | K(pre.cum)
1| 0.0000 | 0.0000| 0.0000 | 0.0000| 0.0000 0.0000 | 0.0000 0.0000 | 124.1000 125.3606 | 53.8000 59.8175
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1| 0.0000 | 0.0000| 0.0000 | 0.0000 ]| 0.0000 0.0000 | 0.0000

0.0000

124.1000

125.3606

53.8000

59.8175

1| 0.0000 | 0.0000| 0.0000 | 0.0000 ]| 0.0000 0.0000 | 0.0000

0.0000

124.1000

125.3606

53.8000

59.8175

E(obs) = Observed value for station Empangan Genting Kelang
E(pre) = Forecasted value for station Empangan Genting Kelang
K(obs) = Observed value for station Kampung Kuala Saleh
K(pre) = Forecasted value for station Kampung Kuala Saleh
E(error) = E(obs) - E(pre)

K(error) = K(obs) - K(pre)

E(error’) = (E(obs) - E(pre))*

K(error®)= (K(obs) - K(pre))

E(cum) = Cumulative observed value for station Empangan Genting Kelang

E(pre.cum) = Cumulative forecasted value for station Empangan Genting Kelang

K(cum) = Cumulative observed value for station Kampung Kuala Saleh

K(pre.cum) = Cumulative forecasted value for station Kampung Kuala Saleh
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4.6  Forecasting Rainfalls Using the ARMA Models

To evaluate the performances of the MARIMA model, ARMA model was also
used to forecast the rainfalls data. Since the ARMA model is a univariate Box-
Jenkins model, the data need to be analyzed individually. Since this is a one-hour
ahead forecast process, we need to repeatedly estimate the parameters for the chosen

ARMA model every time we do the forecast.

To produce forecasts using the ARMA model, the MINITAB 14 software was
used. However, since this is a one-hour prediction with the purpose of comparing the
results with the ones obtained from using the MARIMA model, the scatter plots were

obtained using the Microsoft Office Excel software.

The data from station Empangan Genting Kelang, station Km.11 Gombak and
finally station Kampung Kuala Saleh were analyzed and forecasted separately. The
best ARMA model for those stations were ARMA(1,1) model. The results are shown
in Figures 4.54., 4.55, 4.56, 4.57, 4.58 and 4.59.

Figures 4.54, 4.56 and 4.58 show the hyetographs of observed rainfall
intensities and corresponding forecasts of one-hour ahead. Figure 4.54 shows that
most of the forecasted values were almost zero and one of the forecasted values is
negative which we can assume as zero or in other words there was no rain. Figure
4.56 show that the forecasted values much more influence by its last observed value
where its have four negative forecast values. For station Kampung Kuala Saleh, it
showed in Figure 4.58 that the forecast values are most likely equal. Therefore we
can assume that the forecast values for this station were just like the average value of

its own two or three hours past data.

Figures 4.55, 4.57 and 4.59 show the observed and forecasted cumulative
rainfalls. From those figures, we could see that the cumulative forecasted values were
much differs from the cumulative observed values. This were caused by the negative
forecast values and for station Kampung Kuala Saleh, this also caused by its own
forecasted values that were just like the average value of its own two or three hours

past data.
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Station Empangan Genting Kelang
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Figure 4.54: The hyetographs of observed rainfall intensity and ARMA(1,1) one-hour

ahead forecast for station Empangan Genting Kelang.
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Figure 4.55: The observed and ARMA(1,1) one-hour ahead forecast cumulative

rainfall intensity for station Empangan Genting Kelang.



245

Station Km. 11 Gombak
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Figure 4.56: The hyetographs of observed rainfall intensity and ARMA(1,1) one-hour

ahead forecast for station Km.11 Gombak.
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Figure 4.57: The observed and ARMA(1,1) one-hour ahead forecast cumulative
rainfall intensity for station Km.11 Gombak.
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Station Kampung Kuala Saleh
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Figure 4.58: The hyetographs of observed rainfall intensity and ARMA(1,1) one-hour

ahead forecast for station Kampung Kuala Saleh.
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Figure 4.59: The observed and ARMA(1,1) one-hour ahead forecast cumulative

rainfall intensity for station Kampung Kuala Saleh.

In Tables 4.22, 4.23 and 4.24, the numerical results for the prediction of the

rainfalls for all the three stations using ARMA(1,1) are presented. In these tables, the
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observed values (obs), forecasted values (pre), the error between the observed values
and the forecasted values (error), the squared error between the observed values and
the forecasted values (error’), the cumulative observed values (cum) and the

cumulative forecasted values (pre.cum) are tabulated.

Table 4.22: Results for ARMA(1,1) model forecast of rainfalls intensity for station
Empangan Genting Kelang.

days | E(obs) E(pre) E(error) | E(error?) E(cum) | E(pre.cum)

29 0.0000 0.102 0.1020 0.0104 0.0000 0.1020
29 0.0000 0.1019 0.1019 0.0104 0.0000 0.2039
29 0.0000 0.1017 0.1017 0.0103 0.0000 0.3056
29 0.0000 0.1016 0.1016 0.0103 0.0000 0.4072
29 0.0000 0.1014 0.1014 0.0103 0.0000 0.5086
29 5.2000 0.1013 | -5.0987 25.9967 5.2000 0.6099
29 | 66.0000 2.3138 | -63.6862 | 4055.9321 | 71.2000 2.9237

29 7.9000 | 77.2511 | 69.3511 | 4809.5751 | 79.1000 80.1748
29 0.0000 | -6.4969 | -6.4969 42.2097 | 79.1000 73.6779
29 3.8000 0.4148 | -3.3852 11.4596 | 82.9000 74.0927
29 | 11.6000 0.8561 | -10.7439 | 115.4314 | 94.5000 74.9488
29 7.0000 2.6457 | -4.3543 18.9599 | 101.5000 77.5945
29 2.7000 1.3537 | -1.3463 1.8125 | 104.2000 78.9482
29 5.2000 0.6486 | -4.5514 20.7152 | 109.4000 79.5968
29 4.7000 1.3865 | -3.3135 10.9793 | 114.1000 80.9833
29 1.0000 1.1585 0.1585 0.0251 | 115.1000 82.1418
29 0.0000 0.3228 0.3228 0.1042 | 115.1000 82.4646
30 0.5000 0.233 | -0.2670 0.0713 | 115.6000 82.6976
30 0.0000 0.3679 0.3679 0.1354 | 115.6000 83.0655
30 0.0000 0.2247 0.2247 0.0505 | 115.6000 83.2902
30 0.0000 0.2498 0.2498 0.0624 | 115.6000 83.5400
30 0.0000 0.2449 0.2449 0.0600 | 115.6000 83.7849
30 0.0000 0.2453 0.2453 0.0602 | 115.6000 84.0302
30 0.0000 0.2448 0.2448 0.0599 | 115.6000 84.2750
30 0.0000 0.2445 0.2445 0.0598 | 115.6000 84.5195
30 0.0000 0.2442 0.2442 0.0596 | 115.6000 84.7637
30 0.0000 0.2438 0.2438 0.0594 | 115.6000 85.0075
30 0.0000 0.2434 0.2434 0.0592 | 115.6000 85.2509
30 0.0000 0.2431 0.2431 0.0591 | 115.6000 85.4940
30 0.0000 0.2428 0.2428 0.0590 | 115.6000 85.7368
30 0.0000 0.2424 0.2424 0.0588 | 115.6000 85.9792
30 0.0000 0.2421 0.2421 0.0586 | 115.6000 86.2213
30 0.8000 0.2417 | -0.5583 0.3117 | 116.4000 86.4630
30 4.2000 0.4325 | -3.7675 14.1941 | 120.6000 86.8955
30 0.0000 1.2312 1.2312 1.5159 | 120.6000 88.1267
30 0.5000 0.0742 | -0.4258 0.1813 | 121.1000 88.2009
30 0.0000 0.3956 0.3956 0.1565 | 121.1000 88.5965
days | E(obs) E(pre) E(error) | E(error?) E(cum) | E(pre.cum)
30 0.0000 0.22 0.2200 0.0484 | 121.1000 88.8165
30 0.0000 0.2506 0.2506 0.0628 | 121.1000 89.0671




30 0.0000 0.2448 0.2448 0.0599 | 121.1000 89.3119
30 0.0000 0.2454 0.2454 0.0602 | 121.1000 89.5573
1 0.0000 0.2449 0.2449 0.0600 | 121.1000 89.8022
1 0.0000 0.2446 0.2446 0.0598 | 121.1000 90.0468
1 0.0000 0.2442 0.2442 0.0596 | 121.1000 90.2910
1 0.0000 0.2439 0.2439 0.0595 | 121.1000 90.5349
1 0.0000 0.2435 0.2435 0.0593 | 121.1000 90.7784
1 0.0000 0.2432 0.2432 0.0591 | 121.1000 91.0216
1 0.5000 0.2429 | -0.2571 0.0661 | 121.6000 91.2645
1 2.0000 0.3617 | -1.6383 2.6840 | 123.6000 91.6262
1 0.5000 0.6986 0.1986 0.0394 | 124.1000 92.3248
1 0.0000 0.2835 0.2835 0.0804 | 124.1000 92.6083
1 0.0000 0.2381 0.2381 0.0567 | 124.1000 92.8464
1 0.0000 0.2457 0.2457 0.0604 | 124.1000 93.0921
1 0.0000 0.2439 0.2439 0.0595 | 124.1000 93.3360
1 0.0000 0.2439 0.2439 0.0595 | 124.1000 93.5799
1 0.0000 0.2435 0.2435 0.0593 | 124.1000 93.8234
1 0.0000 0.2431 0.2431 0.0591 | 124.1000 94.0665
1 0.0000 0.2428 0.2428 0.0590 | 124.1000 94.3093
1 0.0000 0.2425 0.2425 0.0588 | 124.1000 94.5518
1 0.0000 0.2421 0.2421 0.0586 | 124.1000 94.7939
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Table 4.23: Results for ARMA(1,1) model forecast of rainfalls intensity for station

Km.11 Gombak.

days | G(obs) G(pre) | G(error) G(errorz) G(cum) | G(pre.cum)
29 0.0000 0.0656 0.0656 0.0043 0.0000 0.0656
29 0.0000 0.0655 0.0655 0.0043 0.0000 0.1311
29 0.0000 0.0654 0.0654 0.0043 0.0000 0.1965
29 0.0000 0.0653 0.0653 0.0043 0.0000 0.2618
29 0.0000 0.0652 0.0652 0.0043 0.0000 0.3270
29 | 17.8000 0.0651 | -17.7349 | 314.5267 | 17.8000 0.3921
29 | 21.7000 | 12.1489 | -9.5511 | 91.2235 | 39.5000 12.5410
29 3.2000 | 14.4196 | 11.2196 | 125.8794 | 42.7000 26.9606
29 4.8000 | -2.4233 | -7.2233 | 52.1761 | 47.5000 24.5373
29 4.8000 4.6985 | -0.1015 0.0103 | 52.3000 29.2358
29 4.8000 1.6676 | -3.1324 9.8119 | 57.1000 30.9034
29 4.8000 2.9809 | -1.8191 3.3091 | 61.9000 33.8843
29 4.8000 2.5472 | -2.2528 5.0751 | 66.7000 36.4315
29 4.8000 2.7708 | -2.0292 4.1177 | 71.5000 39.2023
29 4.8000 2.7262 | -2.0738 4.3006 | 76.3000 41.9285
29 1.2000 2.7819 1.5819 2.5024 | 77.5000 44.7104
29 0.0000 | -0.0198 | -0.0198 0.0004 | 77.5000 44.6906
30 0.0000 0.1669 0.1669 0.0279 | 77.5000 44.8575
30 0.0000 0.0924 0.0924 0.0085 | 77.5000 44.9499
30 0.0000 0.1218 0.1218 0.0148 | 77.5000 45.0717
30 0.0000 0.1098 0.1098 0.0121 | 77.5000 45.1815
days | G(obs) G(pre) | G(error) | G(error®) | G(cum) | G(pre.cum)
30 0.0000 0.1143 0.1143 0.0131 | 77.5000 45.2958
30 0.0000 0.1123 0.1123 0.0126 | 77.5000 45.4081
30 0.0000 0.1129 0.1129 0.0127 | 77.5000 45.5210




30 0.0000 0.1124 0.1124 0.0126 | 77.5000 45.6334
30 0.0000 0.1124 0.1124 0.0126 | 77.5000 45.7458
30 0.0000 0.1122 0.1122 0.0126 | 77.5000 45.8580
30 0.0000 0.1120 0.1120 0.0125 | 77.5000 45.9700
30 0.0000 0.1118 0.1118 0.0125 | 77.5000 46.0818
30 0.0000 0.1117 0.1117 0.0125 | 77.5000 46.1935
30 0.0000 0.1115 0.1115 0.0124 | 77.5000 46.3050
30 0.0000 0.1114 0.1114 0.0124 | 77.5000 46.4164
30 0.0000 0.1112 0.1112 0.0124 | 77.5000 46.5276
30 1.0000 0.1110 | -0.8890 0.7903 | 78.5000 46.6386
30 0.3000 0.8821 0.5821 0.3388 | 78.8000 47.5207
30 1.2000 0.0359 | -1.1641 1.3551 | 80.0000 47.5566
30 0.0000 1.0648 1.0648 1.1338 | 80.0000 48.6214
30 0.0000 | -0.2632 | -0.2632 0.0693 | 80.0000 48.3582
30 0.0000 0.2596 0.2596 0.0674 | 80.0000 48.6178
30 0.0000 0.0538 0.0538 0.0029 | 80.0000 48.6716
30 0.0000 0.1345 0.1345 0.0181 | 80.0000 48.8061
1 0.0000 0.1025 0.1025 0.0105 | 80.0000 48.9086
1 0.0000 0.1149 0.1149 0.0132 | 80.0000 49.0235
1 0.0000 0.1098 0.1098 0.0121 | 80.0000 49.1333
1 0.0000 0.1115 0.1115 0.0124 | 80.0000 49.2448
1 0.0000 0.1106 0.1106 0.0122 | 80.0000 49.3554
1 0.0000 0.1108 0.1108 0.0123 | 80.0000 49.4662
1 1.1000 0.1105 | -0.9895 0.9791 | 81.1000 49.5767
1 1.4000 0.9552 | -0.4448 0.1978 | 82.5000 50.5319
1 0.0000 0.8538 0.8538 0.7290 | 82.5000 51.3857
1 0.0000 | -0.1810 | -0.1810 0.0328 | 82.5000 51.2047
1 0.0000 0.2272 0.2272 0.0516 | 82.5000 51.4319
1 0.0000 0.0659 0.0659 0.0043 | 82.5000 51.4978
1 0.0000 0.1293 0.1293 0.0167 | 82.5000 51.6271
1 0.0000 0.1040 0.1040 0.0108 | 82.5000 51.7311
1 0.0000 0.1138 0.1138 0.0130 | 82.5000 51.8449
1 0.0000 0.1097 0.1097 0.0120 | 82.5000 51.9546
1 0.0000 0.1111 0.1111 0.0123 | 82.5000 52.0657
1 0.0000 0.1103 0.1103 0.0122 | 82.5000 52.1760
1 0.0000 0.1104 0.1104 0.0122 | 82.5000 52.2864
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Table 4.24: Results for ARMA(1,1) model forecast of rainfalls intensity for station

Kampung Kuala Saleh.
days | K(obs) K(pre) K(error) | K(error®) | K(cum) | K(pre.cum)
29 0.0000 0.1998 0.1998 0.0399 0.0000 0.1998
29 0.0000 0.1995 0.1995 0.0398 0.0000 0.3993
29 0.0000 0.1992 0.1992 0.0397 0.0000 0.5985
29 0.0000 0.1989 0.1989 0.0396 0.0000 0.7974
29 0.0000 0.1986 0.1986 0.0394 0.0000 0.9960
days | K(obs) K(pre) K(error) | K(error®) | K(cum) | K(pre.cum)
29 0.0000 0.1983 0.1983 0.0393 0.0000 1.1943
29 | 24.3000 0.1980 | -24.1020 | 580.9064 | 24.3000 1.3923
29 1.2000 6.6212 5.4212 | 29.3894 | 25.5000 8.0135
29 0.0000 | -0.5657 | -0.5657 0.3200 | 25.5000 7.4478




29 2.3000 0.3595 | -1.9405 3.7655 | 27.8000 7.8073
29 6.2000 0.6753 | -5.5247 | 30.5223 | 34.0000 8.4826
29 0.5000 1.4638 0.9638 0.9289 | 34.5000 9.9464
29 3.5000 0.1182 | -3.3818 | 11.4366 | 38.0000 10.0646
29 4.0000 0.9898 | -3.0102 9.0613 | 42.0000 11.0544
29 3.3000 0.9685 | -2.3315 5.4359 | 45.3000 12.0229
29 0.0000 0.8475 0.8475 0.7183 | 45.3000 12.8704
29 0.0000 0.1626 0.1626 0.0264 | 45.3000 13.0330
30 0.0000 0.2719 0.2719 0.0739 | 45.3000 13.3049
30 0.0000 0.2537 0.2537 0.0644 | 45.3000 13.5586
30 0.0000 0.2562 0.2562 0.0656 | 45.3000 13.8148
30 0.0000 0.2553 0.2553 0.0652 | 45.3000 14.0701
30 0.0000 0.2550 0.2550 0.0650 | 45.3000 14.3251
30 0.0000 0.2547 0.2547 0.0649 | 45.3000 14.5798
30 0.0000 0.2543 0.2543 0.0647 | 45.3000 14.8341
30 0.0000 0.2539 0.2539 0.0645 | 45.3000 15.0880
30 0.0000 0.2535 0.2535 0.0643 | 45.3000 15.3415
30 0.0000 0.2532 0.2532 0.0641 | 45.3000 15.5947
30 0.0000 0.2528 0.2528 0.0639 | 45.3000 15.8475
30 0.0000 0.2524 0.2524 0.0637 | 45.3000 16.0999
30 0.0000 0.2521 0.2521 0.0636 | 45.3000 16.3520
30 0.0000 0.2517 0.2517 0.0634 | 45.3000 16.6037
30 0.0000 0.2513 0.2513 0.0632 | 45.3000 16.8550
30 1.9000 0.2510 | -1.6490 2.7192 | 47.2000 17.1060
30 4.6000 0.6584 | -3.9416 | 15.5362 | 51.8000 17.7644
30 0.0000 1.1846 1.1846 1.4033 | 51.8000 18.9490
30 0.0000 0.1052 0.1052 0.0111 | 51.8000 19.0542
30 0.0000 0.2826 0.2826 0.0799 | 51.8000 19.3368
30 0.0000 0.2525 0.2525 0.0638 | 51.8000 19.5893
30 0.0000 0.2571 0.2571 0.0661 | 51.8000 19.8464
30 0.0000 0.2559 0.2559 0.0655 | 51.8000 20.1023
30 0.0000 0.2556 0.2556 0.0653 | 51.8000 20.3579
1 0.0000 0.2553 0.2553 0.0652 | 51.8000 20.6132
1 0.0000 0.2549 0.2549 0.0650 | 51.8000 20.8681
1 0.0000 0.2545 0.2545 0.0648 | 51.8000 21.1226
1 0.0000 0.2542 0.2542 0.0646 | 51.8000 21.3768
1 0.5000 0.2538 | -0.2462 0.0606 | 52.3000 21.6306
1 0.0000 0.3613 0.3613 0.1305 | 52.3000 21.9919
1 0.0000 0.2360 0.2360 0.0557 | 52.3000 22.2279
1 1.5000 0.2563 | -1.2437 1.5468 | 53.8000 22.4842
1 0.0000 0.5757 0.5757 0.3314 | 53.8000 23.0599
1 0.0000 0.2013 0.2013 0.0405 | 53.8000 23.2612
1 0.0000 0.2630 0.2630 0.0692 | 53.8000 23.5242
1 0.0000 0.2523 0.2523 0.0637 | 53.8000 23.7765
1 0.0000 0.2536 0.2536 0.0643 | 53.8000 24.0301
1 0.0000 0.2530 0.2530 0.0640 | 53.8000 24.2831
1 0.0000 0.2527 0.2527 0.0639 | 53.8000 24.5358
days | K(obs) K(pre) K(error) | K(error®) | K(cum) | K(pre.cum)
1 0.0000 0.2523 0.2523 0.0637 | 53.8000 24.7881
1 0.0000 0.2520 0.2520 0.0635 | 53.8000 25.0401
1 0.0000 0.2516 0.2516 0.0633 | 53.8000 25.2917
1 0.0000 0.2513 0.2513 0.0632 | 53.8000 25.5430
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4.7  Comparison Between MARIMA and ARMA Models in Forecasting
Rainfalls Data

Scatter diagrams have been plotted to illustrate the differences between the
forecasts obtained using the MARIMA and the ARMA(1,1) models. Figures 4.60,
4.62, 4.64 and 4.66 show the hyetographs of observed rainfall intensities and
corresponding one-hour ahead forecasts for both MARIMA and ARIMA models.
Figures 4.61, 4.63 , 4.65 and 4.67 show the observed and both models forecasted

cumulative rainfalls.

Comparing the forecasted values using the MARIMA model and the
ARMA(1,1) model in Figures 4.60 and 4.62, we could see that the forecast values
using the ARMA(1,1) model were more influenced by an hour past data while the
MARIMA model were influenced by the last two hours data. It goes the same for
station Km.11 Gombak as shown in Figure 4.64 however we could see that most of
the forecasted value by the MARIMA model were most likely the same as the
observed values compared to the ARMA(1,1) model. For station Kampung Kuala
Saleh, forecasted values for both models were differs than the observed values where
both models could only be considered good in forecasting zero values data. Figures
4.61, 4.63, 4.65 and 4.67 shows that the cumulative forecasted values using the
MARIMA model were slightly differs than cumulative observed values compared to
the ARMA(1,1) model. The cumulative forecasted values for the ARMA(1,1) model
were differs form the cumulative observed values were caused by the negative values

of the forecast for the ARMA(1,1) model.

The numerical results for the prediction rainfalls values using both models are
given in Tables 4.25, 4.26 and 4.27. Table 4.24 lists the values for station Empangan
Genting Kelang where E(MG) are the forecast values using the MARIMA model
(with station Km.11 Gombak), E(MK) are the forecast values using the MARIMA
model (with station Kampung Kuala Saleh), and E(ARMA) are the forecast values
using the ARMA(1,1) model. Their cumulative rainfall values are denoted by (cum).
Tables 4.26 and 4.27 are for station Km.11 Gombak and station Kampung Kuala
Saleh where G(M) and K(M) are the forecast values using the MARIMA model, G(A)
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and K(A) are the forecast values using the ARMA(1,1) model and their cumulative

rainfall values are denoted by (cum).

