
















VOT 74280 

 

MODELING OF CONVECTIVE RAIN FOR PREDICTING FLASH FLOOD 

 

 

 

(PERMODELAN HUJAN PEROLAKAN UNTUK MERAMALKAN BANJIR 

KILAT) 

 

 

 

ZALINA BINTI MOHD DAUD 

FADHILAH BINTI YUSOF  

ZULKIFLI BIN YUSOP 

MAIZAH HURA BINTI AHMAD  

WAN AZLI BIN WAN HASAN  

MOHD NOR BIN MOHD DESA  

ROBIAH BINTI ADNAN 

NORDILA BINTI AHMAD 

NURUL HUDA BINTI MD ADNAN 

MOHD AFTAR BIN ABU BAKAR 

 

 

RESEARCH VOTE NO: 

74280 

 

Jabatan Sains 

Kolej Sains & Teknologi 

Universiti Teknologi Malaysia 

 

 

2008 



 ii

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

This research was undertaken through the funding by the Ministry of Science, 

Technology and Innovation under the administration of the Research Management 

Centre, Universiti Teknologi Malaysia.  Invaluable radar data were provided by the 

Malaysian Meteorology Department and rainfall data were provided by the Department 

of Irrigation and Drainage Malaysia.  We are indebted to the staffs of MMD KLIA for 

their assistance and inputs on the acquisition of the Doppler Radar data.  Our sincere 

appreciation also to the staffs of the Data Bank in DID Ampang for entertaining our 

frequent requests of rainfall data.  Our heartfelt thanks to Ir. Mohd Zaki Mat Amin of 

DID Ampang for his invaluable assistance in the development of the IDF curves, Prof 

Ahris Yaakub of Faculty of Built Environment UTM and his Masters student for 

teaching the use of as well as sharing the ArcGIS 9.1 software.  This research has 

initiated a number of Masters and a Doctoral thesis which we hope and believe will 

further propagate more research endeavours towards enriching the body of knowledge 

and providing more practical solutions to the relevant field of applications. 

 

 

 

 

 

 

 

 

 



 iii

 

ABSTRACT 

 

 

Intense convective rain cells are often responsible for extreme 

hydrometeorological events including the majority of flash flood episodes, which is one 

of the most common and destructive weather-related phenomena especially in urban 

areas of Malaysia.  Both ground and radar data from the Klang Valley were the inputs of 

this study on the spatial and temporal characteristics of convective rains. A classification 

based on the β value was used to differentiate the slightly, moderately and strongly 

convective rains.  The areal reduction factor (ARF) obtained from this study is 

comparable with ARF values obtained earlier by other researchers. An intensity duration 

frequency (IDF) curve plotted based only on convective storms generally result in higher 

storm intensity compared to the existing IDF curve and is potentially more appropriate 

for determining design storms for urban areas with high occurrence of convective events.  

Synthetic rainfall data series was generated to overcome lack of short duration data 

series.  Two predominant stochastic rainfall model namely a point-process model based 

on the Neyman-Scott Rectangular Pulses (NSRP) stochastic process and the Markov 

Chain Mixed Exponential (MCME) was employed.  Results of the model evaluation 

using a 10-year hourly rainfall record at station 3217001 in the Wilayah Persekutuan 

indicated that NSRP models describe adequately various statistical and physical 

properties at different timescales (1, 6, and 24-hour). Qualitative and numerical 

evaluation between the NSRP and MCME models indicated both models have 

comparable abilities in preserving the properties at the hourly scales, even though the 

models’ descriptive ability fared better than their predictive ability.  However, they were 

able to preserve the seasonal trend of the observed properties. For forecasting hourly 

rainfall series, the Multivariate Autoregressive Integrated Moving Average (MARIMA) 

model was employed.  A comparison with an autoregressive moving average model 

(ARMA) showed comparable results which highlights the potential of the MARIMA 

model as a forecasting method. 
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ABSTRAK 

 

 

Hujan perolakan lebat biasanya adalah penyebab bagi peristiwa hidrometeorologi 

ekstrim. Ini termasuk kebanyakkan peristiwa banjir kilat yang merupakan salah satu 

fenomena paling merosakkan berhubung iklim terutama di kawasan bandar di Malaysia.  

Untuk kajian ini data hujan diperoleh daripada radar dan juga tolok hujan bagi kawasan 

Lembah Klang.  Hujan perolakan diklasifikasikan kepada perolakan kecil, sederhana dan 

kuat berdasarkan nilai β.  Lengkung ‘Areal Reduction Factor’ (ARF) yang diperoleh 

dari kajian ini adalah setara dengan nilai ARF yang diperoleh dari pengkaji terdahulu.  

Lengkung ‘Intensity Duration Frequency’ (IDF) yang diplot berdasarkan hujan 

perolakan sahaja mempunyai keamatan yang lebih tinggi jika dibandingkan dengan 

lengkung IDF yang sedia ada dan mungkin lebih sesuai bagi menentukan  design storms 

bagi kawasan bandar yang mengalami banyak hujan perolakan. Siri data sintetik pula 

dijana bagi mengatasi masalah kekurangan data bertempoh pendek.  Dua model 

stokastik yang terkemuka iaitu model berasaskan proses  Neyman-Scott Rectangular 

Pulses (NSRP) dan Markov Chain Mixed Exponential (MCME) digunakan.  Hasil 

penilaianan model menggunakan data hujan setiap jam selama 10 tahun bagi stesen 

3217001 di Wilayah Persekutuan menunjukkan model NSRP berupaya mengekal 

beberapa ciri statistik dan fizikal pada tempoh masa yang berbeza (1, 6, dan 24-jam). 

Penilaian kualitatif dan berangka di antara model NSRP dan MCME menunjukkan 

kedua-dua model adalah setanding dalam keupayaan mengekal ciri skala sejam, 

walaupun keupayaan diskriptif mengatasi keupayaan menelah..  Bagaimana pun kedua-

dua model berupaya mengekal trend bermusim seperti ciri data tercerap.  Untuk 

penelahan siri data sejam model Multivariat Autoregresi Terkamir Purata Bergerak 

(MARIMA) digunakan.  Perbandingan dengan model Autoregresif Purata Bergerak 

(ARMA) menunujukkan hasil yang setara dan ini memungkinkan MARIMA berpotensi 

sebagai model penelahan. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

The globally accepted phenomena of climate fluctuations have received wide 

attention from all walks of life.  As climate and weather dictates our life to a certain 

extent, even the uncertainty of a dry and wet season serves to disrupt designed activities.  

Studies on climate change are plentiful in the literature as every country serves to 

address the issue.  On a more local note, the impact of climate change has had some 

impact. Flash floods resulting from extremely heavy thunderstorms are becoming more 

frequent.  So too are the occurrence of tornado-like activities. 

 

Intense convective rain cells are often responsible for extreme 

hydrometeorological events with serious and relevant consequences from a social and 

economic standpoint.  Therefore, the analysis of the spatio-temporal properties of these 

structures is relevant both theoretically and operationally.  It is widely acknowledged 

that storms of convective origins are responsible for the majority of flash flood events, 

which is one of the most common and destructive weather-related phenomena in the 
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country.  In Selangor, these rain events occur mainly during the inter monsoon period as 

discussed in Mohd Nor and Zalina (1999).   

 

A deeper understanding of the properties and the dynamics of convective rain 

cells is, therefore, necessary from a physical and operational point of view.  Studies on 

the origin and physics of convective storms have been reported worldwide (Llasat, 2001; 

Dong and Hyung 2000; Doswell et. al., 1996; Pascual, Callado and Berenguer, 2004).  

Rapid urbanization, which modified the hydrological processes of a catchment is 

responsible for many water related problems in urban areas, especially in the tropical 

regions.  Urban drainage systems, often cannot cope with intense convective rainfall 

events.  It is also difficult to forecasts convective rain in terms of timing and spatial 

distribution as it develops over a short period and can happen any time day or night. 

 

In the management of urban and rural water systems, important hydrological 

processes such as runoff, infiltration and erosion are usually determined using watershed 

simulation models that require rainfall data as input.  Analysis of pollutant migration 

through water flow system also require rainfall data as input. However, existing 

historical records of rainfall are often insufficient in length or in adequate in their 

completeness and spatial coverage to provide a reliable simulation results. Hence, 

simulations of rainfall data have been widely used through rainfall modeling. These 

models were used to generate many sequences of synthetic rainfall series that could 

describe accurately the physical and statistical properties of the observed rainfall process 

at a given location. 

 

In many situations, stochastic approach is always preferred in the rainfall 

modeling as compared to the physically-based model due to the complexity in describing 

the dynamical and randomness properties of the rainfall. Stochastic rainfall modeling 

involves using the historical rainfall data to estimate the model parameters of an 

appropriate model, which may then be used to simulate the desired length of rainfall 

series.  The models are also appropriate for the analysis of data collected on a short time 

scale, e.g. hourly and the synthetic rainfall series produced are said to resemble the 
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observations statistically. This is particularly useful when the observed rainfall data is 

inadequate in terms of length and completeness for hydrological applications. These 

models are also known to have the potentials to estimate the frequency of occurrence of 

critical events generated by rainfall such as flood. 

 

In view of convective rains which are shorter in duration and higher in intensity, 

the modeling is based on hourly rainfall series.  There are two approaches commonly 

used in describing the rainfall process. The first approach combines both the rainfall 

occurrence and rainfall amount and parameter estimation is performed from the hourly 

and the integrated rainfall data. In this approach certain physical processes of rainfall 

structure, for example, rain cells, storm and cell clusters are described with a stochastic 

approach (Kavvas and Delleur, 1981; Waymire and Gupta, 1981a).  The second 

described the rainfall occurrence and the rainfall amount separately and then both are 

superimposed to form the overall rainfall model (Woolhiser et.al,1982, Roldan et.al, 

1982).  A poisson-cluster process, namely the Neyman-Scott Rectangular Pulse model is 

used for the first approach and the Markov-Chain Mixed Exponential model is used in 

the latter. 

 

Forecasting of convective initiation poses a challenge as orographic and diurnal 

cycles which triggers a convective activity need to be correctly identified and assessed. 

Rainfall forecasts can help to determine the magnitudes and patterns of the rainfall 

expected.  It helps prevent hazards caused by flash flood such as damages on building 

structures and casualties. Forecasting rainfalls also allow an efficient real-time control 

(RTC) of combined sewer systems (CSS), by proper operation of gates and pumping 

stations.  These control actions enable tanks and channels of the sewer system to be kept 

at low levels, in order to allow the storage of water volumes of the approaching storm, 

and to limit the overflow, thus reducing damage, costs and pollution.  It is also the means 

to prepare for drought where the water can be stored if there is no rain for a very long 

term. 
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Forecasting rain is one of the most difficult tasks in weather prediction due to the 

scarce knowledge on how to characterize the mechanisms taking part in its formation.  