Station Empangan Genting Kelang (with Station Km.11 Gombak)

904 observed
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70| Pe --s-- ARMA
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Figure 4.60: The hyetographs of observed rainfall intensity, MARIMA and

ARMA(1,1) one-hour ahead forecast for station Empangan Genting Kelang (with

station Km.11 Gombak).
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Figure 4.61: The observed, MARIMA and ARMA(1,1) one-hour ahead forecast

cumulative rainfall intensity for station Empangan Genting Kelang (with station

Km.11 Gombak).
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Figure 4.62: The hyetographs of observed rainfall intensity, MARIMA and

ARIMA(1,1) one-hour ahead forecast for station Empangan Genting Kelang (with

station Kampung Kuala Saleh).
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Figure 4.63: The observed, MARIMA and ARIMA(1,1) one-hour ahead forecast

cumulative rainfall intensity for station Empangan Genting Kelang (with station

Kampung Kuala Saleh).
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Figure 4.64: The hyetographs of observed rainfall intensity, MARIMA and
ARMA(1,1) one-hour ahead forecast for station Km.11 Gombak.
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Figure 4.65: The observed, MARIMA and ARMA(1,1) one-hour ahead forecast

cumulative rainfall intensity for station Km.11 Gombak.
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Station Kampung Kuala Saleh
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Figure 4.66: The hyetographs of observed rainfall intensity, MARIMA and
ARMAC(1,1) one-hour ahead forecast for station Kampung Kuala Saleh.
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Figure 4.67: The observed, MARIMA and ARMA(1,1) one-hour ahead forecast

cumulative rainfall intensity for station Kampung Kuala Saleh.
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Table 4.25: Comparison of rainfalls intensity forecast value from MARIMA model

and ARMA(1,1) model for station Empangan Genting Kelang.

days | E(obs) E(MG) E(MK) E(ARMA) | E(cum) | E(MGcum) | E(MKcum) | E(Acum)
29 0.0000 0.0000 0.0000 0.102 0.0000 0 0 0.102
29 0.0000 0.0000 0.0000 0.1019 0.0000 0 0 0.2039
29 0.0000 0.0000 0.0000 0.1017 0.0000 0 0 0.3056
29 0.0000 0.0000 0.0000 0.1016 0.0000 0 0 0.4072
29 0.0000 0.0000 0.0000 0.1014 0.0000 0 0 0.5086
29 5.2000 0.0000 0.0000 0.1013 5.2000 0 0 0.6099
29 | 66.0000 0.0000 0.0000 2.3138 | 71.2000 0 0 2.9237
29 7.9000 6.2725 6.6008 77.2511 | 79.1000 6.2725 6.6008 | 80.1748
29 0.0000 | 68.7757 | 72.3596 -6.4969 | 79.1000 75.0482 78.9604 | 73.6779
29 3.8000 0.0000 0.0000 0.4148 | 82.9000 75.0482 78.9604 | 74.0927
29 | 11.6000 0.0000 0.0000 0.8561 | 94.5000 75.0482 78.9604 | 74.9488
29 7.0000 4.3131 4.6056 2.6457 | 101.5000 79.3613 83.566 | 77.5945
29 2.7000 | 12.6704 | 13.2479 1.3537 | 104.2000 92.0317 96.8139 | 78.9482
29 5.2000 6.3066 5.8543 0.6486 | 109.4000 98.3383 102.6682 | 79.5968
29 4.7000 2.0401 1.8842 1.3865 | 114.1000 100.3784 104.5524 | 80.9833
29 1.0000 5.5846 5.7478 1.1585 | 115.1000 105.963 110.3002 | 82.1418
29 0.0000 4.6217 4.5688 0.3228 | 115.1000 110.5847 114.869 | 82.4646
30 0.5000 0.0000 0.0895 0.233 | 115.6000 110.5847 114.9585 | 82.6976
30 0.0000 0.0000 0.0000 0.3679 | 115.6000 110.5847 114.9585 | 83.0655
30 0.0000 0.5875 0.6081 0.2247 | 115.6000 111.1722 115.5666 | 83.2902
30 0.0000 0.0000 0.0000 0.2498 | 115.6000 111.1722 115.5666 83.54
30 0.0000 0.0000 0.0000 0.2449 | 115.6000 111.1722 115.5666 | 83.7849
30 0.0000 0.0000 0.0000 0.2453 | 115.6000 111.1722 115.5666 | 84.0302
30 0.0000 0.0000 0.0000 0.2448 | 115.6000 111.1722 115.5666 84.275
30 0.0000 0.0000 0.0000 0.2445 | 115.6000 111.1722 115.5666 | 84.5195
30 0.0000 0.0000 0.0000 0.2442 | 115.6000 111.1722 115.5666 | 84.7637
30 0.0000 0.0000 0.0000 0.2438 | 115.6000 111.1722 115.5666 | 85.0075
30 0.0000 0.0000 0.0000 0.2434 | 115.6000 111.1722 115.5666 | 85.2509
days | E(obs) E(MG) E(MK) E(ARMA) | E(cum) | E(MGcum) | E(MKcum) | E(Acum)
30 0.0000 0.0000 0.0000 0.2431 | 115.6000 111.1722 115.5666 85.494
30 0.0000 0.0000 0.0000 0.2428 | 115.6000 111.1722 115.5666 | 85.7368
30 0.0000 0.0000 0.0000 0.2424 | 115.6000 111.1722 115.5666 | 85.9792
30 0.0000 0.0000 0.0000 0.2421 | 115.6000 111.1722 115.5666 | 86.2213
30 0.8000 0.0000 0.0000 0.2417 | 116.4000 111.1722 115.5666 86.463
30 4.2000 0.0000 0.0000 0.4325 | 120.6000 111.1722 115.5666 | 86.8955
30 0.0000 0.9257 1.0368 1.2312 | 120.6000 112.0979 116.6034 | 88.1267
30 0.5000 4.9288 5.0248 0.0742 | 121.1000 117.0267 121.6282 | 88.2009
30 0.0000 0.0000 0.0000 0.3956 | 121.1000 117.0267 121.6282 | 88.5965
30 0.0000 0.7529 0.6078 0.2200 | 121.1000 117.7796 122.236 | 88.8165
30 0.0000 0.0000 0.0000 0.2506 | 121.1000 117.7796 122.236 | 89.0671
30 0.0000 0.0000 0.0000 0.2448 | 121.1000 117.7796 122.236 | 89.3119
30 0.0000 0.0000 0.0000 0.2454 | 121.1000 117.7796 122.236 | 89.5573
1 0.0000 0.0000 0.0000 0.2449 | 121.1000 117.7796 122.236 | 89.8022
1 0.0000 0.0000 0.0000 0.2446 | 121.1000 117.7796 122.236 | 90.0468
1 0.0000 0.0000 0.0000 0.2442 | 121.1000 117.7796 122.236 90.291
1 0.0000 0.0000 0.0000 0.2439 | 121.1000 117.7796 122.236 | 90.5349
1 0.0000 0.0000 0.0000 0.2435 | 121.1000 117.7796 122.236 | 90.7784
1 0.0000 0.0000 0.0000 0.2432 | 121.1000 117.7796 122.236 | 91.0216
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1 0.5000 0.0000 0.0168 0.2429 | 121.6000 117.7796 122.2528 91.2645
1 2.0000 0.0000 0.0000 0.3617 | 123.6000 117.7796 122.2528 91.6262
1 0.5000 0.7916 0.6079 0.6986 | 124.1000 118.5712 122.8607 92.3248
1 0.0000 2.2938 2.3737 0.2835 | 124.1000 120.865 125.2344 92.6083
1 0.0000 0.0000 0.1262 0.2381 | 124.1000 120.865 125.3606 92.8464
1 0.0000 0.0000 0.0000 0.2457 | 124.1000 120.865 125.3606 93.0921
1 0.0000 0.0000 0.0000 0.2439 | 124.1000 120.865 125.3606 93.336
1 0.0000 0.0000 0.0000 0.2439 | 124.1000 120.865 125.3606 93.5799
1 0.0000 0.0000 0.0000 0.2435 | 124.1000 120.865 125.3606 93.8234
1 0.0000 0.0000 0.0000 0.2431 | 124.1000 120.865 125.3606 94.0665
days | E(obs) E(MG) E(MK) E(ARMA) | E(cum) | E(MGcum) | E(MKcum) | E(Acum)

1 0.0000 0.0000 0.0000 0.2428 | 124.1000 120.865 125.3606 94.3093
1 0.0000 0.0000 0.0000 0.2425 | 124.1000 120.865 125.3606 94.5518
1 0.0000 0.0000 0.0000 0.2421 | 124.1000 120.865 125.3606 94.7939

E(obs) = Observed values for station Empangan Genting Kelang

EMQG) = Forecasted values for station Empangan Genting Kelang using the

MARIMA model (with station Km.11 Gombak)

E(MK) = Forecasted values for station Empangan Genting Kelang using the

MARIMA model (with station Kampung Kuala Saleh)

E(ARMA) = Forecasted values for station Empangan Genting Kelang using the
ARMA model

E(cum) = Cumulative observed values for station Empangan Genting Kelang
E(MGcum)= Cumulative forecasted values for station Empangan Genting Kelang
using the MARIMA model (with station Km.11 Gombak)

E(MKcum)= Cumulative forecasted values for station Empangan Genting Kelang
using the MARIMA model (with station Kg. Kuala Saleh)

E(Acum) = Cumulative forecasted values for station Empangan Genting Kelang

using the ARMA model
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Table 4.26: Comparison of rainfalls intensity forecast value from MARIMA model and

ARMA(1,1) model for station Km.11 Gombak.

days | G(obs) G(M) G(A) G(cum) | G(Mcum) | G(Acum)
29 0.0000 0.0000 0.0656 0.0000 0.0000 0.0656
29 0.0000 0.0000 0.0655 0.0000 0.0000 0.1311
29 0.0000 0.0000 0.0654 0.0000 0.0000 0.1965
29 0.0000 0.0000 0.0653 0.0000 0.0000 0.2618
29 0.0000 0.0000 0.0652 0.0000 0.0000 0.3270
29 | 17.8000 0.0000 0.0651 | 17.8000 0.0000 0.3921
29 | 21.7000 0.0000 | 12.1489 | 39.5000 0.0000 | 12.5410
29 3.2000 | 24.6598 | 14.4196 | 42.7000 | 24.6598 | 26.9606
29 4.8000 | 23.6321 | -2.4233 | 47.5000 | 48.2919 | 24.5373
29 4.8000 0.0000 4.6985 | 52.3000 | 48.2919 | 29.2358
29 4.8000 4.9856 1.6676 | 57.1000 | 53.2775| 30.9034
29 4.8000 4.9137 2.9809 | 61.9000 | 58.1912 | 33.8843
29 4.8000 5.0290 2.5472 | 66.7000 | 63.2202 | 36.4315
29 4.8000 4.6485 2.7708 | 71.5000 | 67.8687 | 39.2023
29 4.8000 4.6420 2.7262 | 76.3000 | 72.5107 | 41.9285
29 1.2000 4.8904 2.7819 | 77.5000 | 77.4011 | 44.7104
29 0.0000 47813 | -0.0198 | 77.5000 | 82.1824 | 44.6906
30 0.0000 0.0000 0.1669 | 77.5000 | 82.1824 | 44.8575
30 0.0000 0.0000 0.0924 | 77.5000 | 82.1824 | 44.9499
30 0.0000 0.0188 0.1218 | 77.5000 | 82.2012 | 45.0717
30 0.0000 0.0000 0.1098 | 77.5000 | 82.2012 | 45.1815
30 0.0000 0.0000 0.1143 | 77.5000 | 82.2012 | 45.2958
30 0.0000 0.0000 0.1123 | 77.5000 | 82.2012 | 45.4081
30 0.0000 0.0000 0.1129 | 77.5000 | 82.2012 | 45.5210
30 0.0000 0.0000 0.1124 | 77.5000 | 82.2012 | 45.6334
30 0.0000 0.0000 0.1124 | 77.5000 | 82.2012 | 45.7458
30 0.0000 0.0000 0.1122 | 77.5000 | 82.2012 | 45.8580
30 0.0000 0.0000 0.1120 | 77.5000 | 82.2012 | 45.9700
30 0.0000 0.0000 0.1118 | 77.5000 | 82.2012 | 46.0818
30 0.0000 0.0000 0.1117 | 77.5000 | 82.2012 | 46.1935
30 0.0000 0.0000 0.1115 | 77.5000 | 82.2012 | 46.3050
30 0.0000 0.0000 0.1114 | 77.5000 | 82.2012 | 46.4164
30 0.0000 0.0000 0.1112 | 77.5000 | 82.2012 | 46.5276
30 1.0000 0.0000 0.1110 | 78.5000 | 82.2012 | 46.6386
30 0.3000 0.0302 0.8821 | 78.8000 | 82.2314 | 47.5207
30 1.2000 1.4296 0.0359 | 80.0000 | 83.6610 | 47.5566
30 0.0000 0.0000 1.0648 | 80.0000 | 83.6610 | 48.6214
30 0.0000 14901 | -0.2632 | 80.0000 | 85.1511 | 48.3582
30 0.0000 0.0000 0.2596 | 80.0000 | 85.1511 | 48.6178
30 0.0000 0.0000 0.0538 | 80.0000 | 85.1511 | 48.6716
30 0.0000 0.0000 0.1345 | 80.0000 | 85.1511 | 48.8061
1 0.0000 0.0000 0.1025 | 80.0000 | 85.1511 | 48.9086
1 0.0000 0.0000 0.1149 | 80.0000 | 85.1511 | 49.0235
1 0.0000 0.0000 0.1098 | 80.0000 | 85.1511 | 49.1333




1 0.0000 0.0000 0.1115 | 80.0000 | 85.1511 | 49.2448
1 0.0000 0.0000 0.1106 | 80.0000 | 85.1511 | 49.3554
1 0.0000 0.0000 0.1108 | 80.0000 | 85.1511 | 49.4662
1 1.1000 0.0000 0.1105 | 81.1000 | 85.1511 | 49.5767
days | G(obs) G(M) G(A) G(cum) | G(Mcum) | G(Acum)
1 1.4000 0.0000 0.9552 | 82.5000 | 85.1511 | 50.5319
1 0.0000 1.4504 0.8538 | 82.5000 | 86.6015 | 51.3857
1 0.0000 15466 | -0.1810 | 82.5000 | 88.1481 | 51.2047
1 0.0000 0.0000 0.2272 | 82.5000 | 88.1481 | 51.4319
1 0.0000 0.0000 0.0659 | 82.5000 | 88.1481 | 51.4978
1 0.0000 0.0000 0.1293 | 82.5000 | 88.1481 | 51.6271
1 0.0000 0.0000 0.1040 | 82.5000 | 88.1481 | 51.7311
1 0.0000 0.0000 0.1138 | 82.5000 | 88.1481 | 51.8449
1 0.0000 0.0000 0.1097 | 82.5000 | 88.1481 | 51.9546
1 0.0000 0.0000 0.1111 | 82.5000 | 88.1481 | 52.0657
1 0.0000 0.0000 0.1103 | 82.5000 | 88.1481 | 52.1760
1 0.0000 0.0000 0.1104 | 82.5000 | 88.1481 | 52.2864
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Table 4.27: Comparison of rainfalls intensity forecast value from MARIMA model and
ARMA(1,1) model for station Kampung Kuala Saleh.

days | K(obs) K(M) K(A) K(cum) | K(Mcum) | K(Acum)
29 0.0000 0.0000 0.1998 0.0000 0.0000 0.1998
29 0.0000 0.0000 0.1995 0.0000 0.0000 0.3993
29 0.0000 0.0000 0.1992 0.0000 0.0000 0.5985
29 0.0000 0.0000 0.1989 0.0000 0.0000 0.7974
29 0.0000 0.0000 0.1986 0.0000 0.0000 0.9960
29 0.0000 0.0000 0.1983 0.0000 0.0000 1.1943
29 | 24.3000 0.0000 0.1980 | 24.3000 0.0000 1.3923
29 1.2000 0.0990 6.6212 | 25.5000 0.0990 8.0135
29 0.0000 | 28.6702 | -0.5657 | 25.5000 | 28.7692 7.4478
29 2.3000 0.0000 0.3595 | 27.8000 | 28.7692 7.8073
29 6.2000 0.0000 0.6753 | 34.0000 | 28.7692 8.4826
29 0.5000 2.7657 1.4638 | 34.5000 | 31.5349 9.9464
29 3.5000 7.0210 0.1182 | 38.0000 | 38.5559 | 10.0646
29 4.0000 0.0000 0.9898 | 42.0000 | 38.5559 | 11.0544
29 3.3000 4.0555 0.9685 | 45.3000 | 42.6114 | 12.0229
29 0.0000 4.1267 0.8475 | 45.3000 | 46.7381 | 12.8704
29 0.0000 3.1509 0.1626 | 45.3000 | 49.8890 | 13.0330
30 0.0000 0.0000 0.2719 | 45.3000 | 49.8890 | 13.3049
30 0.0000 0.0000 0.2537 | 45.3000 | 49.8890 | 13.5586
30 0.0000 0.0052 0.2562 | 45.3000 | 49.8942 | 13.8148
30 0.0000 0.0000 0.2553 | 45.3000 | 49.8942 | 14.0701
30 0.0000 0.0000 0.2550 | 45.3000 | 49.8942 | 14.3251
30 0.0000 0.0000 0.2547 | 45.3000 | 49.8942 | 14.5798
30 0.0000 0.0000 0.2543 | 45.3000 | 49.8942 | 14.8341
days | K(obs) K(M) K(A) K(cum) | K(Mcum) | K(Acum)
30 0.0000 0.0000 0.2539 | 45.3000 | 49.8942 | 15.0880




30 0.0000 0.0000 0.2535 | 45.3000 | 49.8942 | 15.3415
30 0.0000 0.0000 0.2532 | 45.3000 | 49.8942 | 15.5947
30 0.0000 0.0000 0.2528 | 45.3000 | 49.8942 | 15.8475
30 0.0000 0.0000 0.2524 | 45.3000 | 49.8942 | 16.0999
30 0.0000 0.0000 0.2521 | 45.3000 | 49.8942 | 16.3520
30 0.0000 0.0000 0.2517 | 45.3000 | 49.8942 | 16.6037
30 0.0000 0.0000 0.2513 | 45.3000 | 49.8942 | 16.8550
30 1.9000 0.0000 0.2510 | 47.2000 | 49.8942 | 17.1060
30 4.6000 0.0000 0.6584 | 51.8000 | 49.8942 | 17.7644
30 0.0000 2.2990 1.1846 | 51.8000 | 52.1932 | 18.9490
30 0.0000 5.1891 0.1052 | 51.8000 | 57.3823 | 19.0542
30 0.0000 0.0000 0.2826 | 51.8000 | 57.3823 | 19.3368
30 0.0000 0.0049 0.2525 | 51.8000 | 57.3872 | 19.5893
30 0.0000 0.0000 0.2571 | 51.8000 | 57.3872 | 19.8464
30 0.0000 0.0000 0.2559 | 51.8000 | 57.3872 | 20.1023
30 0.0000 0.0000 0.2556 | 51.8000 | 57.3872 | 20.3579
1 0.0000 0.0000 0.2553 | 51.8000 | 57.3872 | 20.6132
1 0.0000 0.0000 0.2549 | 51.8000 | 57.3872 | 20.8681
1 0.0000 0.0000 0.2545 | 51.8000 | 57.3872 | 21.1226
1 0.0000 0.0000 0.2542 | 51.8000 | 57.3872 | 21.3768
1 0.5000 0.0000 0.2538 | 52.3000 | 57.3872 | 21.6306
1 0.0000 0.0000 0.3613 | 52.3000 | 57.3872 | 21.9919
1 0.0000 0.6028 0.2360 | 52.3000 | 57.9900 | 22.2279
1 1.5000 0.0000 0.2563 | 53.8000 | 57.9900 | 22.4842
1 0.0000 0.0049 0.5757 | 53.8000 | 57.9949 | 23.0599
1 0.0000 1.8226 0.2013 | 53.8000 | 59.8175 | 23.2612
1 0.0000 0.0000 0.2630 | 53.8000 | 59.8175 | 23.5242
1 0.0000 0.0000 0.2523 | 53.8000 | 59.8175 | 23.7765
1 0.0000 0.0000 0.2536 | 53.8000 | 59.8175 | 24.0301
1 0.0000 0.0000 0.2530 | 53.8000 | 59.8175 | 24.2831
1 0.0000 0.0000 0.2527 | 53.8000 | 59.8175 | 24.5358
1 0.0000 0.0000 0.2523 | 53.8000 | 59.8175 | 24.7881
1 0.0000 0.0000 0.2520 | 53.8000 | 59.8175 | 25.0401
1 0.0000 0.0000 0.2516 | 53.8000 | 59.8175 | 25.2917
1 0.0000 0.0000 0.2513 | 53.8000 | 59.8175 | 25.5430
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An overall evaluation of the forecast performance of both the MARIMA and

ARMA models are summarized in Table 4.28 for station Empangan Genting Kelang

with station Km.11 Gombak and station Kampung Kuala Saleh. Tables 4.29 and 4.30

tabulate the forecast performance for station Km.11 Gombak and station Kampung

Kuala Saleh respectively.
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Table 4.28: Performance measure of the forecast for station Empangan Genting Kelang.

Statistic MARIMA ARMA
With station Km.11 | With station Kampung (1,2)
Gombak Kuala Saleh
4, , (mm) 3.3319 3.38778 3.1745783
RMSE (g, ) (mm) 12.5642 12.902865 12.338675

Table 4.29: Performance measure of the forecast for station Km.11 Gombak.

Statistic MARIMA ARMA(L,1)
4., (mm) 1.7068 1.1587567
RMSE (g, ) (mm) 5.2814 3.2122195

Table 4.30: Performance measure of the forecast for station Kampung Kuala Saleh.

Statistic MARIMA ARMAC(1,1)
4, , (mm) 1.6469917 1.1269467
RMSE (&, ) ,(mm) 5.1342631 3.4076801

From Table 4.28, it can be concluded that the MARIMA models was
outperformed by the ARMA (1,1) models for station Empangan Genting Kelang. The

average value of the residuals (error) of hourly forecasts, 4, , for the data from this

station are slightly better by using the ARMA(1,1) models compared to the MARIMA
models in both study areas (with station Km.11 Gombak and station Kampung Kuala
Sleh) where the differences are approximately equal to one. The root mean square error
(RMSE) for the ARMA models were also slightly smaller compared to the MARIMA
model. However, if we compared the both study areas that using the MARIMA model,
we can see that study area one, that is the jointly modeled with station Km.11 Gombak,
were better than the other one. From this, its can conclude that the higher correlated

stations produced a better forecast results compared to the lower correlated stations.

It goes the same too for station Km.11 Gombak and station Kampung Kuala

Saleh, where from Tables 4.29 and 4.30 it can be concluded that the ARMA models
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performed better than the MARIMA models. However, the root mean square error were
much more better or much more less in both study area by using the ARMA(1,1) models
compared to the MARIMA models.

4.9  Forecast Error Normality Check

Finally, the forecast error for both study area that consists of three stations which
are station Empangan Genting Kelang, station Km.11 Gombak and station Kampung
Kuala Saleh had been analyze to check whether those errors were normally distributed or
does not normally distributed. This checking were to ensure whether the MARIMA

models were suitable or not to be used to forecast the rainfalls intensity.

By using the Minitab 14 software, those forecast errors had been analyzed
separately for each study areas and for each station. Figures 4.68, 4.69, 4.70 and 4.71
show the normal probability plot for all the stations based on the Anderson-Darling test

of normality.

By the Anderson-Darling test of normality, we just need to check whether the P-
Value is more than 0.05 that ensure the forecast error is normally distributed or not.
From the results of the normality check, we could see that the P-Value for all the stations
from Figures 4.68, 4.69, 4.70 and 4.71 were less than 0.05. Therefore it suggests that the

MARIMA models were not suitable to be used to forecast the rainfall intensity.
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Figure 4.68: Normal probability plot of the forecast errors for station Empangan
Genting Kelang (with station Km.11 Gombak) using the MARIMA models.

Station Empangan Genting Kelang (with station Kampung Kuala Saleh)

forecast error

Normal
99.9
Mean 0.02101
StDev 13.01
99 [ J N 60
[ AD 15.361
95 P-Value  <0.005
904
80
= 704
c
o 604
O 504
) 404
o 304
20
10
5 -
[ ]
1 -
0.1 T T T T T T
-50 -25 0 25 50 75

Figure 4.69: Normal probability plot of the forecast errors for station Empangan

Genting Kelang (with station Kapung Kuala Saleh) using the MARIMA models.
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Figure 4.70: Normal probability plot of the forecast errors for station Km.11 Gombak
using the MARIMA models.
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Figure 4.71: Normal probability plot of the forecast errors for station Kampung Kuala
Saleh using the MARIMA mode
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Figure 4.72: Flowchart of the methodology



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

51 Conclusions

1. Characteristics of Convective Rain Based on Short Rainfall Duration Data

The diurnal and monthly distribution of rainfall (greater than Smm) in 2004 at
Station 3117070 was discussed in Chapter IV. The results show that the bulk of the
rains fall in the afternoon, between 13:00 and 19:00 which makes up about 75 % of the
total rainfall. This type of storm can be classified as convectional storms. Convective
storms are predominant and are an active component of the tropical weather system. A
Minimum Interevent Time (MIT) of 3 hours was used to separate storm events.
Convective rain occurred most frequently in November and the highest frequency of
convective storm happened in the intermonsoon months which made up about 44% was
of the storms. This is due to light variable winds and an unstable atmosphere which
favor strong convective activity. This results in thunderstorms and heavy rains especially
in the late afternoons and early evenings. Over five years, the highest intensity was 384
mm/hr occurred in 2003. These characteristics were discussed in Chapter IV where a
great variety of storm shape is evident and the patterns show that most of the convective

events occurred over short durations, ranging from 15 to 90 minutes.
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2. Classification of Convective Events

A classification of episodes based on £ parameter was discussed in Chapter IV.
This classification is according to their greater or lesser convective character (Llasat,
2001). The classification of the convective storm into slightly, moderately and strongly
convective indicates that the highest proportion is for the moderately convective class,
which makes up 63.8% of the total convective events. It seems that a 35 mm/hr
threshold intensity is appropriate for separating convection from non convective storms
for local conditions. However, this analysis needs to be replicated to cover more rainfall

stations.