Many different techniques have been proposed to forecast rainfalls.  Among these, a 

physically based approach which makes use of meteorological models might be 

appealing.  However there is some limitations using this approach such as the hydro 

meteorological variables are not available.  In these cases, rainfall forecasting based on 

stochastic models represent a useful tool where one may be able to forecast rainfall 

based on current and past rainfall measurements even though such forecasts may not be 

as accurate as those based on meteorological considerations.  In the literature, several 

attempts to forecast rainfall based on mathematical models can be found such as using 

the Box-Jenkins models, the neural network models and the numerical weather 

prediction (NWP) models. 

 

Hydrological data such as rainfall and humidity are often collected in roughly 

equally spaced time intervals such as, hour, week, month, or year.  Such time series data 

may be available on several related variables of interest.  In other words, more than one 

series is involved in such a model.  For example, the rainfall data, where the series is the 

current and past rainfall occurrences observed at several points in the basin, including 

the point itself.  The operational use of multivariate autoregressive integrated moving 

average (MARIMA) model or also known as multiple time series ARIMA was 

suggested by Montanari et al. (1994), who highlighted how a multivariate scheme could 

remarkably improve the forecasts.  In view of the limitations regarding the physics of 

convective rain initiations, the study undertook the stochastic approach of forecasting 

using MARIMA. 

 

 

1.2 Objective of the Study 

 

The objectives of the research are: 

 

(i) To define and identify convective rain based on predetermined variables 
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(ii) To build/identify a model for convective processes for predicting flash floods. 

 

 

1.3 Scope of Study 

 

The study encompasses a detailed investigation into the spatio-temporal behavior 

of convective rain.  Distinguishing convective from non-convective events, tracking the 

movement of storms using radar data and building intensity duration frequency curves 

based on convective rains are included in the research.   

 

 For the modeling and generation of synthetic hourly data, two approaches were 

investigated namely the stochastic Poisson-cluster process and the Markov-chain 

process.  Hourly rainfall data were the main input for building the models and seasonal 

effect was taken into account. 

 

 The third and last part of the study involves forecasting of hourly rainfall based 

on a multivariate autoregressive integrated moving average model.  Physically based 

model were not considered due to the limitations in hydro meteorological data and 

difficulty in assessing the physics of such events.   
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CHAPTER 2 

 
 
 
 

LITERATURE REVIEW 

 
 
 
 

2.1 Identification of Convective Rainfall 

 

Forecasting of convective initiation is one of the main current challenges in 

operational nowcasting tasks today.  Knowledge of areas where convection develops 

most frequently is very important.  It has been widely known that storms of convective 

origins are responsible for the majority of flash flood events that causing significant loss 

of life, property damage, soil erosion and other socio-economic problems.  

Unfortunately, forecasting skill for heavy convective rain still lacking at present.  The 

characteristic of convective rain such as intensity, rainfall duration, spatial distribution 

and storm movements are still not enough.  No specific guideline is giving a better 

understanding of this rain which is plays an important part of flooding area. 

 

In Malaysia, these events have contributed to substantial damages and losses 

especially in areas that are prone to flash flood such as Klang Valley.  This problem has 

not been eased even though million of ringgit has been spent or allocated to overcome 

the drainage problem.  Therefore, in this study an effort is made to examine the 

characteristics of convective rain from Klang Valley’s surface rainfall data and radar 

data.   
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Although convective rain has long been recognized as important in the area, its 

contribution has to our knowledge, never been quantified properly.  The nearly reason is 

that convective rain not usually recorded and therefore it is hardly identifiable in 

meteorological records.  Nevertheless, in addition to its meteorological interest, for some 

applications such as in civil engineering, microwave radiolinks (Burgueno et al., 1987, 

1988; Vilar et al., 1988), design management of drainage systems and water resources 

management (Cheng-Lung Chen, 1983; Vazquez et al., 1987; Nix, 1994), it is needed to 

know the type of rain. 

 

In this chapter, the types of rain, the measurement of rainfall and the previous 

research on convective rain were described.  The probability of the occurrence of flash 

flood due to convective storm also discussed.  Then the methods of spatial interpolation 

and comparing spatial distribution between all of that method were presented at the end 

of this chapter. 

 

 

2.1.1 Convective Rainfall 

 

Unlike stratiform precipitation, which is formed in a stable atmosphere, 

convective precipitation is formed in an unstable atmosphere.  Convective rain is a 

sudden short outburst of rain that brings heavy rainfall in a short period of time.  

Usually, this short outburst of rain is heavier than normal rainfall.  This precipitation 

occurs from convective clouds e.g., cumulonimbus or cumulus congestus.  It falls as 

showers or a sudden downpour, with rapidly changing intensity.  Beside that, the 

downpour is within one area at a time, as a convective cloud has limited horizontal 

extent (WikiAnswers, 2007). Convective precipitation usually occurs in the tropics 

especially in midlatitudes.  This phenomenon is due to convection process.  Convection 

is the vertical transport of heat and moisture in the atmosphere, especially by updrafts 

and downdrafts in an unstable atmosphere.  The atmosphere is classified as unstable 

when the temperature of displaced surface air is warmer than that of the environment 

surrounding it.  This difference in temperature causes the displaced air to rise up into the 

http://www.personal.psu.edu/users/m/s/mss298/Meteo482/topic3.html
http://www.answers.com/topic/cumulonimbus-cloud-1
http://www.answers.com/topic/cumulus-congestus-cloud
http://www.answers.com/topic/tropics
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atmosphere until it gets to a point where it is colder than its surrounding air.  At this 

time, the air begins to fall back towards its original location.  This happens because 

warm air is less dense than cold air at equal pressure (PennState, 2001).  Figure 2.1 

clearly shows the process of convective rainfall. 

 

 
(a) warm air rises 

 

 

(b) Air from surrounding regions move in to replace the warm air as it moves up. The air that 
moves in to take the place of the rising air has to come from the north or the south because 
the air to east and west is also extra hot and rising. 
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(b)  As the warm air rises it expands and cools. Since cool air cannot hold as much moisture, this 
often results in rainfall. The cooled air is then drawn back towards the poles, dropping 
towards the earth to replace the air moving along the surface near the equator. This cycle of 
air movement is called convention and causes convective rainfall. 

 
Figure 2.1 : The formation of convective rainfall (After Charles L. Hogue, 2007) 

 

 

2.1.2 Identifying Convective Rainfall 

 

2.1.2.1 Rainfall Intensity 

 

The intensity of rainfall is dependent on the rate at which storm processes water 

vapor.  In this case, a distinction could be made essentially, between precipitation of 

convective origin and precipitation stratiform origin.  Many researchers used intensity as 

a method to differentiate among convective and stratiform rainfall.  Dutton and 

Dougherty, 1979; Watson et al., 1982 sets a convective rainfall rate threshold at 50 

mm/hr and below as supposedly non-convective.  Llasat and Puigcerver (1997) divided 

their analysis into four kinds of event: (1) non-convective (2) convective with rain rate 

equal or less than 0.8 mm/min (3) convective in which the rate threshold of 0.8 mm/min 

was exceeded; and (4) rainfall from thunderstorms.  Llasat studied convective rain for a 

number of years.  In 2001, she used 35 mm/hr as a threshold intensity value and was 

utilized parameter β for characterizing convective rain (Llasat 2001). 
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Nevertheless, Houze (1993) distinguishes between stratiform or convective 

precipitation on the basis of vertical air velocity, w.  If it is less than the terminal fall 

velocity of ice crystals and snow, it is called as stratiform.  But nowadays, radar can also 

be used to make a distinction between both of these rainfalls.  Using 4-D radar imagery, 

the ‘bright band’ near the melting level is a signature that helps to distinguish convective 

mode from stratiform mode (Llasat, 2001).  Steiner et al. (1995) proposed two methods 

to distinguish between stratiform and convective precipitation in radar echo patterns.  

Radar used reflectivity to measure the intensity of rain and usually the reflectivity is 

expressed in decibels of z (dBZ).  Dong and Hyung (2000) used 35 dBZ to determine 

convective rainfall.  Pascual, Callado and Berenguer (2004) used four reflectivity 

thresholds: 30 dBZ, 35 dBZ, 40 dBZ and 45 dBZ during identify convective cells origin.  

On the other hand, Rigo and Llasat (2002) used 43 dBZ to analyse convective event 

which is derived from meteorological radar. 

 

 

2.1.2.2 Rainfall Duration 

 

As previously mentioned, convective rain is a sudden short outburst of rain that 

brings heavy rainfall in a short period of time.  These are usually inversely related, 

because high intensity storms are likely to be of short duration and low intensity storms 

can have a long duration.  Brooks et al., (1992) noting that convective cell typically has 

a lifetime of about 20 min.  It follows, then, that any convective storm lasting more than 

about 20 min is made up of more than one cell.  A convection cell is a phenomenon of 

fluid dynamics which occurs in situations where there are temperature differences within 

a body of liquid or gas (Wikipedia, 2007). 

 

Ronal and Andrew (1981) studied about duration of convective events related to 

visible cloud, convergence, radar and rain gage parameters in South Florida.  The highly 

variable response could be understood better by taking into account the duration of the 

cloud where it is defined as the time from first surface convergence until it is complete 

dissipation.  From their observation, the average of storm duration for nine clouds was 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Liquid
http://en.wikipedia.org/wiki/Gas
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25 min from first convergence to first organization of the cloud area.  Another 35 min 

passed, on the average, until the clouds began a rapid upward growth stage.  

 

 

2.1.2.3 Analyses on Convective Rain 

 

The poor quality of heavy rain forecast might seem surprising in view of the 

great improvements over recent years in general weather forecasts.  Predicting where 

such storms will break out or start abruptly is one of the major challenges facing 

meteorologists today.  Furthermore, convective storms always cause downpours and 

flash flood.  This situation motivates many researchers to study about convective rain. 

 

Llasat and Puigcerver, (1997) studied convective rainfall with an objective to 

obtain the percentage of convective rainfall from the total rainfall amount in Catalonia.  

Convective events were identified on charts of a rain-rate recorder from 1960-1979.  

Events were classified into four categories: non-convective, convective with low rainfall 

rates, convective with moderate to high rates and thunderstorm events.  From the result, 

the ratio of convective to total rainfall amounts ranges from 70 to 80 percent in summer 

months to less than 30 percent in winter.  Next, in year 2001, Llasat characterized 

convective rain in new event classes and apply it in modelling intensity-duration-

frequency (IDF) curves and design hyetographs (Llasat, 2001).  A parameter related to 

the greater or lesser convective character of the precipitation, designated as β is defined.  

Intensity value of 35 mm/hr is taken as threshold intensity and β parameter was 

classified into four categories; non-convective, slightly convective, moderately 

convective and strongly convective.  Llasat and Rigo (2002) used radar in their analysis.  