3. Comparison of Spatial Distribution of Convective Rainfall between Radar and

Ground Rainfall

Comparison of spatial distribution between radar and surface rainfall were
examined in terms of intensity, areal coverage, storm movements and depth-area
relationship. The intensity values between raingauge and radar show large differences.
The main difficully in determining the Z-R (with Z in mm®m’ and R in mm/hr)
relationship arises from the fact that radar measures precipitation in the atmosphere
while gages measure it at the ground. In addition, precipitation may evaporate before
reaching the ground, especially in the tropics. Winds may also carry precipitation away

from beneath the producing cloud.

As for the storm intensity, out of four storms, only one showed reasonably good
match in the contour patterns between radar and raingauge. This might be due to
inadequate number of raingauge and missing data which limit the ability of Kriging

methods.



268

The aerial rainfall for each interval of isohyets between radar and surface rainfall
was compared using GIS software. The ground rainfall data produced remarkably
different areal rainfall for various intervals of isohyets. Overall, the areas derived from

raingauge are bigger than those derived from radar.

Each storm is unique in term of the movement of the storm cell. Some have long

paths while others are circling within a limited path.

Depth-area relationships of six storms were examined. Each storm display quite
different areal reduction curve. However, in general rainfall the depth decreases with
increasing catchment area. The ARF curve was compared with the ARFs from other
areas. The present study introduced quite similar ARF values obtained by Yan and Lin,
(1986). The ARF values derived from smaller areas were different from this study.
Therefore, the shapes of such curves can only be compared if the temporal and spatial
resolutions of the measurements are similar. However, the agreement between the
relationships derived for convective storms cells in Klang Valley and the entire
Peninsular Malaysia (Yan and Lin, 1986) can be explained in term of similarity in the

climatic condition.

4, From four candidate distribution functions for hourly rainfall amount
(exponential, gamma, Weibull, and mixed-exponential), the mixed-exponential was
found to be the best model based on the numerical (goodness-of-fit tests) and graphical
comparisons. This distribution function is expected to explain well both the small and

large amounts of hourly rainfall amounts.

5. The present study has proposed a new NSRP model that used the mixed-
exponential distribution for describing the rain cell intensities. Results of the calibration
and validation of the proposed model have indicated its superior performance in
preserving more accurately the statistical and physical properties of the underlying
observed hourly rainfall series as compared to the traditional NSRP model using the

exponential for rain cell intensity distribution
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6. In the calibration of NSRP models, it has been shown that the use of the
transition probabilities of rainfall occurrences rather than the autocorrelations of rainfall
amounts can provide more accurate description of the observed rainfall properties. In
particular, the modified NSRP model (MEXPTRAN) with mixed-exponential
distribution to describe the rain cell intensities and using transition probabilities in the
fitting procedures was found to be the best model in terms of its accuracy in preserving

the statistical and physical properties of the observed rainfall series.

7. In consideration of rainfall characteristics over different timescales, it was found
that the NSRP (MEXPTRAN) model can describe very well many rainfall statistical and
physical properties for both one-hour and 24-hour scales. In addition, the model was
able to preserve accurately some relevant rainfall physical properties such as the
probability of dry days and the daily transition probabilities of rainfall occurrences for

the whole year.

8. The first-order two-state Markov Chain (MC) model was found to describe

accurately the hourly and daily rainfall occurrence processes.

9. The Fourier series was found to be able to describe accurately the seasonality of
the MCME model parameters for hourly and daily rainfall series, especially the
transition probabilities. It was also found that the Fourier series fit for the hourly

parameters are better than the daily parameters.

10. The MCME hourly model was found to be able to describe adequately the
statistical and physical properties of the rainfall process at the hourly scale. However,
when the hourly rainfall series were lumped to daily (24-hour) or monthly series the
hourly MCME model produced larger errors than those given by the daily MCME

model.
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11. The MCME daily model was also found to be able to describe adequately the
statistical and physical properties of the underlying daily rainfall process. However,
when the generated daily series were lumped to monthly series, the daily model could
only preserve the monthly rainfall mean, but could not describe well other rainfall
properties. Nevertheless, the daily MCME model produced smaller errors than the

hourly model in preserving the rainfall properties at the monthly scale.

12. The comparison between the NSRP and the hourly MCME model has shown that
both models have comparable performance in preserving the properties of the observed
at the hourly scale. But when the generated series were lumped to daily (24-hour)
sequences, the NSRP was found to perform better than the MCME in describing the
daily rainfall properties. However, the MCME daily model was found to produce
smaller errors than the NSRP in describing the rainfall properties at the daily scale.
Therefore, the NSRP model has the ability to describe the underlying rainfall processes
at both hourly and daily scales. The MCME models, on the other hand, could only
preserve the properties of the observed when their parameters were estimated using data

at the same scale as the observed data.

13.  In general, both NSRP and MCME models were found to have the same
predictive ability. While the models did not perform as well as in the calibration period,
both were able to preserve the seasonal trend of the observed rainfall properties. The
predictive ability of the MCME daily model was found to be better than the predictive
ability of the NSRP and MCME hourly model in describing the daily rainfall process.
The hourly MCME model is better than the NSRP in preserving the hourly rainfall series
but when lumped to daily equivalent, the NSRP was better than the MCME in preserving
the properties at the daily scale.

14. By using MARIMA (1,1,0), the model can be written as

Y =aY  +¢ 5.1
t t—1 t

where
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Y, =(I-B)X,
= IX, - BX,
=X, -X,,

Therefore,

X, -X,, :a(Xt—l_Xt—2)+8f (5.2)
X, =(I+a)X  -aX,_, +¢, |

where ¢, is assumed to be a white noise. In this study, Lembah Kelang was selected as

the study area. We specifically forecasted rainfall intensity data for two study cases
which were station Empangan Genting Kelang with station Km.11 Gombak and

Empangan Genting Kelang with station Kampung Kuala Sleh.

For comparison purposes, the univariate ARMA model was also employed to
forecast rainfall intensity in the above study area. The Box-Jenkins model, ARMA (1,1)

model used can be written as
Xt = ¢Xt—1 - Hgt—l + &, (53)

For these study areas, the root mean square deviation (RMSD), which is a
measure of the difference between values predicted by a model and the observed value,

and the average value of the residuals (error) of hourly forecasts, u, ,were calculated.

Based on these values, it was concluded that for all the selected stations, the MARIMA
model have been outperformed by the ARMA (1,1) models where for station Empangan
Genting Kelang, the differences only small compared to station Km.11 Gombak and
station Kampung Kuala Saleh. However, since the differences were small, the

MARIMA models forecasts could be considered as good as the ARMA models.
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From the value of the performance measure for station Empangan Genting
Kelang that have been jointly modeled with station Km.11 Gombak and with Kampung
Kuala Saleh, it proved that a more highly correlated stations could gave a better forecast

results when it is been jointly modeled by using the MARIMA models.

15. Looking at the data set, it was possible that the forecasts using the MARIMA
models were poorer than the ARMA models maybe due to the 7™ data, which was at
2.00 pm, on 29" April 2002, where the rainfall intensity was not normal. The value of
the data was very much different from the other stations where the value was 66 mm/h
for station Empangan Genting Kelang which can be considered as an outlier. This may
caused some interruptions because in using MARIMA, the two stations were jointly
modeled. Since the other two stations were lowly correlated, these two stations could
not be modeled together. Furthermore, the lack of technologies in Malaysian
Meteorological Department in providing radar maps for the storm movements also

contributed to this poor forecast results.

16. In general, the MARIMA model is a potential method for forecasting hourly
rainfall intensity. Instead of using many variables such as the humidity, temperature and
the direction of the wind in the model, several rainfall data series from several stations
can be used. This simplifies the process of forecasting rainfalls. Since rain can be
forecasted, the results of the current study can help the relevant authorities in manning

and preventing possible hazards caused by rains.

5.2 Recommendations for Future Works

1. The first part of the research focused on two major aspects: 1) characterization of
convective rain and 2) spatial variation of convective rainfall derived from radar data
and surface data. Prior to this study, the approach used to characterize and compare
spatial variations between radar and surface rainfall data has not been tested in the

tropics. In order to improve future studies, the following research areas are suggested:



b)

d)

2.
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This study used one station to characterize convective rain. Future studies shall
use more rainfall stations to examine the spatial consistently of the

characteristics.

The number of rainfall stations need to be increased to give a better interpolation
in Kriging Method. This is because kriging works best when the input point is

large and vice versa when the number of point is small.

The influence of wind direction and wind velocity need to be checked in

evaluating the storm movement.

The difficulties to interpret radar rainfall intensity from JPEG file need to be
checked to prevent overestimate or underestimate of rainfall intensity values.
This is might be solved by doing a programming to interpret the coding output
from radar software or execute a projection using GIS method after get the z

coordinate value.

Meanwhile, several recommendations may be suggested for improving the

modelling of the NSRP and the MCME, such as:

a)

b)

This study used one station to characterize convective rain. Future studies can
use more rainfall stations to examine weather convective rainfalls do vary

spatially.

The number of rainfall stations need to be increased to give a better interpolation
in Kriging Method. This is because kriging works best when the input point is

large and vice versa when the number of point is small.

The influence of wind direction and wind velocity need to be checked in

evaluating the storm movement.
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2

3.
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The NSRP and the MCME models could be used in the study of the impacts of
climate change on rainfall processes if it is feasible to develop some linkages to

link the model parameters with climate variable.

The NSRP and the MCME models could be generalized for stochastic simulation

of rainfall processes for many sites simultaneously.

The NSRP and MCME models could be modified to describe more accurately
the extreme rainfall characteristics at any given location. This would require the
use of other heavy-tailed distributions to represent the rainfall amounts in MCME

model or the rain cell intensities in NSRP model.

In estimating parameters for the NSRP with mixed-exponential distribution, there
were seven parameters to be estimated for each month independently. This task
may be tedious. Hence, the Fourier series may be used to reduce the number of

estimated parameters.

For the the third part, which involves the development of the short-term

foreasting technique of convective rains, several recommendations may be suggested for

producing better forecast results, such as:

a)

b)

Only two stations can be jointly modeled in this MARIMA model because of the
problem of parameters estimation. It is suggested that this problem is overcome
so that more than two stations can be jointly modeled in future studies. It is also
suggested that future studies use different variables such as the humidity,

temperature and altitude in the MARIMA model to forecast the rainfalls.

This study may be applicable in a wide range of situations. It is therefore

suggested that this study should be replicated in other types of forecasts and in



275

other types of industries so as to determine the potential of the MARIMA models

in those situations and industries. As examples:

(1) Different types of forecasts as the subject of the investigation such as
demand for materials, cash flow and inventory levels.
(i1) Different types of industries as the subject of investigation such as

chemical industry, textile product industry and wood industry.

c) Analyzing multivariate data is a very tedious work. The potential use of
statistical software such as SAS, S-PLUS and MINITAB in analyzing the time

series multivariate data should be investigated.

d) In this study, only a one-hour ahead prediction was produced. A longer term
prediction can give better information to predict a flash flood. Thus it is

suggested that a longer term prediction be made in future study
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APPENDIX A

PROCESS OF DIGITIZE RADAR IMAGE
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Figure Al : Radar image is rectified with Klang Valley map
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Figure A2 : Digitizing of radar image for intensity 80 — 100 mm/hr (red layer)
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Figure A3 : Digitizing of radar image for intensity 35 — 80 mm/hr (orange layer)
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Figure A4 : Digitizing of radar image for intensity 8 — 35 mm/hr (yellow layer)
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Figure A5 : Digitizing of radar image for intensity 3 — 8 mm/hr (green layer)
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Figure A6 : Digitizing of radar image for intensity 0.9 — 3 mm/hr (dark green layer)
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Figure A7 : Digitizing of radar image for intensity 0.5 — 0.9 mm/hr (dark blue layer)
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Figure A8 : Digitizing of radar image for intensity 0.3 — 0.5 mm/hr (blue layer)
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Figure A9 : Union process (merged all layers)
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Figure A10 : Digitized image



APPENDIX B

STEPS TO MAKE RAINFALL CONTOURS DERIVED BY KRIGING METHOD
USING GEOSTATISTICAL ANALYST

Geostatistical Wizard: Choose Input Data and Method

Dataset 1 ] [~ Walidation

Input Date: | EIIRERENIEEE | ~| =
Atibute;  |0323 ] |
WField | | |
Y Field | ] |
[ UseNODATA vahe: [ r

Tip: alidation creates a model for a subset of data and
predicts walues for the rest of the locations.

“I_I_I_

Methods

Inverze Distance Weighting About Kriging
Global Polynomial [nterpolation
Local Palynomial Interpalation
Fadial Basis Functions
Kriging

Cokriging

Kriging iz a moderately quick interpolator that can be exact or smoothed depending
an the measurement errar model. It is very fexible and allows pou ta investigate
graphs of zpatial autocaonelation. Kriging uses statistical models that allow a wvariety
of map outputs including predictions, prediction standard errors, probability, etc. The
flexibility of kriging can require a lat of decision-making. Kriging aszumes the data
come from a stationary stochastic process, and zome methods assume narmally-
distributed data.

| Mewt » | Finigh | Cancel

Figure B1 : Choose input data and method




Geostatistical Wizard: Step 1 of 4 - Geostatistical

Method Selection

Geostatistical Methods

-- Ordinary Kriging
Prediction Map
Quantile Map
Probability b ap
Prediction Standard Errar Map
Simple Friging
Universal Kriging
Indicator Kriging
Praobability Friging
Digjunctive Krging

- F-EE-

< Back | Mest = |

Selection
Method: Ordinary Kriging
Output: Frediction Map
Datazet 1 ]
Transformation:  |{RlEE hd

-

|N0ne

Order of Trend Removal:

E

| [
4

Finish |

Figure B2 : Geostatistical method selection

Geostatistical Wizard: Step 2 of 4 - Semivariogram/Covariance Modeling

Wiew

Sermnivariogram Covariancel
10
G678
5424

40 63
2712

13.56 s
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S0 S0 0. 0 058 SMDE. 800 @0 0EEle
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0 086
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Spherical I—

I Tetrazpherical Sl

Pentazpherical p

Exponential [ Anisatropy [
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—

Haole Effect

K.
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- [ Show Search Direction
- 'J"
e ]
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2 9525%F. -Beszel[B531 6, 10)+0"*MNugget
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I J-Bes
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Iui

Mugget = MicroStructure + Meazurement Ermor

)

v Errar Modeling

[ % 100 %
k5 rE:
Io o
< Back | Mext » | Finigh | Cancel |

Figure B3 : Semivariogram / Covariance modeling
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Geostatistical Wizard: Step 3 of 4 - Searching Neighborhood

Datazet Selection: |Dataset 1 j
1@ a,G l—:| tethod: |Neighborhnod j
Neighbars to lnchude: 5 =
L4 W Include at Least: 2 El:
stre OB B
I Shape
Angle: 3
td ajor Semiaxis:
binar Semiaxis:
Anisatropy Factar: 1
Test Location
#  |359530.42 Y. |346827 42
MHeighbars : B
. - Py Prediction = 0.72467
Presview pe: Surface
< Back | Memt = | Fikizh Cancel

Figure B4 : Searching neighborhood

Geostatistical Wizand: Step 4 of 4 - Cross Validation

Chart
Predicted ] Error ] Standardized Enor] E!QF'IDtI
= 4 H H -
] e
g a2
2 241 I T
= P
1.61 i i
0.62 ! T ,
0.02 e ;
078l
-0.78 0.0z 0.a2 1.61 2.41 3.20 4.00
Measured
Regression function: 0.022 %%+ 0549
Prediction Errars -
Mean: 004503 Inchuded H il Measured | Predicted A
Root-tean-Square: 1.039 es 354320 314440 1] 1.2852
Average Standard Eror: 1.699 Yes 365230 78220 a 0.9853 -
Mean Standardized: 0.02444 Yes 377320 332530 1] 1.08E1
Root-tean-Square Standardized: 0.7212 Yes 383250 337910 1.4 0.744E5
Yes 389420 3EES50 21 070418
Samples: 24 of 24 Yes 391210 354340 15 0.69194
Yes 391340 370930 ns 1.5032 b
< | >
Save Crozz Walidation. . | < Back | | Firizh | Caticel

Figure B5 : Cross validation
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Qutput Layer, Information

Surmarny:

Selected Method: Ordinary Friging
Dutput: Prediction Map

Number of datasets currently in use: 1
Mumber of Points: 24

Semivariogram/Covariance:
Model: 2 9525%.-BeszellE531.6.10)+0*Mugget
Error modeling:
Microstructure: 0 [0%)]
Measurement error: 0 [100%)

Searching Neighborhood:
Meighbors to Include: 5 or at least 2 for each angular sector
Searching Ellipse:
Angle: [
Major Semiaxis: E531.6
Minor Semiaxiz: £531.6
Angular Sectors: 4

Status:
Feady to create layer.

| ar. I Canhicel |

Figure B6 : Output layer information
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Figure B7 : Rainfall contour derived from Kriging



APPENDIX C

CALCULATION TO PRODUCE AREAL REDUCTION CURVE

Event on January 6, 2006

Ordinary Kriging
Prediction Map
[rain_gauge_0&010a].[depth]
Filled Contours

Mo-4
Mi-s
f-12
12 - 16
; 16 - 20
- 20-24
it ' : 2423
25 - 32
9 Mz - 36
I 6 - 40
Classes Value_Min Value_Max F_AREA km_square range
0 0 5732649 B4963555 5251 £4.99 0-4
1 5732849 9 67464 31506596.3039 3G 4-8
2 3 G67464 12.549408 28627410.7376 2863|512
3 12549408 15.000031 34364762.8536 3436 12-16
4 15000031 16.551090 21701199.8248 2.7 16-20
5 16.551090 18.701712 262247747132 26.22|20-24
B 18701712 21 683647 135131 25,5543 1381 24-28
7 21 BE365T 25.618270 7139504 17534 71425 - 32
B 25518270 31551119 B549684 33259 B.55
9 3551118 395 B3 5137 79596 £.32 36 - 40



Percentage reduction (%) of storm depth (event on January 6, 2006)

302

Average between isohyet

Total Areas between isohyet
Mean Area Precipitation,

( MAP) = (average between
isohyet x area between isohyet) /
total areas between all pairs of
neighbouring isohyets

(36 + 40)/2= 38
6.32+ 0=6.32

(38 x 6.32)/6.32= 38

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(32 + 36)12 = 34
6.32+ 6.55=12.87
[(38x6.32) + (34 x 12.87)] / 12.87 = 36

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(28 + 32)/2 = 30
6.32 + 6.55 + 7.14 = 20.01
[(38 x 6.32) + (34 x 12.87) + (30 x 20.01)] / 20.01 = 33.8

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(24 + 28)/2= 26
6.32 + 6.55 + 7.14 + 13.81 = 33.82
[(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82)] / 33.82 = 30.6

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(20 + 24)/2= 22
632 + 655 + 7.14 + 13.81 + 21.7 = 5552
[(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52)] / 55.52 = 27.3

Average between isohyet
Total Areas between isohyet

Mean Area Precipitation, (MAP)

(16 + 20)2= 18

6.32 + 6.55 + 7.14 + 13.81 + 1.7 + 2622 = 81.74

[(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74)] /
81.74 = 24.3
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7 | Average between isohyet (12 + 16)2= 14
Total Areas between isohyet 6.32 + 6.55 + 7.14 + 13.81 + 21.7 + 26.22 + 28.63 = 110.37
Mean Area Precipitation, (MAP) | [(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14
x 110.37)]/110.37 = 21.6
8 | Average between isohyet 8 +12)/2= 10
Total Areas between isohyet 6.32+ 6.55 + 7.14 + 13.81 + 21.7 + 26.22 + 28.63 + 31.6 = 141.97
Mean Area Precipitation, (MAP) | [(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14
x 110.37) + (10 x 141.97)] / 141.97 = 19.0
9 | Average between isohyet 4 +8/12=06
Total Areas between isohyet 6.32 + 6.55 + 7.14 + 13.81 + 21.7 + 26.22 + 28.63 + 31.6 + 34.38 = 176.35
Mean Area Precipitation, (MAP) | [(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14
x 110.37) + (10 x 141.97) + (6 x 176.35)] / 176.35 = 16.5
10 | Average between isohyet O+ 4)R2=2

Total Areas between isohyet

Mean Area Precipitation, (MAP)

6.32 + 6.55 + 7.14 + 13.81 + 21.7 + 2622 + 28.63 + 31.6 + 34.38 + 64.99 =
241.34

[(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14
x 110.37) + (10 x 141.97) + (6 x 176.35) + (2 x 241.34)] / 241.34 = 126

Percentage reduction (%) of storm depth

= (Mean Area Precipitation, (MAP) / storm maximum)* 100

storm maximum (reference gauge)

= 39.5mm

Ul-lkb)[\)»—ag

Percentage reduction (%) of storm depth

38/39.5*%100 = 96.2%
36/39.5*100 91 %
33.8/39.5*100 = 85.7 %
30.6/39.5* 100 = 77.6 %
27.3/39.5*100 = 69 %

6 243/395*100 = 61.5%
7 21.6/39.5*100 = 54.7 %
8 19.0/39.5*100 = 48.2%
9 16.5/395*100 = 41.8%
10 12.6/39.5*100 = 31.9%




Event on April 6, 2006

Crdinary Kriging

304

Prediction Map

[rain_gauge_0&040&].[depth_0604]
Filled Contours

MWo-36
MWze-7.2
7.2-10.8
10.5- 14.4
14.4 - 15
; 15-21.6
Mz16-252
oy M5z - 260
zss-s24
9 2436
Classes Value_Min Value_Max F_AREA km_square range new_range
] 0 2431383 179519936 0n-4 0-36
1 2531383 4 557440 1185586 49282 1194-8 36-72
2 4557440 5257425 15469574 1837 15847 |6-12 72-108
3 5257425 5313482 S7364345.9934 57.36812-16 10.5-144
4 5.313482 10544566 73d452356.0629 734516 - 20 14.4-18
3 10.544866 13961461 39794389.7728 39.79 |20 - 24 18-16
[ 13.961461 17 798561 35797833.7429 358 24-23 216-252
7 17 798361 22522732 13695741 8142 13.7126-32 252-288
] 22522732 28.339050 150280322176 15/32-36 288-324
] 2§.339080 385 24402357480 0.02 36 - 40 32.4-36



Percentage reduction (%) of storm depth (event on April 6, 2006
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Average between isohyet

Total Areas between isohyet
Mean Area Precipitation,

( MAP) = (average between
isohyet x area between isohyet) /
total areas between all pairs of
neighbouring isohyets

(324 + 36)/2= 34.2
0.02 + 0= 0.02

(34.2 x 0.02)/0.02 = 34.2

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(28.8 + 32.4)/2 = 30.6
0.02 + 1.50 =152
[(34.2 x 0.02) +(30.6 x 1.52)] / 1.52 = 30.6

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(252 + 28.8)/2= 27
0.02 + 1.50 + 13.7 = 15.22
[(34.2 x 0.02) + (30.6 x 1.52+ (27 x 15.22)] / 15.22 = 27.4

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(21.6 + 252)/2 = 234
0.02 + 1.50 + 13.7 + 35.8 = 51.02
[(34.2 x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02)] / 51.02 = 24.6

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

Average between isohyet
Total Areas between isohyet

Mean Area Precipitation, (MAP)

(18 + 21.6)/2 = 19.8

0.02 + 1.50 + 13.7 + 35.8 + 39.79 = 90.81

[(34.2 x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)] / 90.81 =
225

(144 + 18)/2 = 16.2

0.02 + 1.50 + 13.7 + 35.8 + 39.79 + 73.48 = 164.29

[(34.2 x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x
164.29)]/ 164.29 = 19.7
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7 | Average between isohyet (10.8 + 14.4)/2=12.6
Total Areas between isohyet 0.02 + 1.50 + 13.7 + 35.8 + 39.79 + 73.48 + 57.38 = 221.67
Mean Area Precipitation, (MAP) | [(34.2 x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x
164.29) + (12.6 x 221.67)]/ 221.67 = 17.8
8 | Average between isohyet (7.2 + 108)/2=9
Total Areas between isohyet 0.02 + 1.50 + 13.7 + 35.8 + 39.79 + 73.48 + 57.38 + 18.47 = 240.14
Mean Area Precipitation, (MAP) | [(34.2 x 0.02) +(30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x
164.29) + (12.6 x 221.67) + (9 x 240.14)] / 240.14 = 17.2
9 | Average between isohyet 3.6 +72)/2 =54
Total Areas between isohyet 0.02 + 1.50 + 13.7 + 35.8 + 39.79 + 7348 + 57.38+ 1847 + 1.19 = 241.33
Mean Area Precipitation, (MAP) | (34.2 x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x
164.29) + (12.6 x 221.67) + (9 x 240.14) + (5.4 x 241.33)] / 241.33 = 17.1
10 | Average between isohyet 0+ 3.6)/2 =18
Total Areas between isohyet 0.02 + 1.50 + 13.7 + 358 + 39.79 + 73.48 + 5738+ 1847 + 1.19 + 0 = 241.33
Mean Area Precipitation, (MAP) | [(34.2 x0.02) +(30.6 x 1.52) + (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x
164.29) + (12.6 x 221.67) + (9 x 240.14) + (5.4 x 241.33) + (1.8 x 241.34)] / 241.33 = 17.1
Percentage reduction (%) of storm depth = (Mean Area Precipitation, (MAP) / storm maximum)* 100

storm maximum (reference gauge)

= 35.5mm

No.

DN D W N =

Percentage reduction (%) of storm depth

342/355*%100 = 96.3%
30.6/35.5*100 = 86.3%
27.4/35.5*100 77.1 %
24.6/35.5* 100 69.2 %
22.5/355*100 = 633%

6 19.7/355*100 = 55.4%
7  17.8/355*100 = 50.3 %
8 17.2/355*100 = 48.3 %
9 17.1/355*100 = 48.2 %

10 17.1/355*100 = 48.2%




Event on May 10, 2006

rain_gauge_100506

Filled Contours

[rain_gauge_100506].[depth_1005]

307

MWo-zi
M&1-162
16,2 - 24.3
24,3 - 32,4
: 32.4-40.5
40,5 - 48.6
ﬁ& Qs M 45.6-56.7
Mce.7-64.8
M c4.5-72.9
9 ﬂ M 729-81.0
Classes | Value_Min | Value_Max | F_AREA | km_square | range | new_range |
0 0 1 839703 2BE07734.1439 5 0-9 0-81
1 1 833703 4 243395 113632543031 11371913 1-162
2 4243305 7 383955 15102385 9306 1510 [18.27 162243
3 7 383955 11 487280 24603645 9943 46127 -36 243-324
4 11 487230 16 546516 25057030.7431 2506 |36 - 45 324-405
5 16 B48516 23 853291 25714453 £S04 25714554 405485
B 23853291 33005440 35086115.7999 IE0954 - 63 485967
7 33005440 44 963257 435156250531 4362 63-72 67 -643
8 44 963257 i) 58653 15055254 0313 150672 - &1 f45-723
9 B0.566853 1 19223151 4712 19.22 81 - 90
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Percentage reduction (%) of storm depth (event on May 10, 2006)

Average between isohyet

Total Areas between isohyet
Mean Area Precipitation,

( MAP) = (average between
isohyet x area between isohyet) /
total areas between all pairs of
neighbouring isohyets

(72.9 + 81)2= 76.95
19.22 + 0= 19.22

(76.95 x19.22)/19.22 = 76.95

2 | Average between isohyet (64.8 + 72.9)/2 = 68.85
Total Areas between isohyet 19.22 + 15.06 =34.28
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28)] /34.28 = 73.4
3 | Average between isohyet (56.7 + 64.8) /2= 60.75
Total Areas between isohyet 19.22 + 15.06+ 43.62 = 77.9
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28) + (60.75x 77.9)] / 77.9 = 66.3
4 | Average between isohyet (48.6 + 56.7)/2= 52.65
Total Areas between isohyet 19.22 + 15.06+ 43.62 + 35.09 = 112.99
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99)] / 112.99 = 62.1
5 | Average between isohyet (40.5 + 48.6)/2 = 44,55
Total Areas between isohyet 19.22 + 15.06+ 43.62 + 35.09 + 25.71 = 138.7
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7)] /
138.7 = 58.8
6 Average between isohyet (32.4 + 40.5)2 = 36.45
Total Areas between isohyet 19.22 + 15.06+ 43.62 + 35.09 + 25.71 + 25.06 = 163.76
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+
(36.45 x 163.76)] / 163.76 = 55.4
7 \ Average between isohyet (24.3 + 32.4)12 = 28.35




Total Areas between isohyet
Mean Area Precipitation, (MAP)
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19.22 + 15.06+ 43.62 + 35.09 + 25.71 + 25.06+ 24.61 = 188.37
[(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+
(36.45 x 163.76) + (28.35 x 188.37)]/ 188.37 = 51.9

8 | Average between isohyet (16.2 + 24.3)/2= 20.25
Total Areas between isohyet 19.22 + 15.06+ 43.62 + 35.09 + 25.71 + 25.06+ 24.61 + 15.1 = 203.47
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+
(36.45 x 163.76) +(28.35 x 188.37) + (20.25 x 203.47)] / 203.47 = 49.5
9 | Average between isohyet (8.1 + 16.2)2=12.15
Total Areas between isohyet 19.22 + 15.06+ 43.62 + 35.09 + 25.71 + 25.06+ 24.61 + 15.1 + 11.37 = 214.84
Mean Area Precipitation, (MAP) | [(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+
(36.45 x 163.76) +(28.35x 188.37) +(20.25 x 203.47) + (12.15 x 214.84)] / 214.84 =
47.5
10 | Average between isohyet (0 + 8.1)2 = 8.1

Total Areas between isohyet

Mean Area Precipitation, (MAP)

19.22 + 15.06+ 43.62 + 35.09 + 25.71 + 25.06+ 24.61 + 15.1 + 1137 + 26.51 =
241.35

[(76.95 x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+
(36.45 x 163.76) + (28.35 x 188.37) + (20.25 x 203.47) + (12.15 x 214.84+ (8.1 x 241.35)]
/24135 = 42.8

Percentage reduction (%) of storm depth

= (Mean Area Precipitation, (MAP) / storm maximum)* 100

storm maximum (reference gauge)

= 81.0 mm

No.

DN AW N =

Percentage reduction (%) of storm depth

76.95/81.0*100 = 95.0%
73.4 /81.0* 100 = 90.6 %
66.3/81.0*100 = 81.9%
62.1/81.0 * 100 76.6 %
58.8/81.0 %100 = 72.6%

6 554/81.0*100 = 68.4%
7  51.9/81.0 %100 = 64.0 %

8 49.5/81.0*100 = 61.1 %
9 47.5/81.0*100 = 58.7 %
10 42.8/81.0*100 = 52.8 %
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Percentage reduction (%) of storm depth (event on June 10, 2003)

Average between isohyet

Total Areas between isohyet
Mean Area Precipitation,

( MAP) = (average between
isohyet x area between isohyet) /
total areas between all pairs of
neighbouring isohyets

(117 + 130)22 = 1235
0.02

(123.5x 0.02)/0.02 = 123.5

2 | Average between isohyet (104 + 117)/2 = 110.5
Total Areas between isohyet 0.02+0 =0.02
Mean Area Precipitation, (MAP) | [(123.5x0.02) +(110.5x 0.02)]/0.02 = 123.5
3 | Average between isohyet (91 + 106)/2= 98.5
Total Areas between isohyet 0.02+0 + 1.25 = 1.27
Mean Area Precipitation, (MAP) | [(123.5x0.02) +(110.5x 0.02) + (98.5x 1.27)] / 1.27 = 98.9
4 | Average between isohyet (78 + 91)/2= 845
Total Areas between isohyet 0.02+0 + 1.25+ 24.35 = 25.62
Mean Area Precipitation, (MAP) | [(123.5x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62)] / 25.62 = 85.2
5 | Average between isohyet (65 + 78)/2= 715
Total Areas between isohyet 0.02+0 + 1.25+ 24.35 + 77.35 = 102.97
Mean Area Precipitation, (MAP) | [(123.5x 0.02) + (110.5x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5x 102.97)] / 102.97
= 74.9
6  Average between isohyet (52 + 65)/2= 58.5
Total Areas between isohyet 0.02+0 + 1.25+ 24.35 + 77.35+ 80.59 = 183.56
Mean Area Precipitation, (MAP) | [(123.5x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56)] / 183.56 = 67.7
7 \ Average between isohyet (39 + 52)/2 = 455




Total Areas between isohyet
Mean Area Precipitation, (MAP)
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0.02+0 + 1.25+ 24.35 + 77.35+ 80.59 + 36.34 = 219.9
[(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)]/219.9 = 64.0

8 | Average between isohyet (26 + 39)/2 = 32.5
Total Areas between isohyet 0.02+0 + 1.25+ 24.35 + 77.35+ 80.59 + 36.34 + 1941 = 239.31
Mean Area Precipitation, (MAP) | [(123.5x0.02) + (110.5x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)+(32.5x239.31)] /239.31 = 615
9 | Average between isohyet (13 + 26)/2 = 195
Total Areas between isohyet 0.02+0 + 1.25+ 24.35 + 77.35+ 80.59 + 36.34 + 1941 + 2.06 = 241.37
Mean Area Precipitation, (MAP) | [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)+ (32.5x 239.31) + (19.5x 241.37)] / 241.37=61.1
10 | Average between isohyet (0 + 13)2 = 6.5

Total Areas between isohyet
Mean Area Precipitation, (MAP)

0.02+0 + 1.25+ 24.35 + 77.35+ 80.59 + 36.34 + 19.41 + 2.06 + 0 = 241.37
[(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) + (219.9 x 45.5)+ (32.5 x 239.31) + (19.5x 241.37) + (6.5 x 241.37)] / 241.37 =
61.1

Percentage reduction (%) of storm depth

= (Mean Area Precipitation, (MAP) / storm maximum)* 100

storm maximum (reference gauge)

= 129.5 mm

No.

[, B S US T NS I

Percentage reduction (%) of storm depth

123.5/129.5*100 = 954 %
123.5 /1295* 100 = 954 %
98.9/129.5* 100 = 76.4 %
85.2/129.5*100 = 65.8%
74.9/129.5*100 = 57.8%

6 67.7/129.5*100 = 52.3 %
7  64.0/129.5*100 = 49.4 %
8 61.5/129.5*100 = 47.5%
9 61.1/129.5*100 = 47.2%
10 61.1/129.5*100 = 47.2%
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Percentage reduction (%) of storm depth (event on February, 26 2006)

Average between isohyet

Total Areas between isohyet
Mean Area Precipitation,

( MAP) = (average between
isohyet x area between isohyet) /
total areas between all pairs of
neighbouring isohyets

(67.5 + 75)2 = 71.25
19.7

(71.25x 19.7)/19.7 = 71.25

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(60 + 67.5))2 = 110.5
19.7 + 36.49 =56.19
[(71.25 x 19.7)) + (110.5 x 56.19)] / 56.19 = 66.4

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(52.5 + 60)2= 56.25
19.7+3649 + 24.86 = 81.05
[(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05)] / 81.05 = 63.3

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(45 + 52.5)/2= 48.75
19.7 +36.49 + 24.86 + 20.92 = 101.97
[(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05) + (48.75 x 101.97)] / 101.97 = 60.3

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(37.5 + 45)/2 = 41.25

19.7+36.49 + 24.86 + 20.92 + 31.82 = 133.79

[(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05) + (48.75 x 101.97)+ (41.25 x 133.79)] /
133.79 = 55.8

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(30 + 37.5)2= 33.75

19.7+36.49 + 24.86 + 20.92 + 31.82 + 40.39 = 174.18

[(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05) + (48.75 x 101.97)+ (41.25 x 133.79)+
(33.75 x 174.18)] / 174.18 = 50.7

Average between isohyet

(22.5 + 30)2 = 26.25




Total Areas between isohyet
Mean Area Precipitation, (MAP)
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19.7+36.49 + 24.86 + 20.92 + 31.82 + 40.39 + 43.85 = 218.03
[(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)]/219.9 = 64.0

8 | Average between isohyet (15 + 22.5)/2 = 18.75
Total Areas between isohyet 19.7+36.49 + 2486 + 2092 + 31.82 + 40.39 + 43.85 + 20.6 = 238.63
Mean Area Precipitation, (MAP) | [(123.5x0.02) + (110.5x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)+ (18.75 x 238.63)] / 238.63 = 43.4
9 | Average between isohyet (7.5 + 15)/2 = 11.25
Total Areas between isohyet 19.7+36.49 + 24.86 + 20.92 + 31.82 + 40.39 + 43.85 + 20.6 + 2.43 = 241.06
Mean Area Precipitation, (MAP) | [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)+ (18.75 x 238.63)+ (11.25x 241.06)] / 241.06 = 43.1
10 | Average between isohyet 0+ 75)/2 =375

Total Areas between isohyet

Mean Area Precipitation, (MAP)

19.7+36.49 + 24.86 + 2092 + 31.82 + 4039 + 43.85 + 20.6 + 2.43 + 028 =
241.34

[(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x
183.56) +(219.9 x 45.5)+ (18.75 x 238.63)+ (11.25x 241.06)+ (3.75 x 241.34)] / 241.34 =
43.0

Percentage reduction (%) of storm depth

= (Mean Area Precipitation, (MAP) / storm maximum)* 100

storm maximum (reference gauge)

= 72.5 mm

No.

DN AW =

Percentage reduction (%) of storm depth

71.25/72.5*100 = 98.3%
66.4 /72.5*100 = 91.6%
63.3/725*%100 = 873 %
60.3/725*%100 = 83.2%
55.8/72.5*100 = 76.9%

6 50.7/72.5*100 = 69.9 %
7  45.8/72.5*100 = 63.1 %
8 43.4/72.5*100 = 59.9 %
9 43.1/72.5*100 = 59.4 %

10 43/725*100 = 59.4 %




Percentage reduction (%) of storm depth (event on November 5, 2004)
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Average between isohyet

Total Areas between isohyet
Mean Area Precipitation,

( MAP) = (average between
isohyet x area between isohyet) /
total areas between all pairs of
neighbouring isohyets

(85.5 + 95)22 = 90.25
0.02

(85.5x0.02)/0.02 = 90.25

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(76 + 85.5)/2 = 80.75
0.02+11.01 =11.03
[(85.5 x 0.02) + (80.75 x 11.03)] / 11.03 = 80.8

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(66.5 + 76)2= 71.25
0.02+11.01 + 13.78 = 24.81
[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81)] / 24.81 = 75.5

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(57 + 66.5)/2= 61.75
0.02+11.01 + 13.78 + 21.63 = 46.44
[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)] / 46.44 = 69.1

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(475 + 57)/2= 52.25

0.02+11.01 + 13.78 + 21.63 + 41.58 = 88.02

[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)] /
88.02 = 61.1

Average between isohyet
Total Areas between isohyet
Mean Area Precipitation, (MAP)

(38 + 47.5)2= 42.75

0.02+11.01 + 13.78 + 21.63 + 41.58 + 36.41 = 124.23

[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+
(22.75 x 124.23)]/ 124.23 = 55.8

Average between isohyet

(28.5 + 38)2 = 33.25




Total Areas between isohyet
Mean Area Precipitation, (MAP)
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0.02+ 11.01 + 13.78 + 21.63 + 41.58 + 36.41 + 32.04 = 156.27
[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+
(22.75 x 124.23) +(33.25 x 156.27)]/ 156.27 = 51.2

8 | Average between isohyet (19 + 28.5)/2 = 23.75
Total Areas between isohyet 0.02+11.01 + 13.78 + 21.63 + 41.58 + 36.41+ 32.04 + 34.84 = 191.11
Mean Area Precipitation, (MAP) | [(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+
(22.75 x 124.23) +(33.25x 156.27)+ (23.75x 191.11)]/ 191.11 = 46.2
9 | Average between isohyet 9.5 + 19)/2 = 12.25
Total Areas between isohyet 0.02+11.01 + 13.78 + 21.63 + 41.58 + 36.41+ 32.04 + 34.84 + 45.75 = 236.86
Mean Area Precipitation, (MAP) | [(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+
(22.75 x 124.23) +(33.25 x 156.27)+ (23.75 x 191.11)+ (12.25x 236.86)] / 236.86 = 40.0
10 | Average between isohyet (0 +95)/2 =475

Total Areas between isohyet

Mean Area Precipitation, (MAP)

0.02+11.01 + 13.78 + 21.63 + 41.58 + 36.41 + 32.04 + 34.84 + 4575 + 4.5 =
241.36

[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+
(22.75 x 124.23) +(33.25 x 156.27)+ (23.75 x 191.11)+ (12.25x 236.86)+ (4.75 x 241.36)]
/24136 = 39.3

Percentage reduction (%) of storm depth

= (Mean Area Precipitation, (MAP) / storm maximum)* 100

storm maximum (reference gauge)

= 902 mm

No.

DN AW =

Percentage reduction (%) of storm depth

90.25/92* 100 = 98.1 %
80.8 / 92* 100 = 87.8%
75.5/92*% 100 = 82.0%
69.1/92*%100 = 75.1%
61.1/92*% 100 = 66.4%

6 55.8/92*% 100 = 60.6 %
7 51.2/92* 100 = 55.6 %
8 46.2/92*100 = 50.2 %
9 40.0/92* 100 = 43.5%
10 39.3/92*100 = 42.8 %




APPENDIX D

SAMPLE MOMENTS
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1. The sample moments used autocorrelations in the estimation of
parameters procedures.
Months | 1-hr- 1-hr-var | 1-hr-auto | 6-hr-var | 6-hr-auto | 24-hr-var | 24-hr- Dry-
mean 1 y(1) | ALY | 7(6) | p6,1) | y(24) |auto Prob
(1) PRAD | 4(24)
Jan 0.099 1.034 0.0322 11.19 0.0038 47.68 0.0105 0.71
Feb 0.261 4.144 0.3336 42.46 0.0936 209.02 0.2485 0.61
March 0.279 3.842 0.3478 40.77 0.0039 149.42 0.0212 0.50
April 0.277 3.532 0.3637 41.34 0.0067 180.16 0.0850 0.48
May 0.380 4.312 0.4125 48.76 0.1616 265.50 0.1326 0.41
June 0.156 2.085 0.4211 23.58 0.1012 110.04 0.1354 0.67
July 0.240 3.045 0.5101 39.44 0.0718 185.87 0.0178 0.55
August 0.240 3.874 0.3173 36.82 0.0679 189.67 0.0033 0.61
Sept 0.394 4.996 0.3582 51.49 0.0652 214.54 0.0348 0.38
Oct 0.356 4.796 0.3143 44.19 0.0560 191.81 0.0320 0.40
Nov 0.416 4.130 0.4061 48.90 0.1192 241.48 0.0510 031
Dec 0.170 1.662 0.4104 18.80 0.1771 118.59 0.1132 0.58
2. The transition probabilities used the fitting procedures
Months p00-hourly pll-hourly p00-daily pll-daily
b (1) Gy () boo(24) | i (24)
Jan 0.9811 0.5485 0.7798 0.4615
Feb 0.97498 0.6141 0.7399 0.5872
March 0.96639 0.50943 0.5742 0.5779
April 0.9671 0.6454 05556 0.5833
May 0.9612 0.71445 0.4762 0.6393
June 0.97962 0.4946 0.7376 0.4592
July 0.97214 0.5924 0.614 0.5217
August 0.977 0.58987 0.709 0.5417
Sept 0.9552 0.73833 0.4087 0.627
Oct 0.95274 0.593023 0.5203 0.6882
Nov 0.948515 0.682 0.4574 0.7476
Dec 0.96903 0.62032 0.6927 0.5846




APPENDIX E

DESCRIPTIVE STATISTICS

1. Hourly Descriptive Statistics for 10-year period (1981-1990)

Months Jan Feb Mac Apr May Jun
Count 7440 6768 7440 7200 7440 7200
Sum 734.2 1764.9 2074.1 1992.1 2827.6 1122.1
Mean 0.0987 0.2608 0.2788 0.2767 0.3801 0.1558
StdDev 1.0167 2.0357 1.9601 1.8793 2.0766 1.4439
Kurtosis 318.9105 | 338.2578 | 193.9259 210.0779 180.3225 319.4403
Skewness 16.5887 15.6453 12.0520 12.3997 11.0559 15.4455
Maximum 26.4 58.2 47.7 53.1 58.1 47.8
Minimum 0 0 0 0 0 0
Correlation 0.3221 0.3331 0.3478 0.3630 0.4133 0.4205
AutoCovar 0.3330 1.3822 1.3361 1.2817 1.7788 0.8766
AutoCorrel 0.3221 0.3336 0.3478 0.3630 0.4125 0.4205
P(Dry) 0.9598 0.9391 0.9359 0.9150 0.8800 0.9613

Months July Aug Sept Oct Nov Dec
Count 7440 7440 7200 7440 7200 7440
Sum 1788.4 1783.3 2836.1 2648 2994.6 1288.3
Mean 0.2404 0.2397 0.3939 0.3559 0.4159 0.1732
StdDev 1.7450 1.9684 2.2352 2.1899 2.0322 1.2895
Kurtosis 184.8828 | 289.6727 | 148.5206 204.2800 111.2652 288.5568
Skewness 12.2051 14.8370 10.5626 12.1538 9.1723 14.6195
Maximum 41.6 54.7 52.1 56.5 44.3 41.7
Minimum 0 0 0 0 0 0
Correlation 0.5101 0.3173 0.3577 0.3143 0.4055 0.4104
AutoCovar 15532 1.2292 1.7869 1.5073 1.6745 0.6823
AutoCorrel 0.5101 0.3173 0.3577 0.3143 0.4055 0.4104
P(Dry) 0.9360 0.9469 0.8721 0.8960 0.8607 0.9246