They studied convective structures with made a comparison between meteorological 

radar data and surface rainfall data.  In year 2007, Llasat and Barnolas studied flood 

geodatabase and its application in meteorology of climates.  In their study, convective 

rain was divided in three types; (1) very convective rainfall events: episodes of very 

short duration (less than 6 h) but very high rainfall intensity, (2) very convective and 

moderate rainfall events: episodes of short duration (between 6 and 72 h) with heavy 
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rain sustained for several hours, and (3) episodes of long duration (approximately 1 

week) with weak raingauge intensity values.  Geographical Information System (GIS) is 

used to display all of the information in geodatabase.  From the analysis, fall season 

floods are mainly identified with convective episodes with heavy rain sustained for 

several hours.  The inland region is mainly affected by episodes of types 2 and 3.  While 

episodes of type 1 mainly affected in regions with a high population density. 

 

Nowadays, there are many researchers used meteorological radar to detect 

convective area and done various analyses.  By using radar, two algorithms have been 

applied to analyze convective structures.  First, Johnson et al., (1998) identified 

convective cells as a region of maximum reflectivity in 3D.  Second algorithms were 

proposed by Steiner et al., (1995), where they identify convective structures at the 

lowest level 2D.  These algorithms classify pixels from radar image as rainfall or non-

rainfall.  Then they choose which rainfalls satisfy certain requirements to consider them 

as ‘convective’and ‘stratiform’.  Both of these algorithms also have been applied by 

Rigo and Llasat (2002) where they used radar data and surface data to improve the 

tracking and nowcasting of convective structures in Catalonia, Spain.  For surface 

rainfall data, they used 35mm/hr as a rain rate threshold of convective events whilst 

43dBZ as a reflectivity threshold to do a first identification of convective rainfall.  The β 

parameter (Llasat, 2001) is used to identify the degree of convection of every rainfall 

event for raingauge data.  The comparison of the daily β parameter for raingauges and 

radar charts allows identifying the areas most prone to convective precipitation, 

especially for different seasons.   

 

Another study of convective rain using meteorological radar is Pascual et al., 

(2002) and Callado et al., (2002).  They analyzed the origin of convection identified in 

radar data with low levels convergence zones.  After that, Pascual et al., (2004) studied 

about convective activity during the summer of 2003 and relate it with convergence 

areas associated to terrain characteristics and to the interaction between different flows 

at low levels.  The 15 C-band Doppler radars are used in this study.  The results were 

presented in term of relative frequency maps.  From the observation, higher relative 



 13

frequencies for all thresholds (30 dBZ, 35 dBZ, 40 dBZ and 45 dBZ) appear in 

mountainous terrain and most of the frequencies happen between 12:00 and 18:00 hours. 

 

As mentioned before, convective activities are more frequent in the Tropics.  The 

diurnal cycles of convective activity are different and it is depend on the location and 

weather.  If the location is near to the sea, the convective activity may due to wind and 

water vapour from the sea.  The duration also can be different with other location.  Hara, 

Yoshikane and Kimura, (2006) conducted a cloud-resolved simulation using regional 

climate model to clarify the mechanism of diurnal cycle of convective activity around 

Borneo Island.  The convective activities on top of mountain decay in evening.  The 

diurnal cycle of convective activity in Borneo Island is maintained by sea breeze and 

upslope wind and is dependent on the distance from the coast to the centre of the 

mountain.  The convective activities continue until the next morning.   

 

 Dong and Hyung (2000) studied heavy rainfall with Mesoscale Convective 

Systems (MCSs) over the Korean Peninsular.  A Mesoscale Convective Systems (MCSs) 

is a complex group of thunderstorms which becomes organized on a scale larger than the 

individual thunderstorms, and normally persists for several hours or more.  It can be 

round or linear in shape, and include systems such as tropical cyclones, and squall lines 

(Wikipedia, 2007).  The study focused on mesoscale convective systems (MCSs) which 

were most responsible for flash floods over the central Korean Peninsular for 6 hours.  

The evolution and movement of convective storms resulting in heavy rainfall were 

investigated.  They used WSR-88D radar data to conduct the study.  From their 

observation, the heavy rainfall was caused from well-organized multi-cell type 

convective storms in MCSs.  The storm abruptly started near the sea and land, and then 

merged into large convective storm within less than 2 hours.  To investigate movement 

of the convective storms, they tracked the edges of convective storms.  It is found that 

the boundaries changed into a very complex shape with time and the storm movement 

was very limited. 

 

 

http://en.wikipedia.org/wiki/Thunderstorms
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2.1.2.4 Probability of Flash Flood due to Convective Storm 

 

Convective storms are always related with the flash floods.  It is produced by 

strong convection in a short time.  Charles (1993) considered a precipitation rate of 

about 25 mm/hr as quite heavy, and flash floods often result from rainfall intensities 

much greater than that value (25 mm/hr).  For this time, it is difficult to sort this rainfall 

rate from non-convective processes.  This is because they simply don’t process water 

mass fast enough.  Charles also identified the precipitation efficiency which is indicated 

from water vapour.  Precipitation efficiency is defined as the ratio of the water vapour 

absorbed into the storm to the water dropped as rainfall.  This ratio is not meaningfully 

evaluated in an instantaneous value.  At the start of convective storm, no rain is falling, 

so the ratio is zero, but at the end of the storm, rainfall can continue to fall after the 

updraft has dissipated.  Figure 2.8 shows a schematic diagram of precipitation efficiency.  

Therefore, this quantity only makes sense as a time essential over the lifetime of 

convective system (Fankhauser, 1988).  Simple basic consideration suggest that of the 

water vapour passes through a convective storm, what doesn’t fall out as precipitation 

must evaporate.   

 

Barnolas and Llasat, (2007) studied a flood geodatabase in Catalonia.  They 

classified flash flood into three types based on the convective character of rainfall event.  

Type 1:  Very convective rainfall events: episodes of very short duration (less than 6 h) 

but very high rainfall intensity.  They produce flash flood and local damage.  Their 

associated floods are usually ordinary or extraordinary, following the classification 

shown in Llasat et al., (2005).  Type 2: Very convective and moderate rainfall events: 

episodes of short duration (between 6 and 72 h) with heavy rain sustained for several 

hours (200-500 mm).  In the light of their duration and size of catchments, they can 

produce catastrophic flash floods.  Type 3: Episodes of long duration (approximately 1 

week) with weak raingauge intensity values, with possible peaks of high intensity.  

Accumulated rainfall can be over 200 mm and usually ordinary or extraordinary floods 

occur.  From their study, episodes of type 1 mostly occurred in the area which has a high 

population density.  While episodes of type 2 and 3 occurred in the inland region.  It 
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seems that rainfall duration, amount of precipitation and areas of rainfall are main 

factors in identifying flash flood into several classes. 

 

 
Figure 2.2 : Schematic diagram showing the time history (in arbitrary time units) of 

water vapor input and precipitation output (hatching) for a convective 

storm system. The ratio of the areas under the two curves is the 

precipitation efficiency (after Charles, 1993) 

 

The heavy rainfalls that produce flash floods are the result of high rainfall rates 

that remain.  The high rainfall rates are caused by high water vapour mass flow through 

convection, coupled with high precipitation efficiency.  The previous study also show 

that convective events and the occurrence of flash flood in a particular area always 

related to each other.  All of these findings are very important to give much more 

information about convective especially in the areas most prone to convective rainfall. 
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2.1.4 Spatial Interpolation 

 

A very basic problem in spatial analysis is interpolating a spatially continuous 

variable from point samples.  In hydrology, rainfall is always measured only at 

raingauges.  Nevertheless, engineers are interested to estimate the total rainfall in a 

watershed.  Nowadays, the question is how to calculate the individual rain measurements 

to obtain the best estimate of rainfall at an unmeasured location.  Figure 2.3 shows the 

basic interpolation process in some area.  

 

 
Figure 2.3 : The interpolated value at the unmeasured yellow point is a function of the 

neighbouring red points (From ArcGIS Help Menu) 

 

Three interpolation techniques, namely the Inverse Distance Weighted (IDW), 

Kriging and Spline Method are the most commonly used techniques to estimate grid 

point values from scattered data (Keckler, 1995).  In this section, all interpolation 

techniques will be discussed and a comparison of the spatial interpolation between some 

of these methods and also from the previous study will also be presented.   
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2.1.3.1 Kriging Method 

 

Interpolation by Kriging is a geostatistical method based on statistical models 

that predict spatial correlation of sampled data points (Dille et. al., 2002).  Kriging was 

developed in 1960s by the French mathematician Georges Matheron.  Originally, it is 

proposed by Krige, a South African mining geologist, who is the first to introduce the 

use of moving averages to avoid overestimation of reserves.  The method has been used 

by gold mining engineers in South Africa and it is used to estimate gold in a rock from a 

few random core samples.  Since this method is widely used in geology, Kriging has 

become similar with the variety of geological statistics (Matheron, 1963).  Today, 

Kriging has found its way in the earth science and other disciplines.  In spatial 

interpolation, it is an improvement from inverse distance weighting because prediction 

estimates tend to be less bias and predictions are accompanied by prediction standard 

errors (quantification of the uncertainty in the predicted values) (Jon and David, 2002). 

 

The objective of Kriging is to estimate values of a field (or linear functions of the 

field) at a point (or points) from a limited set of observed values (Bras and Rodriguez-

Iturbe, 1985).  Spatial correlation, is a statistical relationship among measured points in 

one data set.  Kriging also can provide some measure of certainty or accuracy of the 

prediction models based on correlation.  Kriging models use semivariogram or 

covariance to depict the spatial correlation between measured sample points and to make 

optimum predictions.  Semivariogram modeling is the element that must to separate the 

spatial modeling from simple spatial description.  The model assumes that measurements 

that are geographically close together are more similar than ones that are farther apart 

(Donald, 1994).  Figure 2.4 shows the spatial correlation in kriging. 
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Figure 2.4 : Spatial correlation (a function of distance between pairs of locations) 

 

Semivariograms are described by the parameters of range, sill, and nugget.  All 

of these elements are needed to interpolate data with a Kriging method (Figure 2.5).  The 

range is the distance from a measurement (known sample) point to the point where the 

semivariance stops increasing with distance from the sample point.  Sill is known as the 

value at which the semivariogram model attains the range.  It is mean that the change in 

semivariance is no longer increasing with increasing distance from the sample point.  

The nugget is created by measurement errors or spatial sources of variation at distances 

smaller than the sampling interval.  Nugget also recognized as the value of semivariance 

when the distance from the sample point equals zero (Main et. al., 2004).  One more 

element is partial sill.  Partial sill is sill minus the nugget and this value is needed for 

Kriging interpolation.  Figure 2.5 shows one example of semivariogram.   