2. Daily Descriptive Statistics for 10-year period (1981-1990)
Months Jan Feb Mac Apr May Jun
Count 310 282 310 300 310 300
Sum 734.2 1764.9 2074.1 1992.1 2827.6 1122.1
Mean 2.368 6.259 6.691 6.640 9.121 3.740
StdDev 6.950 13.655 12.366 13.650 15.898 10.476
Kurtosis 19.196 9.389 7.519 32.541 7.109 20.004
Skewness 4.123 2.956 2.640 4.607 2.561 4.106
Maximum 54.6 74.5 65.5 138 914 79.3
Minimum 0 0 0 0 0 0
Q1 0 0 0 0 0 0
Q3 0.5 5.225 8.475 8.55 10.35 12
Correlation 0.0717 0.2035 -0.0443 -0.0095 0.1638 0.1252
AutoCovar 3.4526 38.8845 -6.6286 -1.7599 40.5327 13.6901
AutoCorrel 0.0717 0.2093 -0.0435 -0.0095 0.1609 0.1252
P(Dry) 0.6903 0.5887 0.4516 0.4533 0.3613 0.6633
Months July Aug Sept Oct Nov Dec
Count 310 310 300 310 300 310
Sum 1788.4 1783.3 2836.1 2648 2994.6 1288.3
Mean 5.7690 5.7526 9.4537 8.5419 9.9820 4.1558
StdDev 13.1371 12.8800 14.7976 13.0897 14.8121 9.6160
Kurtosis 18.9313 8.8279 8.5869 5.5017 3.7666 | 17.3644
Skewness 3.8906 2.9176 2.5594 2.2304 1.9683 3.7832
Maximum 100.2 72.2 1015 72.1 80.4 75.7
Minimum 0 0 0 0 0 0
Q1 0 0 0 0 0 0
Q3 5.1 35 13.2 12.45 13.7 3.6
Correlation 0.0024 0.0134 0.1793 0.0988 0.1041 0.2609
AutoCovar 0.4183 2.2203 38.9845 16.7983 22.7350 24.0414
AutoCorrel 0.0024 0.0134 0.1786 0.0984 0.1040 0.2608
P(Dry) 0.5161 0.6000 0.3167 0.3677 0.3167 0.5355
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3. Monthly Descriptive Statistics for 10-year period (1981-1990)
Months Jan Feb Mac Apr May Jun
Count 10 10 10 10 10 10
Sum 734.2 1758.4 2074.1 1992.1 2827.6 1122.1
Mean 73.42 175.84 207.41 199.21 282.76 112.21
StdDev 33.4735 99.5972 441827 65.6461 152.4618 78.2572
Kurtosis -0.9501 -1.4301 -1.0531 -0.8662 2.4504 3.9360
Skewness 0.3406 -0.0944 -0.1810 0.0117 1.4666 1.6950
Maximum 129.9 310.3 266.2 293.7 636 303.3
Minimum 28.2 25.9 133 92.5 139.8 24
Q1 47.475 87.975 183.775 161.15 183.3 64
Q3 95.075 262.15 247.725 248.35 330.7 132.65
Correlation -0.4054 0.0802 -0.2302 -0.8013 0.7289 -0.3696
AutoCovar | -389.5374 | 310.7776 | -398.4031 | -3029.8946 | 8996.6520 | -1956.1404
AutoCorrel -0.3863 0.0348 -0.2268 -0.7812 0.4300 -0.3549
Months July Aug Sept Oct Nov Dec
Count 10 10 10 10 10 10
Sum 1788.4 1783.3 2836.1 2648 2994.6 1288.3
Mean 178.84 178.33 283.61 264.8 299.46 128.83
StdDev 62.5591 65.3600 | 106.8322 88.6362 126.4881 59.9286
Kurtosis -0.3534 -0.8876 -0.8577 1.8503 1.0309 -1.6579
Skewness -0.4069 -0.4690 0.3758 -0.7333 0.4750 0.1940
Maximum 2575 262.3 467.8 4004 548.7 216.8
Minimum 62.1 72.6 140.9 73.6 85.4 54.2
Q1 150.875 140.85 190.175 236.425 233.625 74
Q3 235.975 234.125 341.475 321.975 355.15 179.6
Correlation -0.2666 0.0000 0.0762 -0.2798 0.3374 0.5385
AutoCovar | -922.2052 0.0450 | 671.1214 | -1966.6590 | 3894.6064 1608.3358
AutoCorrel -0.2618 0.0000 0.0653 -0.2781 0.2705 0.4976
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4, Hourly Descriptive Statistics for 10-year period (1991-2000)

Month Jan Feb Mar Apr May Jun

Count 7224 6695 7344 7200 7248 6816
Sum 763.3 1249.7 2385.4 2395.7 2288.5 2056.4
Mean 0.1057 0.1867 0.3248 0.3327 0.3157 0.3017
StdDev 0.9399 1.4992 2.1166 1.9631 2.1067 2.0099
Kurtosis 443.1636 | 295.3575 | 128.5620 | 110.4368 | 151.0954 | 151.3543
Skewness 17.6961 | 14.3928 | 10.2044 9.2921 | 10.7962 | 10.6382
Maximum 33.7 49.2 45 36.8 46.5 46.1
Minimum 0 0 0 0 0 0
Correlation 0.4564 0.5569 0.4732 0.5291 0.5051 0.5218
AutoCovar 0.4034 1.2530 2.1210 2.0385 2.2440 2.1129
AutoCorrel 0.4568 0.5576 0.4735 0.5290 0.5057 0.5231
P(Dry) 0.9592 0.9535 0.9308 0.9226 0.9332 0.9382
Month Jul Aug Sep Oct Nov Dec

Count 7416 7440 7200 7440 7200 7128
Sum 1864.5 2323.4 2443.6 2506 2544.9 2093.8
Mean 0.2514 0.3123 0.3394 0.3368 0.3535 0.2937
StdDev 1.9336 2.1041 2.0804 1.9364 2.1569 1.5933
Kurtosis 299.4920 | 175.4460 | 325.2916 | 151.2159 | 180.2724 | 104.5280
Skewness 145308 | 11.4109 | 13.4449 | 10.3552 | 11.6361 9.0187
Maximum 60.5 50 77.1 46.2 51.9 31.8
Minimum 0 0 0 0 0 0
Correlation 0.4956 0.4923 0.4323 0.4644 0.5303 0.5619
AutoCovar 1.8529 2.1791 1.8705 1.7413 2.4667 1.4301
AutoCorrel 0.4957 0.4923 0.4322 0.4644 0.5303 0.5634
P(Dry) 0.9448 0.9344 0.9254 0.9073 0.9024 0.9046
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5. Daily Descriptive Statistics for 10-year period (1991-2000)

Month Jan Feb Mar Apr May Jun

Count 1204 1115 1224 1200 1208 1136
Sum 763.3 1249.1 2385.4 2395.7 2288.5 2056.4
Mean 0.6340 1.1203 1.9489 1.9964 1.8945 1.8102
StdDev 3.0949 5.6158 7.2172 6.9531 7.5369 7.4904
Kurtosis 75.4670 | 88.1790 | 33.2187 | 43.8413 | 64.9904 | 44.3015
Skewness 7.8223 8.4371 5.3790 5.8574 6.8706 6.1173
Maximum 40.8 83.9 65.9 774 113.9 82
Minimum 0 0 0 0 0 0
Q1 0 0 0 0 0 0
Q3 0 0 0 0 0 0
Correlation 0.2176 0.1058 0.0715 0.0587 0.0575 0.0416
AutoCovar 2.0945 3.3860 3.7745 2.8339 3.3584 2.5039
AutoCorrel 0.2188 0.1075 0.0725 0.0587 0.0592 0.0447
P(Dry) 0.8729 0.8574 0.7933 0.7692 0.8071 0.8345
Month Jul Aug Sep Oct Nov Dec

Count 1236 1240 1200 1240 1200 1188
Sum 1864.5 23234 2443.6 2506 2544.9 2093.8
Mean 1.5085 1.8737 2.0363 2.0210 2.1208 1.7625
StdDev 6.9227 7.2516 7.0031 6.6877 8.2763 6.1050
Kurtosis 73.4585 | 58.8447 | 48.9746 | 42.3570 | 87.1590 | 43.9447
Skewness 7.6791 6.6143 5.9283 5.6477 8.0546 5.9323
Maximum 95.1 99.5 90.7 83.6 129 65.9
Minimum 0 0 0 0 0 0
Q1 0 0 0 0 0 0
Q3 0 0 0 0.5 0.5 0.5
Correlation 0.0314 0.0522 0.0345 0.0304 0.0441 0.1776
AutoCovar 1.5100 2.7446 1.6929 1.3570 3.0162 6.7517
AutoCorrel 0.0315 0.0522 0.0345 0.0304 0.0441 0.1813
P(Dry) 0.8406 0.7984 0.7933 0.7395 0.7250 0.7407
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6. Daily Descriptive Statistics for 10-year period (1991-2000)

Month Jan Feb Mar Apr May Jun

Count 301 278 306 300 302 284
Sum 763.3 1249.1 2385.4 2395.7 2288.5 2056.4
Mean 2.5359 4.4932 7.7954 7.9857 7.5778 7.2408
StdDev 7.2820 | 11.7783 | 15.3228 | 14.0790 | 15.6431 | 15.2831
Kurtosis 26.2550 | 18.1157 6.3706 9.5604 | 17.6960 | 10.0186
Skewness 4.6183 3.9893 2.5414 2.7763 3.5557 2.9483
Maximum 62.9 84.9 76.1 95.8 126.8 103.4
Minimum 0 0 0 0 0 0
Q1 0 0 0 0 0 0
Q3 1 2 7.1 11.275 7.3 6.5
Correlation 0.0828 0.1344 0.0418 0.0304 0.0136 0.1453
AutoCovar 4.4482 | 19.2440 | 10.5628 5.9968 4.7521 | 36.7981
AutoCorrel 0.0842 0.1392 0.0451 0.0304 0.0195 0.1581
P(Dry) 0.6578 0.6259 0.4869 0.3867 0.4834 0.5493
Month Jul Aug Sep Oct Nov Dec

Count 309 310 300 310 300 297
Sum 1864.5 23234 2443.6 2506 2544.9 2093.8
Mean 6.0340 7.4948 8.1453 8.0839 8.4830 7.0498
StdDev 13.8981 | 14.9427 | 13.9312 | 14.0516 | 16.5787 | 13.7569
Kurtosis 15.1119 | 12.3061 9.2290 9.1925 | 17.6850 | 16.3232
Skewness 3.6093 3.1856 2.6073 2.7909 3.6971 3.5465
Maximum 95.1 99.5 95.1 87 129 107.4
Minimum 0 0 0 0 0 0
Q1 0 0 0 0 0 0
Q3 5.4 7.4 12.525 9.6 8.5 7.5
Correlation 0.0385 0.0033 0.0625 0.0936 0.0452 0.1946
AutoCovar 7.1410 0.7330 | 12.0705 | 18.4056 | 12.3541 | 38.0475
AutoCorrel 0.0371 0.0033 0.0624 0.0935 0.0451 0.2017
P(Dry) 0.5534 0.4677 0.4733 0.3516 0.3367 0.4007
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APPENDIX F

ROOT MEAN SQUARE ERROR (RMSE)

1. Calibration Period (1981-1990)

A. NSRP MODELS

One-Hour Mean

Months Jan Feb Mac April | May | June | July

MEXP 8E-07 | 1E-04 | 5E-05 | 6E-05 | 2E-05 | 4E-05 | 8E-07

EXP 1E-05 | 2E-06 | 6E-04 | 1E-06 | 3E-07 | 8E-05 | 5E-06

EXPTRAN 5E-04 | 6E-04 | 1E-03 | 2E-03 | 3E-03 | 2E-04 | 7E-04
MEXPTRAN | 1E-05 | 2E-04 | 8E-05 | 1E-07 | 1E-09 | 3E-05 | 3E-05

Months Aug Sept | Oct Nov Dec MSE | RMSE

MEXP 8E-05 | 2E-05 | 1E-04 | 2E-05 | 3E-05 | 5E-05 | 7E-03

EXP 2E-05 | 2E-04 | 2E-06 | 6E-06 | 9E-07 | 8E-05 | 9E-03

EXPTRAN 1E-03 | 5E-03 | 2E-03 | 1E-03 | 9E-04 | 2E-03 | 4E-02
MEXPTRAN | 3E-04 | 7E-05 | 5E-04 | 2E-04 | 4E-07 | 1E-04 | 1E-04

One-Hour Variance

Months Jan Feb Mac April May June July
MEXP 0.0012 | 0.0034 | 2.7114 | 8.2375| 0.2155| 0.1147 | 0.2854
EXP 0.0085| 0.0970 | 8.5290 | 2.9339 | 0.1100| 0.0158 | 0.0919
EXPTRAN 0.0131 | 0.5517 | 0.0025| 0.0014 | 0.0380 | 0.0358 | 0.0720
MEXPTRAN | 0.0005| 0.0013 | 0.0533 | 0.0165| 0.0773 | 0.0030 | 0.1053
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.1010 | 0.0010 | 0.2575| 0.0048 | 0.0000 | 0.9945| 0.9972
EXP 0.5745| 0.0912 | 0.0743 | 0.0043 | 0.0161 | 1.0455| 1.0225
EXPTRAN 0.3132 | 0.1498 | 0.1990 | 0.0428 | 0.0485| 0.1223 | 0.3497
MEXPTRAN | 0.0358 | 0.1857 | 0.0739 | 0.1526 | 0.0315| 0.0614 | 0.2478




One-Hour Autocorrelation

Months Jan Feb Mac April May June July
MEXP 9.9E-05 | 8.7E-04 | 3.7E-02 | 4.3E-02 | 8.4E-04 | 3.7E-03 | 8.2E-04
EXP 5.6E-04 | 2.1E-04 | 4.3E-02 | 3.9E-02 | 5.5E-05 | 1.1E-03 | 1.2E-03
EXPTRAN 1.5E-02 | 8.5E-04 | 5.4E-03 | 8.4E-03 | 5.0E-04 | 2.0E-02 | 3.0E-04
MEXPTRAN | 2.4E-03 | 1.1E-02 | 4.5E-03 | 1.9E-04 | 3.8E-04 | 8.1E-03 | 1.0E-03
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0324 | 0.0008 | 0.0000 | 0.0003 | 0.0074 | 0.0106 | 0.1029
EXP 0.0136 | 0.0008 | 0.0002 | 0.0000 | 0.0010 | 0.0084 | 0.0916
EXPTRAN 0.0005 | 0.0015| 0.0007 | 0.0004 | 0.0077 | 0.0052 | 0.0718
MEXPTRAN | 0.0087 | 0.0008 | 0.0125| 0.0010 | 0.0022 | 0.0044 | 0.0661
One-Hour Coefficient of Skewness

Months Jan Feb Mac April May June July
MEXP 5.5188 | 0.0605 | 20.8724 | 16.7787 | 0.3796 | 0.9768 | 0.4892
EXP 2.6004 | 6.1697 | 36.1402 | 7.0940 | 3.2045| 0.5827 | 0.1084
EXPTRAN 11.1802 | 19.5990 | 2.2655 | 10.2236 | 10.7896 | 2.2902 | 4.1962
MEXPTRAN 3.5994 | 9.1505| 0.0032 | 0.4543 | 1.2209 | 3.5431| 2.3760
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 7.2817 | 0.2640 | 0.9907 | 0.0346 | 2.3593 | 4.6672 | 2.1604
EXP 0.1594 | 0.5105| 0.1065| 1.1720 | 7.9385| 5.4822 | 2.3414
EXPTRAN 10.1742 | 7.6893 | 8.9439 | 4.0490 | 15.8479 | 8.9374 | 2.9895
MEXPTRAN 0.6519 | 0.8343 | 9.6159 | 0.0810 | 4.3255| 2.9880 | 1.7286
P00(1)

Months Jan Feb Mac April May June July
MEXP 3.1E-06 | 5.6E-05 | 7.3E-06 | 2.4E-05 | 6.9E-04 | 2.8E-05 | 3.2E-06
EXP 1.2E-05 | 1.0E-04 | 6.4E-05 | 5.0E-05 | 4.1E-04 | 2.6E-06 | 2.7E-05
EXPTRAN 3.1E-07 | 1.6E-05 | 6.2E-06 | 6.5E-07 | 4.7E-05 | 3.0E-07 | 7.5E-06
MEXPTRAN | 5.1E-05 | 2.8E-04 | 4.5E-05 | 1.0E-04 | 1.9E-04 | 6.1E-05 | 4.5E-05
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0002 | 0.0002 | 0.0000 | 0.0003 | 0.0000| 0.0001| 0.0115
EXP 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000| 0.0001| 0.0092
EXPTRAN 0.0000 | 0.0001 | 0.0000 | 0.0000| 0.0000| 0.0000| 0.0043
MEXPTRAN | 0.0002 | 0.0002 | 0.0003 | 0.0007 | 0.0001| 0.0002 | 0.0138
P10(1)

Months Jan Feb Mac April May June July
MEXP 0.0119 | 0.0499 | 0.0455 | 0.1067 | 0.0366 | 0.0015 | 0.0019
EXP 0.0167 | 0.0429 | 0.0391 | 0.1157 | 0.0496 | 0.0044 | 0.0034
EXPTRAN 0.0039 | 0.0001 | 0.0031| 0.0001 | 0.0026 | 0.0048 | 0.0022
MEXPTRAN 0.0042 | 0.0011 | 0.0066 | 0.0008 | 0.0001 | 0.0120 | 0.0042
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0743 | 0.0692 | 0.0247 | 0.0254 | 0.0178 | 0.0388 | 0.1969
EXP 0.0573 | 0.0324 | 0.0183 | 0.0269 | 0.0163 | 0.0353 | 0.1878
EXPTRAN 0.0001 | 0.0043 | 0.0000 | 0.0001 | 0.0000 | 0.0018 | 0.0422
MEXPTRAN 0.0014 | 0.0002 | 0.0017 | 0.0007 | 0.0020 | 0.0029 | 0.0542
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Probabilty of dry hours
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Months Jan Feb Mac April May June July

MEXP 0.0001 | 0.0001 | 0.0002 | 0.0011 | 0.0000 | 0.0000 | 0.0001

EXP 0.0002 | 0.0000 | 0.0008 | 0.0009 | 0.0003 | 0.0000 | 0.0003
EXPTRAN 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0001 | 0.0000
MEXPTRAN 0.0005 | 0.0023 | 0.0006 | 0.0010 | 0.0015 | 0.0008 | 0.0008
Months Aug Sept Oct Nov Dec MSE RMSE

MEXP 4.6E-06 | 1.1E-03 | 6.2E-04 | 1.9E-04 | 7.9E-05 | 3.0E-04 | 1.7E-02

EXP 1.0E-04 | 1.6E-03 | 7.3E-04 | 2.2E-04 | 4.0E-04 | 4.6E-04 | 2.1E-02
EXPTRAN 1.4E-04 | 4.9E-06 | 1.3E-05 | 1.2E-06 | 2.0E-06 | 4.0E-05 | 6.4E-03
MEXPTRAN 1.8E-03 | 1.2E-03 | 2.5E-03 | 5.0E-03 | 9.3E-04 | 1.6E-03 | 4.0E-02
Six-Hour Mean

Months Jan Feb Mac April May June July

MEXP 2.8E-05 | 5.6E-03 | 1.7E-03 | 3.1E-03 | 5.9E-04 | 1.7E-03 | 3.2E-05

EXP 5.0E-04 | 1.9E-05 | 2.2E-02 | 2.5E-04 | 1.1E-05 | 2.5E-03 | 1.8E-04
EXPTRAN 1.9E-02 | 2.1E-02 | 3.7E-02 | 9.3E-02 | 1.1E-01 | 7.4E-03 | 2.3E-02
MEXPTRAN | 5.3E-04 | 5.2E-03 | 3.0E-03 | 4.8E-05 | 9.0E-08 | 8.5E-04 | 9.8E-04

Months Aug Sept Oct Nov Dec MSE RMSE

MEXP 0.0030 | 0.0008 | 0.0054 | 0.0014 | 0.0011 | 0.0020 | 0.0451

EXP 0.0006 | 0.0093 | 0.0001 | 0.0065 | 0.0000 | 0.0035 | 0.0588
EXPTRAN 0.0501 | 0.1719 | 0.0939 | 0.0832 | 0.0335| 0.0617 | 0.2484
MEXPTRAN | 0.0119 | 0.0026 | 0.0163 | 0.0248 | 0.0000 | 0.0055 | 0.0743
Six-Hour Variance

Months Jan Feb Mac April May June July

MEXP 0.1534 | 10.1201 | 13.6186 | 48.9691 | 14.8815 | 8.9813 | 15.2493

EXP 0.6852 | 14.4988 | 123.4543 | 0.4206 | 15.3195 | 0.2249 | 3.5296
EXPTRAN 0.1477 | 4.2925 7.2611 | 5.1217 | 2.3139 | 8.7492 | 1.3521
MEXPTRAN | 1.0733 | 13.2151 | 19.5160 | 13.8013 | 2.3815| 1.2803 | 30.5698
Months Aug Sept Oct Nov Dec MSE RMSE

MEXP 32.093 | 1.4543 | 61.5103 | 3.4439 | 4.3421 | 17.9014 | 4.2310

EXP 44114 | 18.7241 | 81.2255 | 2.2079 | 2.3810 | 22.2569 | 4.7177
EXPTRAN 0.1119 | 7.9963 44055 | 0.6754 | 0.2768 | 3.5587 | 1.8864
MEXPTRAN | 4.3609 | 5.8018 8.4801 | 0.0367 | 2.7692 | 8.6072 | 2.9338
Six-Hour Autocorrelation

Months Jan Feb Mac April May June July
MEXP 0.0008 | 0.0002 0.0021 0.0007 0.0000 0.0000 0.0007
EXP 0.0000 | 0.0017 0.0017 0.0012 0.0000 0.0000 0.0007
EXPTRAN 0.0061 | 0.0103 0.0158 0.0155 0.0007 0.0072 0.0048
MEXPTRAN 0.0049 | 0.0069 0.0090 0.0099 0.0005 0.0005 0.0058
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0007 | 0.0023 0.0008 0.0001 0.0001 0.0007 0.0266
EXP 0.0002 | 0.0000 0.0002 0.0017 0.0007 0.0007 0.0259
EXPTRAN 0.0105 | 0.0041 0.0039 0.0000 0.0093 0.0074 0.0857
MEXPTRAN 0.0056 | 0.0011 0.0047 0.0014 0.0001 0.0042 0.0648




Six-Hour Coefficient of Skewness
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Months Jan Feb Mac April May June July
MEXP 0.2140 | 3.4131 | 1.6857 0.0183 1.1247 1.2680 0.1410
EXP 0.4808 | 0.0067 | 4.1136 0.4528 0.9024 0.2609 0.0210
EXPTRAN 3.7946 | 1.1651 | 0.6527 6.1916 0.4360 2.2014 3.2631
MEXPTRAN 0.0713 | 0.0091 | 0.0011 1.6932 3.5820 0.3992 0.0233
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 1.6057 | 0.1565 | 0.9831 0.1853 0.0130 0.9007 0.9490
EXP 0.7267 | 0.2712 | 1.2734 0.0070 0.5131 0.7525 0.8675
EXPTRAN 0.3237 | 3.4114 | 0.2011 1.0676 2.5700 2.1065 1.4514
MEXPTRAN 0.4457 | 0.5699 | 3.4588 0.0176 3.0796 1.1126 1.0548
24-Hour Mean

Months Jan Feb Mac April May June July
MEXP 0.0005 0.0885 0.0274 0.0509 0.0093 0.0270 0.0005
EXP 0.0080 0.0004 0.3453 0.0039 0.0002 0.0399 0.0030
EXPTRAN 0.2977 0.3358 0.5997 1.4901 1.7127 0.1181 0.3758
MEXPTRAN 0.0086 0.0832 0.0482 0.0008 0.0000 0.0136 0.0161
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0482 0.0123 0.0859 0.0219 0.0176 0.0325 0.1803
EXP 0.0103 0.1480 0.0014 0.1076 0.0005 0.0557 0.2360
EXPTRAN 0.8035 2.7433 1.3158 1.3410 0.5390 0.9727 0.9863
MEXPTRAN 0.1878 0.0423 0.2610 0.3944 0.0002 0.0880 0.2967
Months Jan Feb Mac April May June July
MEXP 2.693 | 187.583 | 2538.144 429.553 55.767 | 114.912 | 124.940
EXP 0.001 | 146.205 | 4488.102 1.184 80.673 37.343 15.715
EXPTRAN 4.160 16.354 760.693 | 1009.116 | 432.632 4,047 37.881
MEXPTRAN 3.135 97.958 234.979 35.467 | 500.120 0.042 | 806.493
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 3024.819 | 579.459 | 2301.351 60.428 | 657.836 | 839.790 28.979
EXP 593.877 2.407 | 1374.203 13.664 | 514.816 | 605.682 24.611
EXPTRAN 59.870 | 252.017 819.340 34.689 76.530 | 292.277 17.096
MEXPTRAN 231.933 | 201.447 213.215 25.991 | 401.060 | 229.320 15.143
24-Hour

Autocorrelation

Months Jan Feb Mac April May June July
MEXP 0.0107 0.0026 0.0003 0.0079 0.0000 0.0001 0.0002
EXP 0.0124 0.0059 0.0001 0.0075 0.0000 0.0004 0.0003
EXPTRAN 0.0067 0.0298 0.0009 0.0007 0.0137 0.0086 0.0001
MEXPTRAN 0.0078 0.0278 0.0036 0.0027 0.0113 0.0114 0.0000
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0005 0.0002 0.0012 0.0002 0.0004 0.0020 0.0450
EXP 0.0000 0.0020 0.0006 0.0001 0.0000 0.0024 0.0495
EXPTRAN 0.0016 0.0001 0.0053 0.0005 0.0013 0.0058 0.0760
MEXPTRAN 0.0001 0.0000 0.0058 0.0000 0.0027 0.0061 0.0781