 
 

Figure 2.5  : Example semivariogram depicting range, sill, and nugget (after Main et al., 

2004). 
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As already noted, Kriging models use semivariogram or covariance to depict the 

spatial correlation.  Estimation of covariance is similar to the estimation of 

semivariogram, but covariance requires mean data.  However, the data mean usually not 

known, but estimated and this causes bias.  This situation resulted that most 

geostatistical software use semivariogram as default function tool to characterize spatial 

data structure (Konstantin, 2006).  The equation of semivariogram and covariance can be 

described as: 

 

Empirical Semivariogram (Equation 2.3) 

Semivariogram (distance h) = ½ average [(value at location i – value at location 

j)2] 

 

Empirical Covariance (Equation 2.4) 

Covariance (distance h) = average [(value at location i – mean)*(value at location 

j – mean)] 

 

where, for all pairs of locations i and j separated by distance h 

 

 

Kriging is considered the best predictor of non-sampled locations, because mean 

residual error is minimized by its calculation (Isaaks and Srivastava, 1989).  Actually, 

Kriging interpolation is similar to IDW where it uses surrounding data points to predict 

an unknown value for an unmeasured location.  The difference with Kriging can be 

mentioned in three ways:  

 

(a)  the predicted point depends on a fitted model to the measured points;  

(b)  the distance from the unknown point to measured points; and  

(c)  the spatial relationship among the measured points around the predicted 

point. 
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In this study, Kriging Method is chosen to show the spatial distribution of rainfall 

derived from surface rainfall data. 

 

 

2.2 Model Building Using Stochastic Rainfall Modelling : Neyman-Scott 

Rectangular Pulse Model (NSRP) and  Markov Chain Mixed Exponential 

Model (MCME). 

 

The modeling of rainfall has been progressing significantly in the recent decades. 

It has a long history in literature with significant advances being made over years in the 

statistical methods and techniques used and the subsequent accuracies achieved. 

Reviews of previous works on rainfall modeling have been discussed exhaustively in 

Waymire and Gupta (1981), Foufoula-Georgiu and Krajewski (1995) and Onof C. et al., 

(2000).  Two models based on stochastic rainfalls modeling are adopted in this study. 

The first is on the cluster point process and the second is on empirically derived models 

with “fitted” parameters.  The developments of both models are presented as follows. 

 

 

2.2.2 Neyman-Scott Rectangular Pulse (NSRP) Model 

 

Two of the most recognized cluster-based models used in stochastic modeling of 

rainfall are the Neyman-Scott Rectangular Pulses (NSRP) model and the Bartlett-Lewis 

Rectangular Pulses (BLRP) model (Rodriguez-Iturbe et.al. (1987a).  These models 

represent rainfall sequences in time and rainfall fields in space.  Both the occurrence and 

the depth processes are combined and parameter estimation is performed from the hourly 

and the integrated rainfall data.  To understand properly the models, we begin with the 

reviews of the theoretical basis of stochastic point processes.  These reviews will focus 

on the study of special processes that have importance application related to rainfall 

modeling .  The developments of techniques for analyzing data generated from such 

processes can be found for example in Waymire and Gupta (1981c) or Rodriguez-Iturbe 

et.al. (1987a).  In stochastic processes, the realizations consist of point events in time or 



 21

space.  This is used in many fields of applications and is discussed exhaustively in 

literature from several points of views (Cox and Isham, 1980; Waymire and Gupta, 

1981a).   

 

 

2.2.1.1 Development of the Neyman-Scott Rectangular Pulse Model (NSRP) 

 

The Neyman-Scott cluster point process, originally developed in 1958 to describe 

the distribution of galaxies in space (Neyman and Scott,1958) has become an important 

representation for a broad range of phenomena in the physical, biological, and social 

sciences.  Vere- Jones (1970) applied Neyman-Scott (N-S) cluster process in the time 

dimension to model the earthquake occurrences in which he utilized the probability 

generating functional (pgfl) of N-S process in modeling the occurrences but did not give 

a derivation of this functional.  Lawrence (1972) modeled the earthquake occurrences by 

deriving the probability generating functional of the Neyman-Scott (N-S) process by 

counting the cluster centers which represented the main shocks and the aftershocks form 

the secondary process.  In the hydrologic literature Kavvas and Delleur(1975,1981), 

Kavvas (1982a,b), Gupta and Waymire (1979), and Waymire and Gupta (1981a,b,c) 

have popularized the use of cluster models.  

 

There are number of variations of the N-S model for representing rainfall events. 

All variations are essentially the same in the way they model the occurrence of the 

rainfall events, i.e the occurrence of the rain cells.  The variety of N-S models results 

from how the depth of rain associated with each rain cell is distributed over a time 

interval. The simplest N-S model, known as the N-S white noise model takes the rain 

cells as instantaneous bursts and associates some distribution with the depth of rain due 

to the cell. This model was first introduced for representing rainfall events by Kavvas 

and Delleur (1975), by deriving expressions for the counting properties of rain cell 

occurrence.  Waymire and Gupta (1981 a,b,c) demonstrated how the probability 

generating functional taken from the general theory of point processes can be an 

effective tool for capturing the joint distributional properties of the counting process of 
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rainfall occurrences.  Smith and Karr (1985) showed that a N-S process, in which the 

distribution of cluster sizes is Poisson and the distribution of the distance of the cluster 

members from the cluster center is exponential, could be represented as a Cox process. 

Using this representation they derived the maximum likelihood estimates for parameters 

of the N-S model.  Rodriguez-Iturbe et al. (1984) found the second-order moments of the 

aggregated N-S white noise model.  These properties are particularly desirable as rainfall 

records tend to be available in aggregated form, usually as daily totals. N-S white noise 

model perform better than other rainfall model over range of time scales (Cowpertwait, 

1991).  Valdes et al. (1985) also found that the N-S white noise model performs better 

over time scales from 1 to 24 hours, when compared with some other rainfall models.  

However, they found that the N-S white noise model appears not to be able to preserve 

the statistics of extreme rainfall events. Foufoula-Georgiou and Guttorp (1987) also 

found inadequacies in the N-S white noise model in particular, difficulties were found 

when estimating the model’s parameters, when using both the method of moments and 

maximum likelihood estimation. 

 

Motivated by the inadequacies of the N-S white noise model, Rodriguez-Iturbe et 

al. (1987a) introduced the N-S and Bartlett-Lewis Rectangular Pulse models for 

representing rainfall.  These models give each rain cell a random duration, and a random 

intensity which is constant throughout the cell duration.  In their paper the second-order 

moments of the aggregated process for the N-S model are found, under the assumption 

that the duration and the waiting time for the rain cells after the beginning of the storm 

are exponentially distributed.  An analysis of empirical data using the N-S and Bartlett-L 

ewis rectangular pulse models has been carried out by Rodriguez-Iturbe et al.(1987b), 

the conclusion being that the rectangular pulse models are able to preserve rainfall 

statistics, including extreme values, over time scales from 1 hour upward, with the 

exception of the proportion of dry days. 

 

To solve the problem of overestimation of the probability of observed dry 

periods, Rodrigue-Iturbe et al.(1988) suggested the use of a modified  Bartlett-Lewis 

model with an additional parameter, and Entekhabi et al. (1989) introduced a similar 
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modification in the Neyman-Scott model.  In the modified  NSRP, the rain cell duration 

η was random and was allowed to change from storm to storm.  The probability density 

function for η is assumed to be a two-gamma distribution with shape parameter α. 

Burlando and Rosso (1991) questioned the ability of the modified Bartlett-Lewis models 

to reproduce the historical characteristics of the rainfall series, stating that the original 

N-S model fits better than the original and the modified Bartlett-Lewis models.  They 

(1996) also pointed out some features limiting the use of stochastic point processes in 

modeling storms, such as the inability to reproduce variability displayed in the extreme 

storms, nontrivial mathematical complexities are involved in the construction and 

implementation of the models, and the presence of subjectivity in the parameter 

estimation. 

 

Velghe et al. (1994) argued that even though the modified models gave a better 

zero depth probability, owing to the higher complexity of the parameter estimation they 

did not preserve the second order properties (especially lag-2 and lag-3 auto-

correlations) of the rainfall process.  The authors also found that the Barlett-Lewis 

model, especially in the modified version, is very sensitive to the choice of moments 

used in the parameter estimation. The original and modified versions of the geometric 

Neyman-Scott model were found to be amenable to practical use in hydrological studies 

than the Poisson Neyman-Scott model. However, the findings were not conclusive and 

open to many more research to be undertaken. 

 

Cowpertwait (1994) further developed the model at a single site by allowing each 

generated cell to be of n types. The model developed is called generalized Neyman-Scott  

Rectangular  Pulses [GNSRP(n)]model.  The case for two cell types was considered, 

categorized as either “heavy” or “light” where heavy cells have shorter expected lifetime 

than the light cells, which agreed with the observational studies on precipitation fields.   

Cowpertwait (1997) fitted the model and harmonic parameter estimates were regressed 

on sites variables.  The residual errors analysis showed that the regression equations 

could be used with reasonable confidence for urban sites.  
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Stochastic spatial-temporal models of rainfall have been formulated based on 

physical processes observed in precipitation fields which usually incorporate bands of 

rain, regions of high intensity rain, and rain cells.  These fields can be used to simulate 

fine resolution data over a large geographical region, and are potentially useful in real-

time forecasting.  Cox and Isham (1988) developed a simple model where storm centers 

arrived in a two-dimensional space and time Poisson process but empirical analysis of 

data has shown that rainfall events tend to arrive in clusters.  Cowpertwait (1995) then 

formulated spatial-temporal model where the arrival times of rain cells follow a 

Neyman-Scott process.  The cells are randomly classified from 1 to n with different 

parameters for different cell types, so that the random variables of an arbitrary cell, e.g. 

radius and intensity, are correlated.  The model has a flexible structure, via the 

generalization, so that a reasonable fit to multi-site extreme values could probably be 

achieved.   However, the range of applications to which the model could be applied may 

be limited because rain cells are taken to have zero velocity.   An extension of the 

generalized spatial-temporal model was done by introducing the third moment function 

for the single site model by Cowpertwait (1998).  A good fit to the observed extreme 

values over a range of time scales was found.  Lack of fit was evident when the third 

moment was excluded from the fitting procedure. However, the cell parameter estimates 

had large standard errors and were related, partly due to the difficulty in identifying cells 

in physical process.  Statistical properties for the spatial-temporal model (Cowpertwait, 

1995,1998) were combined into the fitting procedure, which used moments up to third 

order and cross correlation function (Cowpertwait, 2002), but for a single type of cell. 

The results indicate that the model is able to preserve regional extremes and support the 

use of the model in hydrological applications.  

 

The GNSRP(n) that was developed by Cowpertwait (1994) did not include the 

third moment function.  Hence, Cowpertwait (2004) developed a mixed model by using 

superposed independent NSRP processes to make use of the existing NSRP functions 

that have been derived and cited in Cowpertwait (2002).  The use of superposed 

processes makes an allowance for different possible storm types, e.g. those with 

predominantly convective cells or stratiform cells.  This model gives further flexibility in 
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the parameterizations thus providing a methodology for obtaining good fits to a wider 

range of data. 

 

Kim et al.,(2006) developed a new stochastic point rainfall model which 

considers the correlation structure between rain cell intensity and duration.  The model is 

able to reproduce well the statistical characteristics of the historical rainfall series and 

the model generated data are robust with different parameter sets when the correlation 

parameter is appropriately taken.  

 

Previous studies assumed that rain cell intensity follows an exponential 

distribution due to its small number of parameter (e.g. Rodriguez-Iturbe et al., 1987a, 

1988; Cowpertwait, 1996, etc).  However, the choice of distribution for the cell intensity 

in the NSRP model is arbitrary.  Cowpertwait (1998) had used gamma to represent the 

rain cell distribution because past studies have reported lack-of-fit to extreme values 

under the exponential distribution.  Cowpertwait, (1996, 2002, 2004) had also attempted 

a heavier-tailed distribution such as Weibull to improve the fit in the extremes.  Hence, 

there are still many other distributions that are open to be explored. 

 

 

2.2.2.2 Parameter Estimation 

 

The fitting of the parameters of the model and the assessment of the adequacy of 

its fit raise many statistical questions.  Calenda and Napolitano (1999) described 

exhaustively the different methods for parameters estimation of the NSRPM model.  The 

usual procedure as described by them is based on the method of moments (Rodriguez-

Iturbe et al., 1987a,b; Entekhabi et al., 1989; Cowpertwait, 1991).  The maximum 

likelihood estimates, besides involving heavy mathematical complexity (Smith and Karr, 

1985 a,b) are not available and are not computable because the distribution function of 

the rainfall average intensity in each disjoint time interval for a given scale of 

aggregation is not known.   Even if a likelihood function could be calculated, it would 
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not be a proper basis for fitting the model because the idealization involved leads to 

sample path with some (short-term) deterministic features (Favre et al., 2004).  Kirk 

(1997) fits the model using importance sampling in order to obtain a product-of-spacings 

function, but the estimator obtained is biased. 

 

The original NSRP model depends on five parameters,  , , , ,λ β η ν ξ , so that 

following the method of moments, five statistical properties of the observed time-series 

must be equated to their theoretical expression, and the resulting equations solved for the 

parameters estimates.  The most frequently used procedure that used the method of 

moments, adopted first by Rodriguez-Iturbe et al. (1987,a,b) and then by many others 

(Burlando, 1989; Entekhabi et al.,1989; Islam et al., 1990; Cowpertwait, 1991; Velghe 

et al., 1994).  The historical series is aggregated at two different temporal scales using 

the expressions of the mean at the first level of aggregation, the variances and the lag-1 

autocorrelation at both levels with the mean being a linear function of the scale.  The 

equation system obtained is not linear, and it is solved by minimization of  
2
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The use of the ratio function Z(x) ensures that large numerical values do not 

dominate the fitting procedure. Cowpertwait et al. (1996 a,b) suggested the use of a 

larger set of sample moments.  They used mean at 1 hour scale,  variance at 1, 6 and 24 

hour aggregation,  autocorrelations at 1, 6 and 24 hour and, probability of dry time 

intervals, assigning weights to the different statistics. The used of autocorrelations were 

found to affect the match on the proportion of dry days because autocorrelations tend to 

have large sampling errors because of the large number of zero depths. Thus, the 

autocorrelations at all aggregations were excluded and the transition probabilities were 

used instead while the other moments remained the same.  They also used sample 

moments and transition probabilities at 3 and 12 hour aggregations besides 1, 6 and 24 

that were applied earlier. The results on the proportion of dry periods improved. The 

couple of scales generally considered in the estimation procedure are combinations of  1, 

3, 6, 12 and 24h aggregation scales (Rodriguez-Iturbe et al., 1987 a,b; Entekhabi et al., 
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1989; Islam et al., 1990; Cowpertwait, 1991, 1992; Velghe et al., 1994; Cowpertwait et 

al., 1996 a,b); but sometimes also scales  of 30 min (Burlando, 1991), and 20 min 

(Sirangelo, 1992).  It is generally held that the parameter estimates are not biased by the 

selection of the aggregation scales of the sample data set; but preliminary results 

(Calenda and Napolitano,1997) showed a significant variability of the estimates with the 

scales, that could be ascribed to two different causes: the characteristics of the objective 

function Z(x) change substantially with the scales and the results of the optimization 

algorithm vary when the starting point of the search is changed, especially if the selected 

scales are close together.  They then suggested an alternative estimation procedure based 

on the scale of fluctuation of the observed process. The estimates obtained with the 

proposed procedure are as good or better than those obtained with the usual procedure 

for all aggregation scales, with the exception of very long (24h) and very short 

aggregation times (5 and 10 min), both in term of reproduction of the second order 

statistics and extreme values for different aggregation scales. 

 

Following Calenda and Napolitano (1999), Favre et al. (2002) proposed a 

modified method of moments using two temporal scales of aggregation, hourly (1h) and 

daily (24h). The two scales were selected because the estimates of the parameters of the 

continuous process always depend on the aggregation scales selected for the formulation 

of the solution system. However, if the scales are more widely spaced the estimation 

stabilizes. 

 

 The choice of the minimization of the objective function of concern, whereby 

methods like quadratic convergence of Powell have been proposed (Velghe et al., 1994; 

Calenda and Napolitano,1999) to solve the nonlinear optimization problem.  The main 

difficulty relates, however, to the choice of initial parameters values on which the 

convergence of the algorithm is strongly dependent.  The minimization is carried out in a 

space of five or more dimensions and local minima are difficult to avoid.  To avoid these 

limitations and the related bias an alternative approach is proposed by Favre et al., 

(2004) by reducing the number of parameters to be obtained by minimization.  Using the 

Nelder-Mead simplex the minimization procedure is said to be stable with regard to the 
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starting point of the algorithm and always converges. Nelder and Mead simplex uses 

direct search complex algorithm that is dependent on the comparison of function values 

at the (n+1) vertices of a general simplex, followed by the replacement of the vertex with 

the highest value by another point (Nelder and Mead, 1963). This method is said to 

be effective and computationally compact. 

 

Duan (1992) developed Shuffle Complex Evolution-University of Arizona (SCE-

UA) method that is a general purpose global optimization program. SCE-UA was both 

effective and efficient, compared with the existing global methods such as adaptive 

random research (ARS) method and multi-start Simplex method. He also showed that 

SCE-UA was an effective and efficient optimization technique for calibrating watershed 

models and these are basically influenced by the choices of algorithmic parameters. Han 

(2001) used SCE-UA method to optimize the objective function of NSRP and compared 

that with the Nelder-Mead Simplex method. It was found that the SCE-UA performed 

better than Nelder-Mead simplex method. 

 

 

2.2.3 The Markov Chain Mixed Exponential Model (MCME) 

 

A rainfall model based on daily precipitation is attractive because relatively long 

and reliable records are readily available and such a model is frequently efficient for 

many practical problems.  Stochastic models of daily rainfall are usually divided into 

two parts, a model of rainfall occurrence which provides a sequence of dry and wet days, 

and a model of rainfall amounts, which simulates the amount of rainfall occurring on 

each wet day and then both are superimposed to form the overall rainfall model. 

(Woolhiser et.al,1982, Roldan et.al,1982, ). One of the popular stochastic modeling of 

daily rainfall is the Markov Chain-Mixed Exponential (MCME). The first-order two-

state Markov Chain model is used to describe the daily rainfall occurrence process and 

the Mixed Exponential distribution is used to describe the daily amount distribution. 

Many studies have used the combination of Markov Chain and Mixed Exponential 

(MCME) to model daily rainfall series and the combined model had proven to be the 
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best  in describing rainfall processes (Woolhiser and Pegram. 1979, Woolhiser 

et.al,1982, Han, 2001).  Models of this kind are capable of simulating daily rainfall 

records of any length, based on simulating occurrences and rainfall amounts separately. 

Parameter estimates are needed for transitional probabilities for occurrences and 

parameters are fitted through a frequency distribution for rainfall amounts.  The research 

work presented in this thesis on modeling the hourly rainfall series is based on this 

approach. 

 

 

2.2.2.1 Modeling of Rainfall Occurrences 

 

The Markov chain model for the daily occurrence of precipitation has achieved 

widespread use with Gabriel and Neumann  (1962) was probably the first mentioned in 

literature that had described the daily occurrence using a two-state simple Markov 

Chain. Their work was then adopted by Haan et al. (1976) that proposed a stochastic 

model based on a first-order Markov Chain to simulate daily rainfall series at a point. He 

was able to justify the capability of the model to simulate a daily rainfall record of any 

length, based on the estimated transitional probabilities and frequency distributions of 

rainfall amounts. 

 

According to Chin (1977), the common practice of assuming that the Markov 

order is always one is unjustified. He used a decision criterion based on a loss function 

that is composed of a log-likelihood ratio term and a degree-of-freedom term and the 

order that minimized the loss function is selected. The results showed that the order of 

conditional dependence of daily precipitation occurrences is dependent upon the season 

and the geographical locations.  Gregory et al.(1992) found that the lumping together 

some of the states of a many-state first-order Markov Chain does not in general give a 

first-order Markov chain with a smaller number of states. They even suggested that a 

many-state process, possibly of only first order would actually be a better choice than a 

two-state process. 
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Most of the point process models are continuous in time and not directly 

applicable to discretely sampled data such as the occurrence of rainfall.  But Smith 

(1987) proposed a new family of discrete point process models for daily rainfall 

occurrences termed as a Markov Bernoulli process that contained Markov chain and 

Bernoulli trial models.  The process in which a discrete time analog of  Neyman-Scott 

models was constructed.  Likelihood-based inference procedures for discrete point 

process models of wet-dry sequences were developed that not only evaluates 

quantitatively but also qualitatively the significance of the parameter estimates.  

Foufoula (1987) found an alternative discrete-time point process model termed as 

Markov renewal model. This model exhibits clustering relative to the independent 

Bernoulli process. 

 

Another alternative approach is through the use of spell-length models, where 

observed relative frequencies of dry or wet day spells are fitted to a probability 

distribution. This process is called the ‘alternating renewal process (Buishand, 1977; 

Roldan and Woolhiser, 1982; Raseko et al.,1991) allows for a new spell of opposite type 

of random length to be generated once a spell of consecutive dry or wet days have 

ended. 

 

 

2.2.2.2 Modeling of Rainfall Amounts 

 

Methods of modeling precipitation amounts on wet days have been discussed 

extensively in the literature. The most common approach is to assume that precipitation 

amounts on successive days are independent and to fit some theoretical distribution to 

the precipitation amounts (Todorovic and Woolhiser,1975). A second approach is to 

assume that precipitation amounts are independent but the distribution function depends 

on whether the previous day was wet or dry, i.e a chain-dependent process (Katz,1977). 

Theoretical distributions used include the exponential (Todorovic and Woolhiser, 1975), 

the Gamma (Katz, 1977, Buishand,1977), and the Weibull ( Han,2001). The mixed 
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exponential distribution has been used previously by Foufola-Georgiou and Lettenmaier 

(1987), Woolhiser and Pegram (1979), and Han (2001).   