24-Hour Coefficient of Skewness
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Months Jan Feb Mac April May June July
MEXP 0.5301 | 1.3286 1.0666 0.0726 0.2298 0.3846 0.2846
EXP 0.8604 | 0.5715 2.0747 0.0121 0.0334 0.0833 0.5058
EXPTRAN 0.1018 | 0.0187 0.0015 0.7730 0.3627 0.6629 0.1714
MEXPTRAN 0.3570 | 0.2140 0.1022 0.0449 0.2419 0.0257 0.0546
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.3519 | 0.1199 0.4871 0.3494 0.7379 0.4952 0.7037
EXP 0.6942 | 0.0167 0.9357 0.3299 1.3368 0.6212 0.7882
EXPTRAN 0.0001 | 0.2716 0.0027 0.0001 2.4251 0.3993 0.6319
MEXPTRAN 0.3629 | 0.0003 1.1490 0.1216 0.0042 0.2232 0.4724
P00(24)

Months Jan Feb Mac April May June July
MEXP 0.0063 0.0006 0.0060 0.0093 0.0162 0.0001 0.0005
EXP 0.0033 0.0001 0.0008 0.0094 0.0135 0.0019 0.0000
EXPTRAN 0.0021 0.0002 0.0003 0.0010 0.0008 0.0060 0.0004
MEXPTRAN 0.0004 0.0005 0.0001 0.0000 0.0003 0.0001 0.0000
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0512 0.0000 0.0094 0.0072 0.0043 0.0093 0.0963
EXP 0.0231 0.0000 0.0098 0.0056 0.0045 0.0060 0.0775
EXPTRAN 0.0007 0.0018 0.0008 0.0004 0.0126 0.0023 0.0475
MEXPTRAN 0.0000 0.0005 0.0000 0.0003 0.0013 0.0003 0.0175
P10(24)

Months Jan Feb Mac April May June July
MEXP 0.0124 0.0083 0.0004 0.0002 0.0109 0.0289 0.0022
EXP 0.0169 0.0061 0.0178 0.0003 0.0092 0.0112 0.0068
EXPTRAN 0.0062 0.0100 0.0041 0.0024 0.0022 0.0019 0.0041
MEXPTRAN 0.0001 0.0003 0.0000 0.0002 0.0002 0.0006 0.0000
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0001 0.0075 0.0010 0.0000 0.0009 0.0061 0.0779
EXP 0.0041 0.0000 0.0026 0.0000 0.0004 0.0063 0.0793
EXPTRAN 0.0045 0.0004 0.0071 0.0107 0.0022 0.0046 0.0681
MEXPTRAN 0.0004 0.0043 0.0002 0.0001 0.0001 0.0005 0.0233
Probabilty

of dry days

Months Jan Feb Mac April May June July
MEXP 0.00032 | 0.00229 0.00067 0.00111 | 0.00038 | 0.00422 | 0.00004
EXP 0.00002 | 0.00344 0.00625 0.00100 | 0.00002 | 0.00000 | 0.00138
EXPTRAN 0.00000 | 0.00363 0.00163 0.00188 | 0.00126 | 0.00811 | 0.00235
MEXPTRAN | 0.00038 | 0.00110 0.00013 0.00007 | 0.00000 | 0.00014 | 0.00002
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 0.0230 0.0034 0.0005 0.0003 0.0015 0.0031 0.0561
EXP 0.0053 0.0002 0.0002 0.0002 0.0038 0.0018 0.0425
EXPTRAN 0.0030 0.0001 0.0018 0.0047 0.0167 0.0038 0.0613
MEXPTRAN 0.0001 0.0012 0.0000 0.0000 0.0004 0.0003 0.0174




One-Month Mean
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Months Jan Feb Mac April May June July
MEXP 0.437 91.930 26.381 45.688 8.939 24.289 0.453
EXP 7.661 0.093 331.704 3.507 0.184 35.874 2.782
EXPTRAN 286.24 | 247.812 576.187 | 1341.828 | 1642.030 | 106.060 | 360.973
MEXPTRAN | 8.221 55.832 46.178 0.713 0.001 12.195 15.452
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 46.512 11.105 82.670 20.562 16.901 31.322 5.597
EXP 9.838 | 133.308 1.281 93.926 0.512 51.722 7.192
EXPTRAN 771.9 | 2480.48 | 1263.345 | 1199.354 517.499 | 899.475 29.991
MEXPTRAN | 180.81 38.185 250.914 357.871 0.209 80.549 8.975
One-

Month Standard Deviation

Months Jan Feb Mac April May June July
MEXP 16.8496 | 95.1850 | 1421.490 51.1451 | 3161.214 | 13.8940 | 95.8173
EXP 30.5070 | 96.8958 | 1646.266 46.3753 | 2519.189 | 159.333 | 58.8315
EXPTRAN | 150.791 | 619.915 | 869.8444 87.0374 | 4369.891 | 393.680 | 18.2520
MEXPTRN | 28.8132 | 454.009 | 874.1512 | 166.4436 | 3998.651 | 428.105 | 118.956
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 33.3889 | 387.989 49.5075 | 1973.535 57.6954 | 613.143 | 24.7617
EXP 0.5521 | 801.914 8.9778 | 1509.809 6.3979 | 573.754 | 23.9532
EXPTRAN | 149.320 | 329.439 | 130.5474 | 1657.382 3.7619 | 731.655 | 27.0491
MEXPTRN | 160.614 | 868.439 | 289.7869 | 1063.720 5.0545 | 704.729 | 26.5467
One-Month

Maximum

Months Jan Feb Mac April May June July
MEXP 459.26 | 1833.08 8193.02 3452.59 | 36129.12 | 1224.19 | 3878.04
EXP 26.02 453.99 3197.01 1136.81 | 38941.72 | 6379.22 | 1027.94
EXPTRAN 1801.4 53.30 6312.43 4250.67 | 27591.63 | 5294.90 | 3158.34
MEXPTRN 112.64 616.06 4692.23 1394.79 | 39858.84 | 7313.95 | 2909.03
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 34.74 | 1231.68 11.49 | 13588.32 5.50 | 5836.75 76.40
EXP 1087.3 | 3712.46 267.70 | 10133.72 80.69 | 5537.05 74.41
EXPTRAN 3031.2 14.98 824.89 5599.24 783.74 | 4893.06 69.95
MEXPTRAN | 2516.9 | 4347.01 264.07 8061.17 549.40 | 6053.00 77.80
One-Month Minimum

Months Jan Feb Mac April May June July
MEXP 41.19 7.79 936.97 43.71 7.35 75.65 892.46
EXP 11.60 419.72 2592.51 175.51 78.22 4.02 42.81
EXPTRAN 3.36 | 1942.08 151 1450.92 5424.03 301.51 | 1522.14
MEXPTRAN 22.33 | 1987.89 1234.55 238.04 534.31 280.68 115.69
Months Aug Sept Oct Nov Dec MSE RMSE
MEXP 81.13 16.00 5810.94 | 10198.16 95.35 | 1517.23 38.95
EXP 284.62 601.89 3833.59 8593.09 5.79 | 1386.95 37.24
EXPTRAN 222.18 | 3860.15 | 13529.71 | 16550.55 62.06 | 3739.18 61.15
MEXPTRAN 24.92 382.59 5915.76 | 12167.14 3.77 | 1908.97 43.69




B. MCME MODELS

One-Hour Scale
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MONTHS Jan Feb Mar Apr May Jun Jul
Mean 4.5E-06 | 1.2E-05 | 7.5E-06 | 1.1E-06 | 2.3E-05 | 3.1E-05 | 2.3E-06
Std.Deviation 4.8E-03 | 9.9E-03 | 8.3E-05 | 5.9E-04 | 1.9E-03 | 3.6E-04 | 7.3E-04
Coeff.of Skewness | 5.1E+0 | 5.3E+0 | 6.4E-01 | 4.7E-02 | 1.1E-01 | 1.6E+0 | 2.7E-02
Maximumn 5.5E+0 | 3.1E+0 | 2.8E+0 | 2.2E+0 | 8.9E+0 | 6.6E+0 | 3.8E+00
Autocorrelation 4.6E-02 | 3.1E-02 | 4.3E-02 | 5.0E-02 | 6.4E-02 | 8.2E-02 | 1.3E-01
dry hours 49 64 25 36 64 81 1
rainy hours 56.25 56.25 25 42.25 56.25 81 0.25
MONTHS Aug Sep Oct Nov Dec MSE RMSE
Mean 1.2E-05 | 6.1E-06 | 9.8E-05 | 7.7E-05 | 1.3E-06 | 2.8E-05 | 5.3E-03
Std.Deviation 2.0E-03 | 4.4E-03 | 6.9E-03 | 1.6E-03 | 1.8E-04 | 3.3E-03 | 5.8E-02
Coeff.of Skewness | 2.7E+00 | 3.0E-01 | 1.5E+00 | 2.6E-01 | 6.8E-02 | 1.8E+00 | 1.3E+00
Maximumn 3.1E+0 | 3.6E+0 | 7.2E+0 | 1.6E+0 | 2.0E+0 | 4.3E+0 | 6.6E+00
Autocorrelation 3.0E-02 | 5.0E-02 | 3.3E-02 | 6.3E-02 | 8.2E-02 | 7.0E-02 | 2.7E-01
Dry hours 49 361 225 9 9 97.3 9.8641
Rainy hours 49 | 380.25| 210.25 4 6.25 96.7 | 9.8336
24-Hour Scale
MONTHS | Jan Feb Mar Apr May Jun Jul
Mean 2.7E-05| 2.2E-01 | 5.1E-04 | 1.4E-02 | 5.0E-03 | 1.5E-02 | 3.5E-03
Std.Deviation 7.9E-01 | 8.1E+00 | 3.1E-01 | 2.6E+00 | 4.3E+00 | 4.3E+00 | 7.5E+00
Coeff.of Skewness | 2.7E-03 | 2.5E-03 | 1.6E-02 | 7.7E-01 | 7.8E-02 | 5.0E-01 | 1.2E+00
Maximum 5.9E+01 | 7.6E-01 | 3.2E+01 | 1.0E+03 | 5.3E+01 | 4.2E+02 | 1.2E+03
Autocorr. 1.0E-02 | 4.1E-02 | 7.6E-04 | 3.3E-03 | 1.1E-02 | 1.7E-02 | 2.5E-04
Rainy 8.4E+02 | 6.8E+02 | 5.3E+02 | 2.9E+02 | 2.6E+02 | 7.8E+02 | 4.8E+02
Dry 7.8E+02 | 5.3E+02 | 5.3E+02 | 3.2E+02 | 2.0E+02 | 4.8E+02 | 3.2E+02
MONTHS Aug Sep Oct Nov Dec MSE RMSE
Mean 0.320 0.003 0.000 0.000 0.007 0.049 0.222
Std.Deviation 5.723 0.604 1.209 4.450 8.083 3.995 1.999
Coeff.of Skewness 0.009 0.025 0.016 0.005 1.694 0.363 0.603
Maximum 14.669 | 317.552 25.301 | 302.064 | 149.084 | 302.908 | 17.404
Autocorr. 0.000 0.001 0.002 0.001 0.015 0.009 0.092
Rainy 529.000 | 576.000 | 900.000 | 324.000 | 1600.000 | 649.000 | 25.475
Dry 225.000 | 625.000 | 1296.000 | 289.000 | 1521.000 | 593.833 | 24.369




Monthly Scale
(MCME Hourly)
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MONTHS | Jan Feb Mar Apr May Jun Jul
Mean 1.716 5.108 6.300 14.516 31.810 13.032 8.762
Std.Dev. 0.274 | 1313.135 | 190.089 4.016 | 6165.677 985.785 0.607
Maximum 5.29 576 | 954.81 225 | 50310.49 13924 702.25
Minimum 7.29 | 3475.1025 90.25 39.69 686.44 404.01 | 1288.81
MONTHS | Aug Sep Oct Nov Dec MSE RMSE
Mean 9.797 10.956 1.210 0.002 2.789 8.833 2.972
Std.Dev. 2.074 | 1023.499 | 417.231 | 2571.314 | 213.411 | 1073.926 32.771
Maximum 265.69 4316.49 | 906.01 | 14042.25 196 | 7202.0233 | 84.8647
Minimum 57.76 1062.76 | 7903.21 | 11257.21 136.89 | 2200.7852 | 46.9125
Monthly scale (Daily

MCME)

MONTHS | Jan Feb Mar Apr May Jun Jul
Mean 28.62 66.42 4.20 11.42 2.16 1.96 35.05
Std.Dev. 44.44 408.04 324.47 23.06 | 2985.53 | 370.68 112.42
Maximum 49.00 | 1024.00 1489.96 650.25 | 37249.00 | 8010.25 | 1772.41
Minimum 144.00 894.01 600.25 100.00 10.89 20.70 240.25
MONTHS | Aug Sep Oct Nov Dec MSE RMSE
Mean 8.07 1.17 4.88 10.24 0.90 14.59 3.82
Std.Dev. 255.52 850.31 24.79 | 1326.42 8.26 | 561.16 23.69
Maximum 4678.56 | 4212.01 201.64 | 12521.61 600.25 | 6038.25 77.71
Minimum 1.21 510.76 6544.81 | 6822.76 84.64 | 1331.19 36.49
Daily

Scale

MONTHS | Jan Feb Mar Apr May Jun Jul
Mean 0.0084 0.0035 0.0025 0.0008 0.0681 | 0.0537 | 0.0262
Std.Dev, 0.0020 0.2426 0.0006 0.4521 0.0112 | 0.0016 1.0681
Coeff.of

Skewness 0.2338 0.2301 0.0270 0.4971 0.1230 | 0.1358 | 0.2654
Maximum 9 930.25 | 197.4025 | 526.7025 324 38.44 | 231.04
Autocorr. 0.0042 0.0248 0.0024 0.0020 0.0126 | 0.0112 | 0.0007
Rainy 1 0 4 1 4 0 0.25
Dry 1 0 4 1 4 0 0.25
MONTHS | Aug Sep Oct Nov Dec MSE RMSE
Mean 0.00085 0.00859 | 0.00064 | 0.06502 | 0.00669 | 0.02041 | 0.14287
Std.Dev. 0.14267 0.00001 | 0.56336 | 0.02576 | 0.25999 | 0.23084 | 0.48046
Coeff.of

Skewness 0.29316 0.00032 | 0.23256 | 0.24945 | 0.00286 | 0.19088 | 0.43690
Maximum | 635.0400 81.9025 | 336.7225 | 484.0000 7.0225 | 316.794 | 17.7987
Autocorr 0.0035 0.0008 0.0047 0.0006 0.0071 | 0.0062 | 0.0788
Rainy 0 16 0 4 4| 2.8542 1.6894
Dry 0 16 0 4 4| 2.8542 1.6894
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2. Validation Period (1991-2000)

A. NSRP Model (MEXPTRAN)
One-Hour Scale
Months Jan Feb Mac April May June July
Mean 8.5E-05 | 4.3E-03 | 6.4E-04 | 8.7E-03 | 4.6E-03 | 1.9E-02 | 1.3E-04
Variance 4,7E-03 | 2.6E+00 | 3.4E-02 | 1.1E+00 | 6.1E-02 | 3.7E+00 | 6.5E-01
Skewness | 4.1E-02 | 4.8E-01 | 1.3E+01 | 9.5E+00 | 1.2E-01 | 5.2E+01 | 2.8E-01
Maximum | 1.3E+00 | 7.0E+01 | 6.4E+02 | 6.0E+01 | 3.6E+01 | 7.2E+00 | 4.1E+01
Autocorr. | 6.5E-02 | 8.9E-02 | 4.0E-02 | 3.0E-02 | 1.2E-02 | 2.7E-02 | 2.0E-04
Prob.Dry 1.8E-04 | 3.4E-03 | 4.6E-04 | 1.0E-03 | 8.6E-03 | 2.7E-06 | 1.2E-03
Std.Dev. 1.3E-03 | 2.2E-01 | 1.8E-03 | 7.2E-02 | 3.6E-03 | 3.1E-01 | 4.9E-02
Months Aug Sept Oct Nov Dec MSE RMSE
Mean 6.6E-03 | 2.5E-02 | 1.9E-07 | 3.3E-03 | 1.3E-02 | 7.1E-03 | 8.4E-02
Variance 5.9E-01 | 8.1E+00 | 2.1E-01 | 1.3E+00 | 8.7E-01 | 1.6E+00 | 1.3E+00
Skewness | 2.1E+01 | 2.6E+00 | 1.4E+01 | 3.9E+00 | 7.0E+01 | 1.6E+01 | 3.9E+00
Maximum | 1.7E+02 | 1.9E+03 | 1.6E+02 | 4.2E+01 | 1.0E+02 | 2.7E+02 | 1.7E+01
Autocorr. | 6.3E-02 | 2.6E-02 | 5.7E-02 | 1.6E-02 | 1.9E-02 | 3.7E-02 | 1.9E-01
Prob.Dry 5.8E-04 | 1.2E-04 | 3.9E-03 | 1.2E-02 | 1.6E-04 | 2.7E-03 | 5.2E-02
Std.Dev. 3.6E-02 | 7.1E-01 | 1.3E-02 | 6.9E-02 | 1.1E-01 | 1.3E-01 | 3.6E-01
24-Hour Scale
Months Jan Feb Mac April May June July
Mean 0.05 2.46 0.37 0.15 2.62 10.94 0.07
Var. 109.00 3720.92 | 3212.66 | 5010.08 251.79 17543.08 1.62
Skew 0.15 0.22 0.62 0.07 0.33 2.72 0.10
Max 89.83 204.93 1213.10 1.09 344.08 166.33 527.92
Autocor 0.00 0.01 0.00 0.01 0.00 0.00 0.00
Prob.Dry 0.00 0.00 0.00 0.00 0.02 0.01 0.00
Std.Dev. 0.55 5.20 3.64 6.19 0.25 24.49 0.00
Months Aug Sept Oct Nov Dec MSE RMSE
Mean 3.825 13.325 0.000 3.948 7.600 3.780 1.944

2189.1

Var. 04 | 20757.531 | 506.531 | 5969.580 | 8585.491 5654.782 75.198
Skew 0.216 0.140 0.080 1.146 1.176 0.580 0.762
Max 7.907 | 1321.436 114.178 | 595.173 | 447.334 419.442 20.480
Autocor 0.000 0.004 0.023 0.000 0.012 0.005 0.070
Prob.Dry 0.024 0.001 0.000 0.001 0.025 0.007 0.086
Std.Dev. 2.650 40.663 0.707 5.584 15.482 8.783 2.964
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B. MCME Models
1-Hour Scale
Month Jan Feb Mac April May June July
Mean 4.46E-05 | 4.59E-03 | 2.96E-03 | 7.26E-03 | 4.03E-03 | 2.11E-02 | 5.50E-05
Std.Dev 6.58E-03 | 1.93E-01 | 4.91E-02 | 2.52E-02 | 2.73E-06 | 2.89E-01 | 4.11E-02
Skew 4.68E-01 | 1.52E+00 | 9.32E-01 | 7.22E+00 | 1.82E-01 | 1.94E+01 | 7.35E+00
Max 3.97E-01 | 7.08E+00 | 2.60E-01 | 9.14E+01 | 1.93E+00 | 2.69E+01 | 2.70E+02
Autocor 1.24E-01 | 1.67E-01 | 1.13E-01 | 1.73E-01 | 1.17E-01 | 1.53E-01 | 1.15E-01
Prob.Dry | 4.05E-07 | 1.65E-04 | 2.47E-05 | 1.44E-06 | 3.02E-03 | 5.09E-04 | 6.48E-05
Month Aug Sept Oct Nov Dec MSE RMSE
Mean 5.55E-03 | 2.65E-03 | 4.15E-04 | 7.78E-04 | 1.50E-02 | 5.37E-03 | 7.33E-02
Std.Dev 5.11E-02 | 1.09E-02 | 4.82E-02 | 6.10E-02 | 8.66E-02 | 7.18E-02 | 2.68E-01
Skew 2.85E+00 | 1.28E+01 | 1.19E-01 | 2.93E+00 | 3.63E+01 | 7.67E+00 | 2.77E+00
Max 7.40E-01 | 8.40E+02 | 7.40E+00 | 2.84E+01 | 3.34E+01 | 1.09E+02 | 1.04E+01
Autocor 1.12E-01 | 9.47E-02 | 1.16E-01 | 1.13E-01 | 1.95E-01 | 1.33E-01 | 3.64E-01
Prob.Dry | 1.54E-04 | 2.76E-03 | 1.58E-04 | 1.26E-03 | 3.96E-04 | 7.09E-04 | 2.66E-02
24-Hour  Scale
Month Jan Feb Mac April May June July
Mean 0.0259 | 2.5948 | 1.7067 2.0155 2.3201 12.1441 0.0313
Std.Dev 2.0274 | 0.0170 | 18.3808 11.5406 1.8458 49.6250 | 10.5633
Skew 0.5660 1.1179 | 0.0001 0.0052 1.6479 0.2169 0.8843
Max 331.2400 | 33.9889 | 11.6964 | 375.9721 | 1437.1681 | 1840.4100 | 676.0000
Auto 0.0067 | 0.0003 | 0.0011 0.0061 0.0005 0.0079 0.0023
Prob.Dry 0.0049 | 0.0154 | 0.0065 0.0001 0.0267 0.0016 0.0070
Month Aug Sept Oct Nov Dec MSE RMSE
Mean 3.1964 | 1.8324 | 0.2392 1.6205 8.6367 3.0303 1.7408
Std.Dev 10.6138 | 0.2263 | 0.0123 22.1177 35.3403 13.5259 3.6778
Skew 0.0456 | 0.1547 | 0.1504 2.7492 0.3511 0.6574 0.8108
Max 299.6361 | 89.4916 | 7.6729 | 2424.5776 | 2893.3641 | 868.4348 | 29.4692
Auto 0.0003 | 0.0029 | 0.0284 0.0002 0.0252 0.0068 0.0826
Prob.Dry 0.0065 | 0.0374 | 0.0120 0.0069 0.0007 0.0105 0.1024
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Daily Scale

Month Jan Feb Mac April May June July
Mean 0.344 6.963 2.300 1.529 0.609 9.144 0.551
Std.Dev 0.619 10.629 10.351 12.160 0.944 20.507 1.145
Skew 0.071 0.733 0.205 0.024 0.215 1515 0.003
Max 51.840 | 424.360 | 142.325 | 342.250 | 166.410 | 170.303 31.697
Auto 0.000 0.002 0.000 0.006 0.001 0.004 0.000
Prob.Dry 0.007 0.006 0.001 0.002 0.006 0.005 0.000
Month Aug Sept Oct Nov Dec SSE RMSE
Mean 0.9155 0.6572 0.5778 0.3758 5.4281 2.4495 1.5651
Std.Dev 1.3874 0.7298 1.3482 1.9125 4.4554 5.5157 2.3486
Skew 0.0001 0.0024 0.0985 0.9045 0.4128 0.3487 0.5905
Max 25.5025 0.0900 | 10.3041 | 470.8900 | 123.2100 | 163.2651 | 12.7775
Auto 0.0000 0.0028 0.0225 0.0003 0.0177 0.0048 0.0695
Prob.Dry | 0.0097 0.0064 0.0019 0.0002 0.0100 0.0046 0.0682




APPENDIX G

SAMPLE OF COMPUTER PROGRAMS

1. NSRP SIMULATION

% NSRP simulation program

%

% input variable:

% storm - Total number of storm to run NSRP simulation

%

% Parameter:

% lambda - average waiting time between subsequent storm origins (/hour)
% beta - average waiting time of the raincells after the storm origin (/hour)
%mn - average cell durations(/hour)

% v - average number of cells per storm (cell/storm)

% epsilon - average cell intensity (mm/hour)

% theta - intensities :mix-exponential

% alfa - intensities: weighT

% Variables:
% ta - inter-arrival time of storms

% C - number of rain cells



336

% b - waiting times from storm origin to rain cells
% L - duration of rain cell

% X - intensities

% C =[x x X X] --> storm sequence

%borlorepsilon=[xxx |-->cell sequence (C)
% XXX |

% X X X | storm sequence

%

%

% To start simulation, please type NSRP in Matlab command window.