 

The statistical distribution of rainfall amounts for different length periods was 

discussed exhaustively in literature especially in monthly and yearly scales, where good 

fits using gamma, Gaussian, logarithmic normal and normal distributions were found 

(Delleur anf Kavvas, 1978; Srikanthan and McMohon, 1982).  Distributions on the daily 

scales or lower, on the other hand has higher variability and that limits the number of 

applicable distributions (Nguyen and Rouselle, 1981; Woolhiser and Roldan, 1982). 

 

There was generally no single distribution accepted for describing rainfall 

amount over a wide range of regions and time scales.  Richardson (1981) used the one 

parameter exponential model due to its simplicity, as a first approximation of daily 

rainfall distribution.  However, to improve the fit to the observed the two-parameter 

gamma was used (Ison et al.,1977; Katz,1977; Buishand, 1977).  The three-parameter 

Kappa distribution performed comparably with gamma (Mielke, 1973).  A gamma-

family distribution such as a two-parameter Weibull has also been used.  A three-

parameter mixed exponential was found to be the best fit distribution for daily rainfall 

series for a number of stations in U.S (Woolhiser and Roldan, 1982; Smith and Shreiber, 

1974) and also in Quebec, Canada (Nguyen and Mayabi, 1990). The mixed exponential 

distribution has also given a better representation of precipitation extremes (Wilks, 

1999a) than gamma improves the spatial coherency of precipitation simulated at a 

network of locations (Wilks, 1998). 

 

The method of maximum likelihood (ML) or the method of moments has always 

been used in the estimation of parameters.  An iterative method for the approximations 

of the ML estimators for gamma was presented by Greenwood and Durand (1960) while 

Rider (1961) initiated the initial parameter solutions for the mixed exponential function 

through the method of moments.  A faster convergence to the optimal parameter set was 

done by solving seven likelihood functions with incremental initial guesses for 2 of the 

parameters within reasonable bound was suggested by Nguyen et al. (1990).  However, 
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all iterative convergence methods of ML estimates were found to be computationally 

exhaustive and often provided local optimum solutions.  The method of moments on the 

other hand, has often given an inefficient parameter estimates for asymmetric 

distributions.  It should be noted that robust global optimization methods such as the 

Shuffled Complex Evolution (SCE) method (Duan et al. 1992) and the Direct Search 

Complex (DSC) algorithm (Nelder and Mead, 1963) have not yet been commonly 

applied to parameter estimation of probability distribution using the ML method. With 

the recent advance of computing ability, these global optimization methods could 

provide more robust and reliable parameter estimates.  

 

 

2.2.2.4 Modeling the Seasonal Variations 

 

The seasonal variations of parameters of the probabilistic models are usually 

been accounted for by estimating the parameters in various methods. It can be handled 

by estimating parameters for discrete periods such as a monthly period or 3 monthly 

period.  To be parsimonious with respect to the number of parameters needed to describe 

rainfall at a particular location during a climatologically year, many researchers have 

used Fourier series to describe the periodic seasonal fluctuations of parameters. 

Fayerherm and Bark (1965) used Fourier series to account for parameter variation in 

first-order Markov Chain models of precipitation occurrence. Ison et al. (1971) used 

least-squares estimates of Fourier coefficients to examine seasonal variability of gamma 

distribution parameters for the amount of precipitation for the i day wet period 

(i=1,2,….,i).  Woolhiser and Pegram (1979,1986)  studied seasonal and regional 

variability of parameters for stochastic daily precipitation models. They further used 

maximum likelihood estimates of the Fourier coefficients to describe the seasonal 

variability in parameters from a two-state Markov Chain model for occurrence and from 

a mixed exponential distribution for rainfall amounts.  
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2.2.2.4 Hourly Series Models 

 

The stochastic models discussed above basically used time series of daily total 

precipitation but less effort has been devoted to data on shorter time scales (e.g. hourly), 

with the most prevalent approach being based on so-called conceptual (or physically 

based) models, which involve chance mechanisms(e.g. clustering) by which storms 

arrive (e.g. Neyman-Scott model).  Katz and Parlange (1995) fitted the hourly 

precipitation amounts series into an extension of a form of chain-dependent process 

model that commonly fit to daily amounts. The extensions involve allowing hourly 

intensities to be auto-correlated and allowing the model parameters to possess diurnal 

cycles. The results are competitive, if not superior to the so-called conceptual models of 

the precipitation process. 

 

 

2.4 Further Advances in Rainfall Modeling 

 

The introduction of several new concepts and ideas in rainfall modeling had been 

witnessed in the past decade. The spectral theory of rainfall intensity based upon three 

components of stochastic point processes were used by Waymire et al (1984) and similar 

spectral structure were applied to stochastic modeling of rainfall by Yoo (1996) where 

the derivation was based on the autoregressive process that considered advection and 

diffusion. Elsner et al. (1993) examined the possibility of using the concept of entropy 

for the problem of assessing complexity and predictability of precipitation records. 

Yeboah et al. (1997) used a hybrid point rainfall model for the modeling of rainfall.  The 

recent developments focus more on the refinement of the existing models towards 

applications to practical problems. 
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2.4 Weather Forecasting 

 

 Weather forecasting is the application of science and technology to predict the 

state of the atmosphere for a future time at a given location.  For millennia, people have 

tried to forecast the weather. In 650 BC, the Babylonians predicted weather from cloud 

patterns.  In about 340 BC, Aristotle described weather patterns in Meteorological.  

Chinese weather prediction lore extends at least as far back as 300 BC.  Ancient weather 

forecasting methods usually relied on observed patterns of events.  For example, it might 

be observed that if the sunset was particularly red, the following day often brought fair 

weather.  This experience accumulated over the generations to produce weather lore.  

However, not all of these predictions proved reliable and many of them have since been 

found not to stand up to rigorous statistical testing. 

 

It was not until the invention of the telegraph in 1837 that the modern age of 

weather forecasting began.  Before this time, it had not been possible to transport 

information about the current state of the weather any faster than a steam train.  The 

telegraph allowed reports of weather conditions from a wide area to be received almost 

instantaneously by the late 1840's.  This allowed forecasts to be made by knowing what 

the weather conditions were like further upwind.  The two men most credited with the 

birth of forecasting as a science were Francis Beaufort, remembered chiefly for the 

Beaufort scale, and his protégé Robert Fitzroy, the developer of the Fitzroy barometer.  

Both were influential men in British Naval and Governmental circles, and though 

ridiculed in the press at the time, their work gained scientific credence, was accepted by 

the British Navy and formed the basis for all of today's weather forecasting knowledge. 

 

As practiced by the professionally trained meteorologist, weather forecasting 

today is a highly developed skill that is grounded in scientific principle and the method 

makes use of advanced technological tools.  The notable improvement in forecast 

accuracy that has been achieved since the 1950s is a direct outgrowth of technological 

developments, basic and applied research, and the application of new knowledge and 
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methods by weather forecasters.  High-speed computers, meteorological satellites, and 

weather radars are tools that have played major roles in improving weather forecasts. 

 

A policy statement of the American Meteorological Society as adopted by the 

Council on 13th January 1991 stated that the most impressive gain in forecast accuracy in 

recent years has been in the prediction for the 1 to 5 day range.  A number of factors 

have contributed to the increase in accuracy.  Foremost among these has been the further 

development of numerical prediction models, based on the laws of physics that are able 

to forecast the formation and movement of the large high and low pressure systems that 

govern day-to-day weather changes in middle and high latitudes. 

 

Several other factors have also contributed significantly in increasing the 

forecasting accuracy.  One is the development of statistical methods for enhancing the 

scope and accuracy of model predictions.  Statistical methods allow a wider variety of 

meteorological elements to be predicted than do the models alone, and they tailor the 

geographically less precise model forecasts to specific locations.   

 

A number of different statistical and machine learning techniques have emerged 

in the last decades.  These techniques extract the information contained in 

meteorological databases of historical observations to train specific forecast models such 

as the regression model, hidden Markov models and neural networks.  The resulting 

models predict future outcomes of a given variable based on the past evidence collected 

in the database. 

 

There have also been some attempts for combining both database information 

and the numerical prediction models.  This is done by combining the model’s predicted 

patterns with the information available in the databases such as rainfalls, and predictions, 

such as gridded atmospheric patterns.  Employing downscaling methods, sub-grid detail 

in the prediction is gained by post-processing the outputs from the numerical prediction 

models using knowledge extracted from the databases (Murphy, 1999).  One of the most 

popular downscaling techniques is the method of analogs, which assumes that similar 
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atmospheric patterns may lead to similar future outcomes.  Thus, predictions based on an 

atmospheric pattern can be derived from an “analog ensemble” extracted from the 

database.  

 

Another factor that increases forecasting accuracy is the improved observational 

capability afforded by meteorological satellites (Matthew et al., 2003).  The continued 

improvement of the initial conditions prepared for the forecast models also contributes to 

the increase in accuracy.  Satellites now provide the capability for nearly continuous 

viewing and remote sensing of the atmosphere on a global scale.  The improvement in 

initial conditions is the result of an increased number of observations and better use of 

the observations in computational techniques. 

 

 

2.6 Rainfalls Forecasting Techniques 

 

Forecasting rains is one of the most difficult tasks in weather prediction due to 

the scarce knowledge on how to characterize the mechanisms taking part in its 

formation.  Short term forecasting of rainfall fields is one of the major tasks to achieve 

efficient forecasts of flood events.  Regardless of the model adopted to predict rainfall, it 

has been demonstrated that it allows extending of the lead time of flood forecasts, as 

well as improving the estimate of flood for a given forecast lead time (Brath et al., 

1988). 

 

Many different techniques have been proposed to forecast rainfalls.  Among 

these, a physically based approach which makes use of meteorological models might be 

appealing.  One example is the numerical weather prediction (NWP) model.  Early in the 

20th century, advances in the understanding of atmospheric physics led to the foundation 

of modern numerical weather prediction.  In 1922, Lewis Fry Richardson published 

"Weather prediction by numerical process," which described how small terms in the 

fluid dynamics equations governing atmospheric flow could be neglected to allow 

numerical solutions to be found.  They took the analysis as the starting point and evolved 
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the state of the atmosphere forward in time using understanding of physics and fluid 

dynamics.  However, the sheer number of calculations required was too large to be 

completed without the use of computers.  Nowadays, the complicated equations which 

govern how the state of a fluid changes with time can be solved by supercomputers.  The 

output from the model provides the basis of the weather forecasts.  Unfortunately, a 

major limitation stems from the spatial and temporal resolution of the hydro 

meteorological variables required for the initialization of deterministic models where 

wind speed, relative humidity, temperature and pressure profile cannot be provided by 

most of the operational monitoring networks (Burlando et al., 1996).  

 

In the 1960s, the chaotic nature of the atmosphere was first observed and 

understood by Edward Lorenz, the founder of the field of chaos theory.  These advances 

have led to the current use of ensemble forecasting in most major forecasting centers and 

to taking into account uncertainty arising from the chaotic nature of the atmosphere.  It is 

the second limitation of physically based approaches that could also be viewed in the 

chaotic structure of the thermodynamic equations to be solved (Ghil et al., 1985; Tsonis 

and Elsner, 1989).  This can be detected as an intrinsic limit to predictability of rainfall 

(Rodriguez Iturbe et al., 1989; Ghilardi and Rosso, 1990).   

 

 Since 1986, the neural network technique has drawn considerable attention to 

many researchers as it can handle the complex and nonlinear problems better than the 

conventional statistical techniques where it has the ability to predict future values of the 

time series.  Elsner and Tsonis (1992) have shown that the neural network can be 

successfully used to predict the chaotic series.  It is useful for stochastic and 

deterministic forecast processes where in deterministic forecast process, rainfall time 

series are treated as deterministic and even chaotic. 

 

Nevertheless, some improvements can be expected as related to further 

developments of mixed stochastic-deterministic models where they include both 

deterministic and stochastic aspects in the model such as the so-called limited area 
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models, or simplified meteorological models that act at the basin scale (Georgakakos and 

Krajewski, 1991).  

 

Rainfall forecasting based on stochastic models may still represents a useful tool. 

In the literature, several attempts to forecast rainfall based on mathematical models can 

be found.  Most of them are statistical black-box models where the functional 

relationships between system inputs and system outputs are studied.  The main 

advantage of this model is that they are not as data demanding as the physical models.  

This model develops the concept of storm tracking, based on cross-correlation between 

rainfall either observed at various rain gages, or tracked by radar signals (Nguyen et al., 

1978; Phanartzis, 1979; Johnson and Bras, 1980).   

 

 

2.6 Time Series and Forecasting 

 

A time series is a sequence of observations taken sequentially in time.  There are 

many sets of time series data such as a weekly series of the number of customer in a 

supermarket, a yearly series for the prices of gold and hourly observations made on the 

yield of a chemical process.  Time series are found in many fields such as economics, 

business, engineering, natural sciences and social sciences.   

 

Time series analysis comprises methods that attempt to understand such time 

series, often either to understand the underlying context of the data points such as where 

they came from or what generated them.  The term time series analysis is used to 

distinguish a problem, firstly from more ordinary data analysis problems where there is 

no natural ordering of the context of individual observations and secondly from spatial 

data analysis where there is a context that observations often relate to geographical 

locations.  There are additional possibilities in the form of space-time models which are 

often called spatial-temporal analysis.  A time series model will generally reflect the fact 

that observations close together in time will be more closely related than observations 

further apart.  In addition, time series models will often make use of the natural one-way 
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ordering of time so that values in a series for a given time will be expressed as deriving 

in some way from past values, rather than from future values. 

 

 There are many applications of time series.  One is where the time series are 

used to develop models where predictions can be made.  This is called time series 

forecasting.  Time series forecasting is the use of a model to forecast future events based 

on known past events to forecast future data points before they are measured.  

 

Forecasting is the process of estimation in unknown situations.  Prediction is a 

similar, but more general term, and usually refers to estimation of time series, cross-

sectional or longitudinal data.  Risk and uncertainty are central to forecasting and 

prediction. In more recent years, forecasting has evolved into the practice of demand 

planning in every day business forecasting for manufacturing companies.  The discipline 

of demand planning, also sometimes referred to as supply chain forecasting, embraces 

both statistical forecasting and consensus process. 

 

 

2.6.1 Statistical Time Series and Forecasting 

 

 Statistical analysis of time series data started a long time ago (Tsay, 2000), and 

forecasting has an even longer history.  The objectives of the two studies may differ in 

some situations but forecasting is often the goal of a time series analysis.  Applications 

played a key role in the development of time series methodology.  The following are 

uses of time series analyses in business and economics: 

 

(i) To study the dynamic structure of a process. 

(ii) To investigate the dynamic relationship between variables. 

(iii) To perform seasonal adjustments of economic data such as the gross 

domestic product and unemployment rate. 

(iv) To improve regression analysis when the errors are serially correlated. 

(v) To produce point and interval forecasts for both level and volatility series. 
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To facilitate discussion, we denote a time series at time  by  and let t tz 1−tψ  be 

the information set available at time 1−t .  It is often assumed that 1−tψ  is the σ - field 

generated by the past values of .  A model for  can then be written as tz tz

 

 ( ) ttt afz += −1ψ                            (2.2) 

 

where  is a sequence of independent and identically-distributed random variables with 

mean 0 and finite variance .  It is evident from the equation that  is the one-step-

ahead forecast error of  at time origin 

ta

2
aσ ta

tz 1−t  and hence it is often referred to as the 

innovation or shock of the series at time t .  The history of time series analysis is 

concerned with the evolution of the function ( )1−tf ψ  and the shock . ta

 

 The publication of Time Series Analysis: Forecasting and Control by Box and 

Jenkins in 1970 was an important milestone for time series analysis.  It provided a 

systematic approach that enables practitioners to apply time series methods in 

forecasting.  It popularized the autoregressive integrated moving average (ARIMA) 

model by using an iterative modeling procedure consisting of identification, estimation, 

and model checking.  The success of ARIMA models generated substantial research in 

time series analysis.  Originally, time series analysis was divided into frequency domain 

and time domain approaches.  The time domain approach uses autocorrelation function, 

lρ  of the data and parametric models, such as the ARIMA models, to describe the 

dynamic dependence of the series (Box, Jenkins, and Reinsel, 1994).  The frequency 

domain approach on the other hand focuses on spectral analysis or power distribution 

over frequency to study theory and applications of time series analysis.  A power 

spectrum of a stationary  is the Fourier transform of the autocorrelation function tz lρ  

(Brillinger, 1975; Priestley, 1981).  Cooley and Tukey made an important advance in 

frequency-domain analysis by making spectral estimation efficient (Tsay, 2000). 
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The objective of an analysis and experience of the analyst are the determining 

factors between which approaches to use.  In the context of Bayesian and non-Bayesian 

time series analyses, there remain some differences, but the issue has been shifted those 

of practicality rather than philosophy.  Durbin and Koopman provided both classical and 

Bayesian perspectives in time series analysis (Tsay, 2000). 

 

The advances in computing facilities and methods have profound impacts on 

time series analysis.  There are many important developments within the so called 

"traditional analysis", for example, linear Gaussian processes with parametric models.  

In model diagnostics, outlier analysis and detecting structural breaks have become an 

integral part of the model. Chang, Tiao, and Chen (1988) for example, looked at outlier 

detection while Martin and Yohai studied influential functionals (Tsay, 2000).  Outlier 

analysis in time series are concerned with aberrant observations in  and , or in other 

words the observations straying from the right or normal way, and the changes in the 

mean of  and the variance of .  Akaike (1974) and Hannan (1980) proposed some 

model selection criteria to help in the time series model selection.  Some important 

advances in pattern identification methods have also been developed for example, the R- 

and S-array of Gray, Kelley, and McIntire (1978) and the extended autocorrelation 

function of Tsay and Tiao (1984). The pattern identification methods are capable of 

handling both stationary and unit-root nonstationary series.  Choi (1992) discussed the 

many developments in ARMA model identification.  The exact likelihood method now 

becomes the standard method of estimation.  The foregoing developments are not in 

isolation with other developments in the area and their impacts are not limited to linear 

Gaussian time series models (Tsay, 2000). 

tz ta

tz ta

 

Generally speaking, two important technical advances in the recent history of 

time series analysis have generated much interest on the topic.  The first advance is the 

use of state-space parameterization and Kalman filtering.  This happened largely in the 

1980s, as evidenced by the explosion in the papers published in statistical journals that 

have "state-space" or "Kalman filter" in their titles.  The original purpose of introducing 

Kalman filter into time series analysis was mainly to evaluate efficiently the exact 
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Gaussian likelihood function of a model and to handle missing observations.  The 

usefulness of the technique was extended beyond estimation, where it led to 

developments of new methods for signal extraction, for smoothing and seasonal 

adjustment, and for renewal interest in structural models (Tsay, 2000). 

 

 The second technical advance in recent time series analysis is the use of Markov 

Chain Monte Carlo (MCMC) methods, especially Gibbs sampling and the idea of data 

augmentation.  The applicability of MCMC methods to time series analysis is 

widespread and indeed the technique has also led to various new developments in time 

series analysis.  These include nonnormal and nonlinear state-space modeling and 

inference and prediction of autoregressive models with random mean and variance 

shifts, including using explanatory variables to estimate transition probabilities in mean 

and variance.  The MCMC methodology also led to increasing use of simulation 

methods in time series analysis, especially in tackling complicated problems that were 

impossible to handle a few years ago (Tsay,2000). 

 

The past several decades also brought many important advances in time series 

methodology.  One of it is for the multivariate process.  Methods for analyzing 

multivariate series have been developed, especially in structural specification of a vector 

system.  The usefulness and need of considering jointly several related time series were 

recognized a long time ago (Quenouille, 1957).  However, multivariate analysis is often 

confined to vector autoregressive (VAR) models.  Two reasons for this lack of progress 

are: 

 

(i) The generalization of univariate ARMA models to vector ARMA models 

encounters the problem of identifiability. 

(ii) Multivariate models are much harder to estimate and to understand, and 

there is a propensity to use perceived simpler models. 

 

A related development in multivariate time series analysis is the cointegration of 

Engle and Granger (1987).  Cointegration means that a linear combination of marginally 
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unit-root nonstationary series becomes a stationary series.  It has become popular in 

econometrics because cointegration is often thought of as the existence of some long-

term relationship between variables.  In the statistical literature, the idea of a linear 

combination of unit-root nonstationary series becoming stationary was studied by Box 

and Tiao (1977).  Associated with cointegration is the development of various test 

statistics to test for the number of cointegrations in a linear system.  Despite the huge 

literature on cointegration, its practical importance is yet to be judged.  This is due 

primarily to the fact that cointegration is a long-term concept that overlooks the practical 

effects of scaling factors of marginal series (Tsay, 2000). 

 

Since the last decade, multivariate forecasting methods have given rise to more 

research than univariate methods have.  This is partly because computational advances 

have made them more feasible in practice.  It seems natural to try to improve forecasts of 

one variable by including appropriate explanatory variables in the model.  Identifying all 

the relevant variables may not be easy and it is important to study the context, to ask 

questions and to look for previous empirical regularities.  There is always the contrary 

danger of including unnecessary explanatory variables, which appear to improve the fit 

but actually lead to poorer out-of-sample forecasts.  Although most people expect 

multivariate forecasts to be better than univariate forecasts, this is not necessarily the 

case.  However, they may still improve our understanding of the interrelationships 

between variables. 

 

There are many types of multivariate models.  One basic question is whether 

there is a causal relationship between the explanatory variables and the response 

variable, and also whether the system is of open loop structure or whether changes in the 

response variable feed back to affect the explanatory variables in a closed loop way.  