%

%

% Please make sure the files had copy into your ...\Matlab6p1\work before start running
simulation.

%

%

% Note: This file require another function mixexprnd.m to run simulation.

%
%%0%%%%%%%%%0%6%6%%%%%%%%%0%6%6%%%%%6%%%0%6%6%%%%%% %%
% Clear all memory

clear all

% EXAMPLE

% Parameter value

%lambda = 1/0.0499995;

%n  =1/1.82966;

%v =2.02527;

%epsilon = 4.35301;

%alfa =0.957907;

%theta = 37.7444;

% Time resolution: total points calculation per hour
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sampling_rate = 1000 % /hour
% Set the tmax
clc

fprintf("\n NSRP Rainfall Simulation \n\n');

%storm = input  ('Please key in the number of storms you want to run NSRP
simulation: ');
total hours = input('Please key in the total times in hour you want to run NSRP

simulation: '); %total hours must be integer

% Part 1: Generate random waiting time between storm origins (exponential
function)
%ta = exprnd(lambda, 1,storm);
tal =[];
i=1;
while sum(tal) < total hours
ta_rnd = exprnd(lambda);
tal(i) =ta rnd;
1=i+1;

end

storm = length(tal)-1;
ta = zeros(1,storm);
ta(:) = tal(1:storm);

clear ta rnd tal;

% Part 2: Generate random number of rain cells per storm (Poisson Distribution)

C = poissrnd(v,1,storm);

% Part 3: Generate random waiting times from storm origin to rain cells

(exponential distribution)



cmax = max(C) ; % largest C

b = ones(storm,cmax); % define mxn maxtrix b

b(1:storm,1:cmax) = -1;

i=1;

while 1 <= storm % generate waiting times
rain_cell waiting time = exprnd(beta,1,C(1));
b(i,1:C(1)) = rain_cell waiting_time(1:C(1));
i=i+1;

end

clear rain_cell waiting_time;
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% Part 4: Generate random duration for each rain cell (exponential distribution)

L = ones(storm,cmax); % define mxn maxtrix L

L(1:storm,1:cmax) = -1;

i=1;

while 1 <= storm % generate durations
rain_cell duration = exprnd(n,1,C(1));
L(1,1:C(1)) = rain_cell duration(1:C(1));
i=i+1;

end

clear rain_cell duration;

% Part 5: Generate random intensities for each rain cell (exponential distribution)

x = ones(storm,cmax); % define mxn maxtrix x
x(1:storm,1:cmax) = -1;

i=1;

while 1 <= storm % generate intensity

%rain_cell intensity = exprnd(epsilon,1,C(1));

rain_cell intensity = mixexprnd(alfa,epsilon,theta,C(1));
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x(1,1:C(1)) = rain_cell intensity(1:C(1));
1=i+1;

end

clear rain_cell intensity;
%%%0%0%0%%0%0%%%0%0%%%0%0%%%%0%%6%0%6%%6%:%6%%6%0%6%%%0%%%%0%%%
% Calculate storm_position
storm_position = zeros(1,storm);
i=1;
to=0;
while 1 <= storm % determine the storm's time position (hour)
to =to + ta(i);
storm_position(i) = to;
i=i+1;

end

clear to;

% Calculate rain_cell position

rain_cell position m = zeros(storm,cmax);

i=1;

while i <= storm
rain_cell position m(i,1:C(i)) = storm_position(i)+b(i,1:C(1)) ;
1=i+1;

end

rain_cell position = zeros(1,sum(C));

1=1;

counter = 0;

while 1 <= storm
rain_cell_position(counter+1:C(i)+counter) = rain_cell position_m(i,1:C(i));
counter = counter + C(i);

i=i+1;
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end

clear rain_cell positon m

% Calculate Total intensities

duration = zeros(1,sum(C));

1=1;

counter = 0;

while 1 <= storm
duration(counter+1:C(i)+counter) = L(i,1:C(1));
counter = counter + C(i);
1=i+1;

end

intensity = zeros(1,sum(C));

1=1;

counter = 0;

while 1 <= storm
intensity(counter+1:C(i)+counter) = x(i,1:C(i));
counter = counter + C(i);
1=i+1;

end

clear counter;

%%%%%%% clear %%%%%%%%%

cleartax b L;
%%0%0%0%6%%%%%%%%6%6%%%6%6%%%%%%%6%6%6%%%%%6%%%%%% %% %%
% Calculate Total intensities %
%%0%%%%%%%%0%0%0%%%%%%6%%%%0%6%%%%%%6%%%0%0%6%%%%%% %%
t=0;
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1=0;

clear storm_position;

length_t = total hours*sampling rate+1;

Total_intensities = zeros(1,length_t);
=1

while j <= sum(C)

tstart = rain_cell position(j)*sampling_rate+1;
tstart = round(tstart);
tstop = (rain_cell position(j)+duration(j))*sampling_rate+1;

tstop = round(tstop);

if tstop > length t
tstop = length t; % limit the tstop to the longest simulation time

end

Total_intensities(tstart:tstop)= Total intensities(tstart:tstop)+intensity(j);
L

end

clear rain_cell position intensity duration

% Calculate intensities per hour
intensities_per_hour = [];
sub_Total intensities = [];
1=1;
while 1 <= sampling rate+1
sub_Total intensities(i) = Total intensities(i);
i=i+1;

end
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intensities_per_hour(1)= 1/sampling_rate*sum(sub_Total intensities);

if total hours > 1

hour counter = 2;

while hour counter <= total hours
sub_Total intensities = [];

1=1;

while 1 <= sampling_rate
sub_Total intensities(i) = Total intensities(sampling_rate*(hour counter-1)+i+1);
i=i+1;

end

intensities_per hour(hour counter)= 1/sampling_rate*sum(sub_Total intensities);

hour counter=hour counter+1;

end
end

%Simulation Result Display

fprintf("\n Simulation Result \n\n');
fprintf('Rainfall amount hourly (mm)\n\n');

hour counter=1;

fid = fopen('data.txt','w'); % open txt file to save data

while hour counter <= total hours

if intensities_per hour(hour counter)~=0
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fprintf(fid,'%d hour: %2.8g\n",hour_counter, intensities per hour(hour counter)); %
save data to file
fprintf('%g hour: %g\n',hour counter, intensities_per hour(hour counter))

end

hour counter=hour counter+1;

end

fclose(fid);

fprintf("\nNote 1: The number of hour not shown is 0Omm\n\n');

fprintf('Note 2: The data had been saved to data.txt - Please open it using Wordpad\n\n');
%%0%%%%%%%%%0%6%%%%%%%% Program End %%%%%%%%%%6%%%%

2. MCME Hourly Simulation

%% Compares parameters for every month estimated through SCE with

%% parameters of generated precipitation period.

% Initialize

clear

S = rand('state");

load prel7.dat; % Load data file

%%-- Separate to two sets of 15 years --%%
% j = length(prel5);

% nol =1;

% no2 =1;
%



% fork=1
% ifprel5(k,1)<16
% first15(nol,:) = prel5(k,:);

% nol =nol+l;

% else

% last15(no2,:) = prel5(k,:);
% no2 = no2+1;

% end

% end

%

% clear j k nol no2

%%-- Estimate Monthly Transitional Probabilities and
%%-- Mixed Exponential Parameters for 1st 15 years --%%
pre_month = arrange monthly(prel7);

[result obs]=stat descriptive_monthly(prel7);

for i=1:12

[para(i,:)] = para_SCE(pre_month(:,:,1), [0.2 4 12]); % SCE Optimization
[pij(1,1), pij(i,2)] = para_transprob(pre _month(:,:,1));

end

parameters = [pij para(:,1:3)];

[parameters]= para FOURIER(parameters);

%%-- Create Synthetic Time Series Matrix --%%

period synth = time sim(10,4,1,1,1);

prev_state = 1;

%%-- Run 100 Simulations and Calculate Parameters for All Runs --%%
result_ans=[];

for run = 1:50

rand('state',sum(100*clock))

% Use newton-raphson to approximate rainfall with random number generation
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precip_synth(:,:,run) = precipsim_newton(period synth, parameters, prev_state);

%precip_synth(:,:,run) = precip_sim(period_synth, parameters, prev_state);
[result]=stat descriptive_monthly(precip_synth(:,:,run));

result ans =[result ans;result];

% Compare new parameters

j = length(precip_synth(:,:,run));

synth_month = arrange monthly(precip_synth(1:j,:,run));
for i=1:12

[para(i,:)] = para_ SCE(synth_month(:,1:5,1), [0.2 1 12]); % SCE Optimization

[p1(1,1), pij(i,2)] = para_transprob(synth month(:,1:5,1));

end

parameters_synth(:,:,run) = [pij para(:,1:3)];
%result_synth(:,:,run)= stat descriptive(precip synth);
end
BoxPlotStatDes(result_ans,result_obs);
p00(:,:) = parameters_synth(:,1,:);
pl0(:,:) = parameters_synth(:,2,:);
p(:,:) = parameters_synth(:,3,:);
ul(:,:) = parameters_synth(:,4,:);
u2(:,:) = parameters_synth(:,5,:);
p00 = p00';
pl0O=pl10'
p=p"
ul =ul’;
u2 =u2';
sim50 = [];
for run = 1:50
sim50 = [sim50 precip_synth(:,5,run)];

end
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boxplot_comp % compare simulated data to observed
obs = prel7(:,5);
sim = sim50;

save sim50 sim obs

clear pij para paraML period_synth start leap period pre_month synth_month prev_state

1jrun



APPENDIX H

CODING FOR MICROSOFT VISUAL C++ PROGRAM TO CALCULATE THE
FORECAST OF THE RAINFALLS USING THE MARIMA MODEL

Program.h

#include <afxwin.h>

#include <afxcmn.h>

#include <afxdlgs.h>

#include <math.h>

#include "resource.h"

#define IDC_BUTTON 500

#define m 680 //number of data used
#define n 10

#define v 2

#define w 1

class program : public CFrameWnd
{
protected:
int idc,flag,p;
double h,*a,*b,*c;
double cov[v+1][v+1], covlag[v+1][v+1], invcov[v+1][v+1],
tracovlag[v+1][v+1], phi[v+1][v+1], er[v+1],
x[v+1],d[v+1],e[v+1],0bs[v+1],r[v+1];
CListCtrl table,table2;
CPoint px,pg,homel,home2,endl,end2,hBox1,hBox2;
CEdit eBox1,eBox2;
CStatic sBox1l,sBox2,sBox3,sBox4,fileBox;
CString strFile;
CButton bnDraw;
CSize BoxSize;
typedef struct

{
double x,y;
} PT;
PT *pt,max,min, left,right;
public:



}:
class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
}:
Program.cpp

program();
~program();
void ShowTable();

afx_msg void OnPaint();
afx_msg void OnPolynomial();
afx_msg void OnFileOpen();
afx_msg void OnExit();
afx_msg void OnForecast();

DECLARE_MESSAGE_MAPQ)

#include "program.h"

CMyWinApp MyApplication;

BOOL CMyWinApp::Initinstance()

{

}

BEGIN_MESSAGE_MAP(program,CFrameWnd)

program* pFrame = new program;
m_pMainWnd = pFrame;
pFrame->ShowWindow(SW_SHOW) ;
pFrame->UpdateWindow();
return TRUE;

ON_WM_PAINTQ)

ON_COMMAND(ID_FILEOPEN, OnFi 1eOpen)
ON_COMMAND(ID_EXIT,OnEXit)
ON_BN_CLICKED(IDC_BUTTON,OnPolynomial)

END_MESSAGE_MAP()

program: :program()

}

Create(NULL,""Code25D: Menus and file 1/0",WS_OVERLAPPEDWINDOW,
CRect(0,0,800,600) ,NULL ,MAKEINTRESOURCE(IDR_MENU1));

pt=new PT [m+1];

idc=400; flag=0; p=m-1;

homel=CPoint(5,50); endl=CPoint(900,250);
home2=CPoint(5,300); end2=CPoint(900,500);
hBox1=CPoint(100,550); hBox2=CPoint(200,550);

BoxSize=CSize(1,1);
a=new double [p+1];
b=new double [p+1];
c=new double [p+1];
er[1]=0;
er[2]=0;

program: :~program()
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{
}
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delete pt;

void program: :OnPaint()

{

}

CPaintDC dc(this);
CString str;

CRect Box;

CFont fontTimes;

// show the parameter estimated and the forecast
if (Flag==1 || flag==2 )
{

fontTimes.CreatePointFont(90, "Arial');
dc.SelectObject(fontTimes);
str.Format("'Model Parameters');
dc.TextOut(homel.x+10,homel.y-30,str);
str.Format("%I¥ %I¥",phi[1][1].phi[2]1[2D);
dc.TextOut(homel.x+10,homel.y,str);
str_.Format("%If %If",phi[2][1].phi[2]1[2]);
dc.TextOut(homel.x+10,homel.y+20,str);
str_.Format("% I, x[1]);
sBox3.SetWindowText(str);
str.Format(""%l ", x[2]);
sBox4.SetWindowText(str);

void program: :OnPolynomial ()

{

CClientDC dc(this);
CRect rc;

CString str;

int i,j,k;

double x1[v+1],x2[v+1];
double meanxm,meanxlm;

CBrush bkBrush(RGB(255,255,255));
rc=CRect(homel.x,homel.y-50,end2.x,end2.y+10);
dc._FillRect(&rc,&bkBrush);

//covariance and covariance lag 1
double suml=0;
for(i=0;i<=p;i++)

suml+=a[i];
meanxm=suml/(p+1);
double sum2=0;
for(i=0;i<=p;i++)

sum2+=b[i];
meanx1m=sum2/(p+1);
double sum3=0;
for(i=0;i<=p;i++)

sum3+=((a[i]-meanxm)*(a[i]-meanxm));
cov[1][1]=sum3/(p+1);
double sum4=0;



for(i=0;i<=p;it++)
sumd+=((aLi]-meanxm)*(b[i]1-meanx1im));

cov[1]1[2]=sum4/(p+1);

cov[2][1]=cov[1]lI2];

double sum5=0;

for(i=0;i<=p;i++)
sumb+=((bL[i]-meanx1m)*(b[1i]-meanx1m));

cov[2][2]=sum5/(p+1);

double sum6=0;

for(i=0;i<=p-1;i++)
sum6+=((afi]-meanxm)*(a[i+1]-meanxm));

covlag[1][1]=sum6/(p+1);

double sum7=0;

for(i=0;i<=p-1;i++)
sum7+=((b[i]-meanx1m)*(a[i+1]-meanxm));

covlag[1][2]=sum7/(p+1);

double sum8=0;

for(i=0;i<=p-1;i++)
sum8+=((a[i]-meanxm)*(b[1+1]-meanx1m));

covlag[2][1]=sum8/(p+1);

double sum9=0;

for(i=0;i<=p-1;i++)
sum9+=((b[i]-meanx1m)*(b[i+1]-meanxim));

covlag[2][2]=sum9/(p+1);

//inverse covariance
invcov[1l][1]=cov[2][2]1/(cov[1][1]*cov[2][2]-

cov[1][2]*cov[2]1[1D);

invcov[1l][2]=-cov[1][2]/(cov[1][1]*cov][2][2]-

cov[1][2]*cov[2]1[1D);

invcov[2][1]=-cov[2][1]1/(cov[1]l[1]*cov[2][2]-

cov[1][2]*cov[2]1[1D):

invcov[2][2]=cov[1][1]/(cov[1][1]*cov[2][2]-

cov[1]1[2]*cov[2]1[1D);

//estimate parameter phi
for (i=1; i<=v; i++)

for (J=1;j<=v;j++)

{
phi[i]1[j]1=0;
for (k=1;k<=v;k++)

phi[i1[j] += covlag[i]l[k]*invcov[K]1[j]:;

//calculate the forecast using the MARIMA model
1 F(p>m)
{

eBox1.GetWindowText(str); obs[l]=atof(str);
eBox2._GetWindowText(str); obs[2]=atof(str);

x1[1]=a[p];
x1[2]=b[p];
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x2[1]=a[p-1]1;
x2[2]=b[p-1];
for (i=1; i<=v; i++)

{
d[i]=0;
e[i]=0;
er[i]=obs[i]-x[i];
ri]=x[i];
for (j=1;j<=v;j++)
d[i] += phi[iJLi1*x1Li];
) e[i] += phi[i]01*x201:
x[i]=x1[i]+d[i]-e[i];
if(x[i]<0)
{
x[1]=0;
}

a[p+1]=obs[1];
b[p+1]=0obs[2];

p=p+1;

it (flag<=3)

{
if (flag==2 || flag==3 )
{

bnDraw.DestroyWindow(); fileBox.DestroyWindow();
eBox1.DestroyWindow(); eBox2.DestroyWindow();
sBox1.DestroyWindow(); sBox2.DestroyWindow();
sBox3.DestroyWindow(); sBox4.DestroyWindow();
fileBox.Create(strFile,WS_CHILD | WS_VISIBLE |
SS_CENTER | SS_SIMPLE,
CRect(hBox1.x,hBox1l.y-
30,hBox1.x+120,hBox1.y-10), this, idc++);
}
max.y=0;
for (i=0;i<=m;i++)
{
if (max.y<a[il)
max.y=a[i];
it (max.y<b[i])
max.y=b[i];

InvalidateRect(rc);
ShowTable();

}

if (flag==3)

{
GetClientRect(&rc);

CBrush whiteBrush(RGB(255,255,255));
dc.FillRect(&rc,&whiteBrush);



}

//show the table
void program::ShowTable()
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table.Create(WS_VISIBLE | WS_CHILD | WS_DLGFRAME | LVS_REPORT
| LVS_NOSORTHEADER,rcTable,this, idc++);
table. InsertColumn(0, "day",LVCFMT_CENTER,30);
table. InsertColumn(l,"stationl™,LVCFMT_CENTER,80);
table. InsertColumn(2,"station2",LVCFMT_CENTER,80);

(int 1=0;i<=m;i++)
str.Format("'%d",c[i]);
str.Format(""%lf",a[i]);

str_Format("%If",b[i]);

CRect rcTable2=CRect(10,100,600,500);

table2.Create(WS_VISIBLE | WS_CHILD | WS_DLGFRAME | LVS_REPORT
| LVS_NOSORTHEADER,rcTable2, this, idc++);
InsertColumn(0,"day",LVCFMT_CENTER,40);
InsertColumn(l,"stationl",LVCFMT_CENTER,90);
InsertColumn(2,"station2",LVCFMT_CENTER,90);
InsertColumn(3,"stationl(p)",LVCFMT_CENTER,90);
InsertColumn(4,"station2(p)",LVCFMT_CENTER,90);
InsertColumn(5, "stationl(er)",LVCFMT_CENTER,90);
InsertColumn(6,"station2(er)",LVCFMT_CENTER,90);

Format('obs'); table2.Insertltem(p-m-2,str,0);
Format("%lf",a[p]); table2._SetltemText(p-m-

Format("'%l1¥",b[p]); table2._SetltemText(p-m-
Format("%1f",r[1]); table2.SetltemText(p-m-
Format("%1f",r[2]); table2._SetltemText(p-m-
Format("'%I1f",er[1]); table2.SetltemText(p-m-

Format('%1¥",er[2]); table2.SetltemText(p-m-

{
CString str;
CRect rcTable=CRect(620,20,840,540);
table._DestroyWindow();
for
{
table.Insertltem(i,str,0);
table_SetltemText(i,1l,str);
table.SetltemText(i,2,str);
}
i f(p==m)
{
table2._DestroyWindow();
table2.
table2.
table2.
table2.
table2.
table2.
table2.
}
if(p>m+l)
{
str.
str.
2,1,str);
str.
2,2,str);
str.
2,3,str);
str.
2,4,str);
str.
2,5,str);
str.
2,6,str);
by

}
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void program: :OnForecast()
{
bnDraw.DestroyWindow(); FfileBox.DestroyWindow();
eBox1.DestroyWindow(); eBox2.DestroyWindow();
sBox1.DestroyWindow(); sBox2.DestroyWindow();
sBox3.DestroyWindow(); sBox4.DestroyWindow();
bnDraw.Create("'Forecast" ,WS_CHILD | WS_VISIBLE |
BS_DEFPUSHBUTTON,
CRect(300,550,440,580),this, IDC_BUTTON) ;
sBox1.Create("'stationl™ ,WS_CHILD | WS_VISIBLE | SS_SUNKEN |
SS_CENTER,
CRect(hBox1.x,hBox1.y-30,hBox1.x+60,hBoxl.y-
10), this, idc++);
sBox2.Create("'station2" ,WS_CHILD | WS_VISIBLE | SS_SUNKEN |
SS_CENTER,
CRect(hBox2.x,hBox2.y-30,hBox2.x+60,hBox2.y-
10), this, idc++);
sBox3.Create("""",WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,

CRect(hBox1.x,hBox1.y+50,hBox1.x+60,hBox1.y+70),this, idc++);
sBox4.Create("""",WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,

CRect(hBox2.x,hBox2.y+50,hBox2.x+60,hBox2.y+70),this, idc++);

eBox1.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect(CPoint(hBox1),CSize(70,25)),this, idc++);

eBox2.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect(CPoint(hBox2),CSize(70,25)),this, idc++);

flag=1;
by
void program: :OnFileOpen()
{
CString strFilter="]*.*|";
CFileDialog FileDIg(TRUE, ™" ,NULL,O,strFilter);
FILE *ifp;
it (FileDlg.DoModal ()==I1DOK)
{
strFile=FileDlg.GetFileName();
ifp=fopen(strFile,"r'");
for (int i=0;i<=m;i++)
fscanf(ifp,"%d %IF %IF",&c[i],&a[i].&b[i]);
fclose(ifp);
flag=2;
obs[1]=a[m];
obs[2]=b[m];
X[1]=a[m];
x[2]=b[m];
OnPolynomial();
OnForecast();
>
}

void program: :OnExit()

OnExit();



APPENDIX |

USER INTERFACE FOR THE MICROSOFT VISUAL C++ PROGRAM TO
CALCULATE THE FORECAST OF THE RAINFALLS USING THE MARIMA
MODE

1. Starting windows for the program

M Code25D: Menus and file 1/0.




2. Open menu

Bl Code25D: Menus and file /0.
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File:

Exit

Open menu

3. Open the data

e 25D: Menus and file /O

the data file

Look in: | 3 program R N e
[SiDebug &) program.cpp [h]resar
8 Elprogram.dsp ] saja
[Elprogram.dsw Eltry
program.h
program.opt
Elprogram program.rc
I i ]
File name: — [1apr-17may 2002(study case 1) Gpen |
Files of type: | | Cancel
I~ Dpen s read-arly




4. Starting of the forecast process

Code25D: Menus and file /0,
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File:

Model Parameters .
LA Parameters estimated
0088773 0561479

day station] station2 station1(p) station2(p) stationlier)

jay | stationl
2.500000
0.500000
0.000000
0.000000
0.500000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

station2(er)

<4— Table of
forecast results

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

Key in the
observed value

0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

station, station2
Jv

Forecast

0.000000 0.000000

AV

Forecasted
value

0.000000
0.000000

d:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 0.000000
1
3
z
2.
2
3
z
2.
2
2
z
2.

stationz | A
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

o.ooo000 <
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

Table of data
used in the
forecast

After key in the observed

value, push this button to get

the next forecast value




5. Results

Menus and file I/0
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Model Parameters

0037570 0.20

day station

obs 0.000000
obs 0.000000
obs 0.000000
obs 0.000000
obs 0.000000
obs S.200000
obs 66,000000
obs 7.800000
obs 0.000000
obs 3.800000
obs 11600000
obs 7.000000
obs 2.700000
obs S.200000
obs 4.700000
obs 1.000000
obs 0.000000
obs 0.500000

Key in the
observed value

ISTINEES ] Newly estimated parameters

_stationt {p) station2(p) stationt{er) station2{er)

A 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
17.500000 0.000000 0.000000 5.200000 17.800000
21,700000 5.200000 17.800000 60.800000 3.200000
3200000 67072483 =T B =28 359807
4.500000 9.60%2_ 000
4.800000 0.00 a4
<.800000 3.026322 Table Of 5359
4.800000 12.88679% 1707
4,800000 5.783633 forecast results  ju
4.800000 2.222933 Elel
<.800000 5.017129 T2 =O3I7T =TEZ4200
1200000 5.267437 1.266233 -4.267437 066233
0.000000 0.354247 4.715060 -0.354247 -4.715060
0.000000 0.000000 0.000000 0.500000 0.000000

stationl

[station2

m 0 Forecast

0.1 73 .000000
Forecasted
value

station1
2.500000
0.500000
0.000000
0.000000
0.500000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

stationz
5.200000
&6.,000000
7.900000
0.000000
3.600000
11600000
7.000000
2,700000
5.200000
4. 700000
1.000000
0.000000
0.500000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

~

6. Exit menu

Ml Code25D: Menus and file /0

File:
Open
0157070 0194632 EXlt menu
0037570 0202217
day station1 stationz _skation1(p) station2(p) station1{er) station2(sr)
abs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
obs 0.000000 0.000000 0.000000 0000000 0.000000 0.000000
obs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
obs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
abs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
abs 5. 200000 17.500000 0.000000 0.000000 5.200000 17.800000
obs £6,000000 21.700000 5.200000 17.800000 60.600000 3.900000
obs 7.500000 3200000 67072483 28.555807 -59.172483 -25.359807
abs 0.000000 4.800000 9.603208 0.000000 -9.603208 4.500000
abs 3800000 4.800000 0.000000 1470186 3.800000 3.329514
abs 11.600000 <.800000 3.026322 8.315389 B.573678 -3.515389
obs 7.000000 4.800000 12.88679% 1.396293 -5.886799 3.401707
obs 2700000 4.800000 6.783633 8.430683 -4.083633 -3.630683
abs 5. 200000 4.800000 2.222933 1.017839 2977067 3.782161
abs 4700000 <.800000 5.017129 §.424200 -0.317129 624200
obs 1.000000 1,200000 5.267437 1.266233 -4,267437 066233
obs 0.000000 0.000000 0.354247 4.715060 -0.354247 715060
obs 0.500000 0.000000 0.000000 0.000000 0.500000 0.000000

stationl | station2

0.109373

0.5 0 Forecast

0.000000

station1

2.500000
0.500000
0.000000
0.000000
0.500000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

stationz
5.200000
&6.,000000
7.900000
0.000000
3.600000
11600000
7.000000
2,700000
5.200000
4.700000
1.000000
0.000000
0.500000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

~




APPENDIX J

HOURLY RAINFALLS INTENSITY DATA USED TO FORECAST THE
RAINFALLS INTENSITY

Study Case 1: Station Empangan Genting Kelang (3217002) and station Km.11
Gombak (3217003) (from 0100 hour, 1* April 2002 to 0800 hour,

29™ April 2007)

Days | 3217002 | 3217003 | Days | 3217002 | 3217003 | Days | 3217002 | 3217003
1 2.5 0 3 0 0 5 13 1.1
1 0.5 0 3 0 0 5 14 2
1 0 0 3 0 0 5 13 0.3
1 0 0 3 0 0 5 0 0
1 0.5 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 1.2
1 0 0 3 0 0 5 2 0.4
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0.5 0.5
1 0 0 3 0 0 5 0.5 0.5
1 0 0 3 0 0 5 15 0.5
1 0 0 3 0 0 5 0 1
2 0 0 4 0 0 6 0 0
2 0 0 4 0 0 6 0 0
2 0 0 4 0 0 6 1 0
2 0 0 4 0 0 6 1 0.5
2 0 0 4 0 0 6 0.5 0.4
2 0 0 4 0 0 6 0.5 8
2 0 0 4 0 0 6 0 2.8
2 0 0 4 0 0 6 0 0
2 0 0 4 0 0 6 0 0.5




359

3217003

3217002

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

15

3217003 | Days

0.5

0.5

3217002

7.3
10.3

2.9
6.4

0.7

0.5

Days

10
10
10
10
10
10
10

10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11

3217003

0.1

2.9
0.5

15

3217002

0.5

Days




8 0 0 11 0 0 13 0 0
8 0 0 11 0 0 14 0 0
8 0 0 11 0 0 14 0 0
8 0 0 11 0 0 14 0 0
8 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 11 0 0 14 0 0
9 0 0 12 0 0 14 6.4 0.9
9 0 0 12 0 0 14 6 1.1
9 0 0 12 0 0 14 0.6 0
9 0 0 12 0 0 14 0 0
Days | 3217002 | 3217003 | Days | 3217002 | 3217003 | Days | 3217002 | 3217003
14 0 0 17 0 0 19 0 0
14 0 0 17 0 0 19 0 0
14 0 0 17 0 0 20 0 0
14 0 0 17 0 0 20 0 0
14 0 0 17 0 0 20 0 0
14 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0.5 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 17 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0.5 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0.2
15 0 0 18 0 0 20 0 0.3
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 21 0 1
15 0 0 18 0 0 21 0 0.5
15 0 2.8 18 0 0 21 0 0
15 2 2.2 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
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16 0 0 18 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0.5 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 5 1 19 0 0 21 0 1
16 0.5 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0.5 0.5 19 0 0 21 0 0
16 0 0 19 0 0 22 0 0
16 0 0 19 0 0 22 0 0
16 0 0 19 0 0 22 0 0
16 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
Days | 3217002 | 3217003 | Days | 3217002 | 3217003 | Days | 3217002 | 3217003
22 2 0 25 0 0 27 0 0
22 6.2 11.9 25 0 0 27 0 0
22 1.8 14 25 0 0 27 0 0.3
22 0 11.8 25 0 0 27 1.5 1.2
22 0 0 25 0 0 27 0 0
22 1 0 25 0 0 27 0 0
22 1 0.1 25 0 0 27 0 0
22 0 1.2 25 0 0 27 0 0
22 0 1 25 0 0 28 0 0
22 0 0 25 0 0 28 0 0
22 0 0 25 0 0 28 0 0.5
22 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 29 0 0
23 0 0 26 0 0 29 0 0
23 0 0 26 0 0 29 0 0
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23 0 0 26 0 0 29 0 0
24 0 0 26 0.5 0 29 0 0
24 0 0 26 0 0 29 0 0
24 0 0 26 0 0 29 0 0
24 0 0 26 3 0.5 29 0 0
24 0 0 26 0 0

24 0 0 26 0 0

24 0 0 26 0 0

24 0 0 26 0 0

24 0 0 26 0 0

24 0 0 26 0.3 2.9

24 0 0 27 5.2 7.2

24 0 0 27 0.6 0

24 0 0 27 0 0

24 0 0 27 0.5 0

24 0 0 27 0 0

24 0 0 27 0 0

24 0 0 27 0 0

24 0 0 27 0 0.5

24 0 0 27 0 0

24 0 0 27 0 0

24 0 0 27 0 0

24 0 0 27 0.5 0

24 0 0 27 0 1.2

24 0 0 27 0 3.8

25 0 0 27 0 0

25 0 0 27 0 0

Study Case 2: Station Empangan Genting Kelang (3217002) and station
Kampung Kuala Saleh (3217004) (from 0100 hour, 1** April 2002 to

0800 hour, 29™ April 2007)

Days | 3217002 | 3217004 | Days | 3217002 | 3217004 | Day 3217002 | 3217004
1 2.5 3.4 3 0 0 5 1.3 0.5
1 0.5 0 3 0 0 5 1.4 1
1 0 0.5 3 0 0 5 1.3 1
1 0 0 3 0 0 5 0 0
1 0.5 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0.5
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 2 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0 0
1 0 0 3 0 0 5 0.5 0
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0.2

6.8
0.6
0.5
0.5

0.8
0.7

0.5

15

0.5

0.5

3217004

3217002

0.5

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13

0.5

3217004 | Days

9.8
4.2

0.5

4.1

6.7

15
0.5

3217002

7.3
10.3

2.9
6.4

0.7

0.5

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

3217004 | Days

14.8

16.5

0.7

0.5

3217002

0.5

Days
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28
0.6

0.5

3217004

6.4

0.6

3217002

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14

Days

19
19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

3217004

3217002

0.5

10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12

Days

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18

0.5

1.9

3217004

8.5

0.5

3217002

0.5

Days

14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15




15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 20 0 0
15 0 0 18 0 0 21 0 0
15 0 0 18 0 0 21 0 0
15 0 0 18 0 0 21 0 0
15 2 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0.5
16 0 0 18 0 0 21 0 0.5
16 0 0 18 0 0 21 0 0
16 0 0.5 18 0 0 21 0 0
16 0 0 18 0 0 21 0 0
16 0 0.5 18 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 1 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 5 0.5 19 0 0 21 0 0
16 0.5 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0 0 19 0 0 21 0 0
16 0.5 0.5 19 0 0 21 0 0
16 0 0 19 0 0 22 0 3.9
16 0 0 19 0 0 22 0 15
16 0 0 19 0 0 22 0 3.5
16 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0.1
17 0 0 19 0 0 22 0 0.4
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
17 0 0 19 0 0 22 0 0
Days | 3217002 | 3217004 | Days | 3217002 | 3217004 | Days | 3217002 | 3217004
22 2 0 25 0 0 27 0 0
22 6.2 0 25 0 3 27 0 0
22 1.8 0 25 0 2 27 0 0
22 0 0 25 0 0 27 15 0
22 0 0 25 0 0 27 0 0
22 1 0 25 0 0 27 0 0
22 1 0 25 0 0 27 0 0
22 0 0 25 0 0 27 0 0
22 0 0 25 0 0 28 0 0
22 0 0 25 0 0 28 0 0
22 0 0 25 0 0 28 0 0
22 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
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23 0 0 25 0 0 28 0 0
23 0 0 25 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0.5 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 28 0 0
23 0 0 26 0 0 29 0 0
23 0 0 26 0 0 29 0 0
23 0 0 26 0 0 29 0 0
23 0 0 26 0 0 29 0 0
24 0 0 26 0.5 0 29 0 0
24 0 0 26 0 0 29 0 0
24 0 0 26 0 0 29 0 0
24 0 0 26 3 0 29 0 0
24 0 0 26 0 0
24 0 0 26 0 0
24 0 5 26 0 0
24 0 15 26 0 0
24 0 0 26 0 0
24 0 0 26 0.3 0
24 0 0 27 5.2 0
24 0 0 27 0.6 0
24 0 0 27 0 0
24 0 0 27 0.5 0
24 0 0 27 0 0
24 0 0 27 0 0
24 0 0 27 0 0
24 0 0 27 0 0
24 0 0 27 0 0
24 0 0 27 0 0
24 0 2 27 0 0
24 0 135 27 0.5 0
24 0 0 27 0 0
24 0 0 27 0 0
25 0 0 27 0 0
25 0 0 27 0 0
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APPENDIX K

RAINFALLS FORECAST RESULTS (PRE) USING THE MARIMA MODEL WITH OBSERVED VALUE (OBS),
FORECAST ERROR (ER) AND THE ESTIMATED PARAMETERS (a,,,a,,,d,,, 0, ).

Study Case 1: Station Empangan Genting Kelang (E) and station Km.11 Gombak (G)

Days | E(obs) | G(obs) | E(pre) G(pre) E(er) G(er) G O %1 O
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 | -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 | -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 | -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 | -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 | -0.0166 0.0898 0.5615
29 5.2000 17.8000 0.0000 0.0000 | -5.2000 | -17.8000 0.3679 | -0.0165 0.0899 0.5615
29 66.0000 | 21.7000 0.0000 0.0000 | -66.0000 | -21.7000 0.3679 | -0.0165 0.0899 0.5615
29 7.9000 3.2000 6.2725 | 24.6598 | -1.6275 | 21.4598 0.3687 | -0.0475 0.0800 0.3620
29 0.0000 4.8000 68.7757 | 23.6321 | 68.7757 | 18.8321 0.3294 0.1982 0.0202 0.1799
29 3.8000 4.8000 0.0000 0.0000 | -3.8000 | -4.8000 0.1369 0.1927 0.0247 0.2754
29 11.6000 | 4.8000 0.0000 4.9856 | -11.6000 0.1856 0.1368 0.1919 0.0321 0.2745
29 7.0000 4.8000 4.3131 49137 | -2.6869 0.1137 0.1350 0.1936 0.0299 0.2766
29 2.7000 4.8000 12.6704 5.0290 9.9704 0.2290 0.1372 0.1950 0.0294 0.2791
29 5.2000 4.8000 6.3066 4.6485 1.1066 | -0.1515 0.1507 0.1929 0.0329 0.2906




29 4.7000 4.8000 2.0401 4.6420 | -2.6599 | -0.1580 0.1535 0.1926 0.0367 0.2942
29 1.0000 1.2000 5.5846 4.8904 4.5846 3.6904 0.1538 0.1940 0.0362 0.2970
29 0.0000 0.0000 4.6217 4.7813 4.6217 4.7813 0.1566 0.1944 0.0374 0.3012
30 0.5000 0.0000 0.0000 0.0000 | -0.5000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.5875 0.0188 0.5875 0.0188 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
Days | E(obs) | G(obs) | E(pre) G(pre) E(er) G(er) G O %1 O
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0377 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0377 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0377 0.3024
30 0.8000 0.0000 0.0000 0.0000 | -0.8000 0.0000 0.1571 0.1947 0.0377 0.3024
30 4.2000 1.0000 0.0000 0.0000 | -4.2000 | -1.0000 0.1571 0.1947 0.0377 0.3024
30 0.0000 0.3000 0.9257 0.0302 0.9257 | -0.2698 0.1571 0.1947 0.0377 0.3023
30 0.5000 1.2000 4.9288 1.4296 4.4288 0.2296 0.1574 0.1937 0.0376 0.3016
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1937 0.0376 0.3016
30 0.0000 0.0000 0.7529 1.4901 0.7529 1.4901 0.1571 0.1937 0.0375 0.3015
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1936 0.0375 0.3014
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1936 0.0375 0.3014
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1936 0.0375 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1936 0.0375 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0375 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0376 0.3015

368



1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0376 | 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0376 | 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0376 | 0.3016
1 0.5000 | 1.1000 0.0000 | 0.0000 | -0.5000 | -1.1000 | 0.1572 | 0.1937 | 0.0376 | 0.3016
1 2.0000 | 1.4000 0.0000 | 0.0000 | -2.0000 | -1.4000 | 0.1572 | 0.1937 | 0.0376 | 0.3016
1 0.5000 | 0.0000 0.7916 | 1.4504 | 0.2916 | 1.4504 | 0.1572 | 0.1937 | 0.0376 | 0.3015
Days | E(obs) | G(obs) | E(pre) G(pre) E(er) G(er) G O %1 O
1 0.0000 | 0.0000 2.2038 | 15466 | 2.2938 | 15466 | 0.1572| 0.1936| 0.0375| 0.3013
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1936| 0.0373| 0.3014
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572 | 0.1936 | 0.0373| 0.3014
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0373| 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0373| 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0373| 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572| 0.1937 | 0.0373| 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1572 | 0.1937 | 0.0373| 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1573| 0.1937 | 0.0373| 0.3015
1 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000| 0.1573| 0.1937 | 0.0373| 0.3016
Study Case 2: Station Empangan Genting Kelang (E) and station Kampung Kuala Saleh (K)

Days | E(obs) K(obs) E(pre) K(pre) E(er) K(er) 0y Oy %y Oy
29 | 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2867 | 0.1974 | 0.0204 | 0.2479
29 | 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2867 | 0.1974| 0.0205| 0.2479
29 | 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2867 | 0.1974| 0.0205| 0.2479
29 | 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2868 | 0.1974 | 0.0206 | 0.2479
29 | 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2868 | 0.1974 | 0.0206 | 0.2479
29 | 5.2000 | 0.0000 0.0000 | 0.0000 | -5.2000 | 0.0000 | 0.2868 | 0.1974 | 0.0207 | 0.2480
29 | 66.0000 | 24.3000 0.0000 | 0.0000 | -66.0000 | -24.3000 | 0.2868 | 0.1974 | 0.0207 | 0.2480
29 | 7.9000 | 1.2000 6.6008 | 0.0990 | -1.2992 | -1.1010 | 0.2694 | 0.1967 | 0.0190 | 0.2460
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29 0.0000 0.0000 72.3596 | 28.6702 | 72.3596 | 28.6702 0.0916 0.0325 0.0280 0.1097
29 3.8000 2.3000 0.0000 0.0000 -3.8000 -2.3000 0.1938 0.0321 0.0108 0.1870
29 11.6000 6.2000 0.0000 0.0000 | -11.6000 -6.2000 0.1934 0.0321 0.0101 0.1871
29 7.0000 0.5000 4.6056 2.7657 | -2.3944 2.2657 0.1928 0.0317 0.0098 0.1862
29 2.7000 3.5000 13.2479 7.0210 | 10.5479 3.5210 0.1957 0.0311 0.0112 0.1881
Days | E(obs) | K(obs) E(pre) K(pre) E(er) K(er) O b Oy O
29 5.2000 4.0000 5.8543 0.0000 0.6543 | -4.0000 0.2084 0.0328 0.0071 0.1988
29 4.7000 3.3000 1.8842 4.0555 -2.8158 0.7555 0.2118 0.0316 0.0103 0.1999
29 1.0000 0.0000 5.7478 4.1267 47478 4.1267 0.2126 0.0326 0.0103 0.2017
29 0.0000 0.0000 4.5688 3.1509 4.5688 3.1509 0.2157 0.0334 0.0111 0.2050
30 0.5000 0.0000 0.0895 0.0000 | -0.4105 0.0000 0.2162 0.0335 0.0105 0.2055
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.6081 0.0052 0.6081 0.0052 0.2162 0.0335 0.0104 0.2055
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2161 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2161 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2161 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0104 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0104 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0104 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2058
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2058
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2058
30 0.8000 1.9000 0.0000 0.0000 | -0.8000 | -1.9000 0.2162 0.0337 0.0105 0.2058
30 4.2000 4.6000 0.0000 0.0000 -4.2000 -4.6000 0.2162 0.0337 0.0105 0.2058
30 0.0000 0.0000 1.0368 2.2990 1.0368 2.2990 0.2162 0.0336 0.0105 0.2056
30 0.5000 0.0000 5.0248 5.1891 4.5248 5.1891 0.2158 0.0337 0.0100 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
30 0.0000 0.0000 0.6078 0.0049 0.6078 0.0049 0.2156 0.0335 0.0098 0.2053

370



30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0098 0.2054
Days | E(obs) K(obs) E(pre) K(pre) E(er) K(er) Oy Oy Oy Oy
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0336 0.0098 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0336 0.0098 0.2055
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0336 0.0098 0.2055
1 0.0000 0.5000 0.0000 0.0000 0.0000 -0.5000 0.2157 0.0336 0.0098 0.2055
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0337 0.0098 0.2055
1 0.5000 0.0000 0.0168 0.6028 -0.4832 0.6028 0.2157 0.0337 0.0098 0.2055
1 2.0000 1.5000 0.0000 0.0000 -2.0000 -1.5000 0.2157 0.0337 0.0099 0.2055
1 0.5000 0.0000 0.6079 0.0049 0.1079 0.0049 0.2157 0.0336 0.0099 0.2055
1 0.0000 0.0000 2.3737 1.8226 2.3737 1.8226 0.2157 0.0334 0.0099 0.2052
1 0.0000 0.0000 0.1262 0.0000 0.1262 0.0000 0.2158 0.0334 0.0097 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0096 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0096 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0097 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0097 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
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APPENDIX L

PUBLICATIONS/PRESENTATIONS

From the material in this report there are, at the time of submission, the following

papers were published/presented or submitted for publications/presentations.

Papers Published in National Journals

P1.  Fadhilah Yusof, Zalina Mohd Daud, Nguyen V-T-V and Zulkifli Yusop,
Performance of Mixed Exponential and Exponential Distribution
Representing Rain Cell Intensity in Neyman-Scott Rectangular Pulse (NSRP)
Model, Malaysian Journal of Civil Engineering, Vol.10, No.1, 2007, pp 55-
72.

P2.  Fadhilah Yusof, Zalina Mohd Daud, Nguyen V-T-V, Suhaila S. and Zulkifli
Yusop, Fitting The Best-Fit Distribution For the Hourly Rainfall amount in
the Wilayah Persekutuan, Jurnal Teknologi, Vol.46 (C), June 2007, pp 49-58.

Papers published in International Proceedings

P3.  Fadhilah Yusof.,Zalina Mohd. Daud., Nguyen V-T-V., Zulkifli Yusop,
Evaluation of Neyman-Scott Rectangular Pulse (NSRP) model for modeling
hourly rainfall series. Proceeding of the XII" Applied Stochastic Models and
Data Analysis (ASMDA2007) International Conference, Chania, Crete,
Greece, May 20-June 1, 2007.
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Fadhilah Yusof.,Zalina Mohd.Daud, Maizah Hura, Nguyen V-T-V., Zulkifli
Yusof, Assessment of the point process following the Neyman-Scott process.
International Conference On Mathematics and Sciences (ICOMS 2007), Ibnu
Sina Institute, UTM. 28-29 May 2007.

Papers Published in National Proceedings

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y , Stochastic
modeling of rainfall using Neyman-Scott Rectangular Pulse (NSRP) Model.
Proceeding of the National Water Conference 2006 on Water for Sustainable
Development Towards a Developed Nation by 2020, Guoman Beach Resort,
Port Dickson, Negeri Sembilan, 13-14 July 2006.

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Stochastic
modeling of hourly rainfall series using Markov Chain Mixed Exponential
(MCME) model. Proceeding of Simposium Kebangsaan Sains Matematik ke
15, Concorde Hotel, Shah Alam, Selangor. June 5 -7 2007.

Papers Presented at the International Coferences

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Evaluation of
Neyman-Scott Rectangular Pulse (NSRP) model for modeling hourly rainfall
series. The XII™ Applied Stochastic Models and Data Analysis
(ASMDA2007) International Conference, Chania, Crete, Greece, May 20-
June 1, 2007.

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Assessment of the
point process following the Neyman-Scott process. International Conference
On Mathematics and Sciences, ICOMS 2007, Ibnu Sina Institute, UTM. 28-
29 May 2007.

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Using Markov

Chain Process in the Fitting Procedure for the Neyman-Scott Rectangular
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P11.

P12.

P13.

P14.

P15.

374

Pulse (NSRP) model with Mixed Exponential Distribution, The 9" Islamic
Countries Conference on Statistical Sciences 2007 (ICCS-IX), Concorde
Hotel, Shah Alam, 12-14 December 2007.

Papers Presented at the National Conferences

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Stochastic
modeling of rainfall using Neyman-Scott Rectangular Pulse (NSRP) Model.
National Conference for Sustainable development Towards a Developed
Nation by 2020. Guoman Beach Resort, Port Dickson, Negeri Sembilan. 13-
14 July 2006.

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Stochastic
modeling of hourly rainfall series using Markov Chain Mixed Exponential
(MCME) model. Simposium Kebangsaan Sains Matematik ke 15, Concorde
Hotel, Shah Alam, Selangor. June 5 -7 2007.

Zalina MD, Nurul Huda MA., Fadhilah Y, Maizah Hura A., Robiah A,
W.Azli WH., Exploring the anomalies of rainfall events in the Klang Valley.
Water World Day 2007. 15-16 April 2007.

Nordila A., Zulkifli Y, Zalina MD, Characterization of Convective Storms in
Kuala Lumpur. Water World Day 2007. 15-16 April 2007.

Nordila A., Zulkifli Y, Zalina MD, Characterization of Convective Rains in
the Klang Valley. National Conference for Sustainable development Towards
a Developed Nation by 2020. Guoman Beach Resort, Port Dickson, Negeri
Sembilan. 13-14 July 2006.

Submitted Presentation at International Conference

Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Comparative Study
Between the Cluster-based Model and Markov-Chain Mixed Exponential
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Model. In Preparation for Water Down Under 2008, Adelaide, South
Australia, 12-14 April 2008.

Presentation at UTM Seminars
P16. Fadhilah Yusof.,Zalina MD., Nguyen V-T-V., Zulkifli Y, Using Poisson

cluster process in modelling hourly rainfall. Seminar Jabatan Matematik,

UTM, 27" September 2006.
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