Multiple regression is still the most commonly used method but there can be problems in 

fitting such models to economic time series data where the variables can be correlated 

with each other and with time, and where feed-back may be present.  Although a good fit 

can often be obtained, poor forecasts may still result.  It is arguable that this is partly 

because the error structure of regression models is overly simplistic for use with time 
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series data and there has been much work on alternative classes of multivariate time 

series model notably vector ARMA (VARMA) models.  Software has become available 

but VARMA models are still not easy to fit even with only two or three explanatory 

variables.  Partly because of this, many analysts prefer to restrict attention to vector 

autoregressive (VAR) models or even further to low order VAR models.  Empirical 

evidence does suggest that restricted VAR models give better out-of-sample forecasts 

than unrestricted VAR models. 

Multivariate methods are worth considering when appropriate expertise is 

available and when suitable explanatory variables have been identified and measured, 

especially when one or more of them are leading indicators.  Multivariate forecasts are 

sometimes worth the extra effort that they entail, and multivariate models usually do 

give a better fit.  However, it is important to realize that out-of-sample forecasts from 

multivariate models are not necessarily more accurate than those from univariate models 

either in theory or practice, because of the following reasons: 

 

(i) Exogenous variables may have to be forecasted. 

(ii) Economic data are generally observational rather than designed data, and 

so may be unsuitable for fitting multivariate models. 

(iii) 'Simple may be best'.  It appears that simple univariate methods are often 

more robust to model misspecifications and to changes in the model than 

more complicated models are. 

 

Multivariate forecasts are more accurate than univariate extrapolations in many 

case studies.  Despite the research interest in alternatives, such as VAR models, multiple 

regression is still the most commonly used multivariate model.  This is because of its 

simplicity.  

 

A multivariate autoregressive integrated moving average (MARIMA) model is 

more likely to be the same as the autoregressive integrated moving average (ARIMA) 

model.  However, instead of analyzing only a series, we observe simultaneously several 

series.  Such time series data may be available on several related variables of interest or 
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in other words, there is more than one series involved in such a model.  The reasons for 

analyzing and modeling such series jointly are to understand the dynamic relationships 

among them.  They may be contemporaneously related, one series may lead the others or 

there may be feedback relationships.  Another reason is to improve the accuracy of 

forecasts.  When information of one series is contained in the historical data of another, 

better forecasts can be obtained when the series are model jointly (Tiao and Box, 1981).  

In this view, the operational use of MARIMA model was suggested by Montanari et al. 

(1994), who highlighted how a multivariate scheme could remarkably improve the 

forecasts.   
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CHAPTER 3 

 
 
 

 

METHODOLOGY 
 
 
 
 

 

3.1 Convective Rainfall 

 

To analyse and characterize convective rain in Klang Valley, the temporal 

pattern and the spatial distribution between meteorological radar data and surface rainfall 

(rain gauge) need to be explored.  This chapter presents the methodologies used in this 

research with focus on characterization of rain properties, establishment of criteria for 

separating convective from non-convective storms and checking discrepancies or 

similarity between meteorological radar data and observed surface data (rain gauge).  

The source of data and limitations are also described. 
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3.1.1     Research Design and Procedure 

 

The research procedure of this study is summarised in Figure 3.1 below: 

 

 Select an appropriate region 

Selection of rain gage stations 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
    -    Intensity         -slightly convective            Rainfall contours         Rainfall contours 
    -    Duration         -moderately convective     derive from kriging       derive from radar 
    -    Total rainfall         - strongly convective          method 
 
 
 
 
 
 
 
 
 
 
        
 
 
 

 

 
 
 
 

2nd objective 
 

Establish criteria for 
separating convective 
from non convective 

storms

1st objective 
 

Characterize convective 
rain based on short rainfall 
duration data 

3rd objective 
 

Compare observed areal 
rainfall with those derived 

from radar 

Radar Rain gages 

- to compare and evaluate the spatial 
distribution between rain gages and 
radar 

- to see the movement of rainfall  
- to make relationships between rainfall 

depth and area of rainfall contour  

Analyse the results 

Report writing 

Minimum Interevent Time (MIT) 

Figure 3.1 : Flow chart of research design and procedure 
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3.2.3 Study Area 

 

The study area covers the whole Klang Valley, comprises Kuala Lumpur and its 

surroundings and suburbs.  Klang Valley is surrounded by hilly areas especially to the 

east and northeast and the Port Klang coastline to the west.  Based on the most recent 

census, the population in the Klang Valley has expanded to 26.64 million (Statistics 

Bulletin, 2006 June), and it has an area of about 3200 sq. Km.(Norhan and Mazian, 

1997)  The climate of the area is tropical with averages temperature range from 220C to 

330C throughout the year and the relative humidity as high as 90%.  Being located in the 

equatorial zone, the climate is governed by the northeast and southwest monsoons.  The 

northeast monsoon usually commences in early November and ends in March and the 

southwest monsoon is usually established in the later half of May or early June and ends 

in September.  These two main monsoon seasons are separated by two relatively short 

inter-monsoon seasons which usually recorded heavy rainfall.  The annual rainfalls vary 

between 2,000 mm and 2,500 mm and the mean monthly rainfall between 133 mm and 

259 mm (Desa et al., 2005).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Peninsular Malaysia

3117070 

Klang Valley 

Figure 3.2 : The study area in Klang Valley 
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Figure 3.2 shows the area of Klang Valley (inset) from the map of Peninsular 

Malaysia and rainfall station 3117070-JPS Ampang which supplies data for the study.  

 

 

3.1.3 Terminal Doppler Radar 

 

The radar images were derived from the Terminal Doppler Weather Radar (TDR) 

located at Bukit Tampoi, about 10 km north of Kuala Lumpur International Airport 

(KLIA).  The TDR is primarily used for the detection and warning of wind shear and 

micro bursts in the vicinity of KLIA.  RADAR stands for Radio Detection and Ranging 

and it’s used for detecting the position, velocity and characteristic of target (bearing, 

range, and altitude).  The difference between a conventional weather radar and Doppler 

weather radar is that the former can only detect the characteristic, size, direction and 

distance of precipitations while the latter can detect not only the characteristic, size, 

direction and distance of precipitations but also radial wind speed, wind shear and 

microburst.  Figure 3.3 shows the TDR at KLIA.  Table 3.1 summarizes the principle 

characteristics of this radar.   

 

Figure 3.3  :  Terminal Doppler Radar at KLIA 
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Table 3.1 : Main characteristics of KLIA Terminal Doppler radar used in this study 

______________________________________________________________ 
 Radome  - 12 m. diameter 
 Parabolic Reflector - 8.5 m. diameter 
 Wavelength   - 10 cm 
 Frequency  - 2874.5 MHz 
 Peak power  - 750 KW 
 Pulse Width  - 1.0 µs /3.0 µs     
 Pulse Repetition  - 1000Hz (1.0 µs pulse width) 
 Frequency   - 300 Hz (3.0 µs pulse width) 
 Azimuth Resolution  - 0.7º 
 Range Resolution  - 125m 
 Doppler Velocity - 1.0m/s 
______________________________________________________________ 
 

The colours on radar images represent the values of energy reflected toward the 

radar.  The reflected intensities or echoes are measured in dBZ (decibles of z).  The scale 

of dBZ values is also related to the intensity of rainfall.  Typically, light rains have dBZ 

value of less than 20.  The higher the dBZ, the stronger the rain intensity.  The Doppler 

radar does not determine where rain is located, only areas of returned energy (National 

Weather Service, 2006).  The “dB” in the dBZ is logarithmic and has no numerical 

value, but is used only to express a ratio.  The “z” is the ratio of the density of water 

drops (measured in milimeters, raised to the 6th power) in each cubic meter (mm6/m3).  

Mathematically: 

 

dBZ = 10*log (z/z0)               (3.1) 

where, 

z = reflectivity factor 

z0 = 1 mm6/m3 

 

When the “z” is large (many drops in a cubic meter), the reflected power is large.  A 

small “z” means little returned energy.  In fact, “z” can be less than 1 mm6/mm3 and 

since it logarithmic, dBZ values will become negative, as often in the case when the 

radar is in clear air mode and indicated by earthtone colours (National Weather Service, 
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2006).  Figure 3.4 shows rainfall image from Doppler radar at KLIA.  The intensity was 

measured in two units.  On the left side, the scale is in dBZ and on the right in mm/hr.  

In this study, rainfall intensity in mm/hr was used to show the rainfall rate in digitized 

image.  The Doppler radar image has too many colours for  

 

Figure 3.4 : Radar image 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 : Various level of reflectivity colour derived from radar image (a) and (b) 

simplified rainfall intensity colour after digitization 

80 0-100 0 mm/hr

0 3-0 5 mm/hr

0 5-0 9 mm/hr

0 9-3 0 mm/hr

3 0-8 0 mm/hr

8 0-35 0 mm/hr

35 0-80 0 mm/hr

(a) 

(b) 

dB
Z 
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various intensity scales.  However, it is visually difficult to differentiate these colours.  

To simplify the data analysis, the colour scales were reduced to seven by redigitizing the 

radar image.  The new intensity scales and the corresponding radar intensity values are 

shown in Figure 3.5.  These scales were used in determining of rainfall contours.  These 

scales were used to construct rainfall contours. 

 

 

3.1.4 Data Source and Collection 

 

In order to analyse convective rain of the study area, several different data 

sources are used.  In the first stage, a five year (2000-2004) rainfall data recorded from 

hydrological data bank, Department of Irrigation and Drainage (DID) at station 

3117070-JPS Ampang was extracted.  All data from this station were used to execute 

first and second objectives.  In the second stage, rainfall data from 20 raingauges (9 

raingauges in Wilayah Persekutuan and 11 raingauges in Selangor) were selected to 

achieve the fourth objective, which is determine the spatial distribution between 

meteorological radar data and observed surface data (raingauge).  Ground data was 

obtained from DID, while radar data were taken from Malaysian Meteorological 

Department (MMD), KLIA in Sepang.  Heavier rainfalls were selected for this analysis.  

These events coincided with major flood events.  These events occurred on June 10, 

2003, Nov 5, 2004, Jan 6, Feb 26, Apr 6, and May 10, 2006.  Table 3.2 lists the various 

data sources of Klang Valley. 

 

 

 

 

 

 

 

 



 53

 

Table 3.2 : Data sources 

 Data Description Year/Date Sources 

Method of 

data 

collection 

1st and 2nd  

objectives 

Rain 

gauge 
3117070 – JPS Ampang 2000-2004 

Rain 

gauges 

 

WILAYAH PERSEKUTUAN 
3116003 – Ibu Pejabat JPS 

3116006 – Ldg Edinburgh Site 2 

3216001 – Kg. Sg Tua 

3217001 – KM 16, Gombak 

3217002 – Emp. Genting Klang 

3217003 – KM 11, Gombak 

3217004 – Kg Kuala Sleh 

3317001 – Air Terjun Sg Batu 

3317004 – Genting Sempah 

 

SELANGOR 
2917001 – JPS Kajang 

3014084 – JPS Klang 

3014091 – UiTM Shah Alam 

3018101 – Emp. Semenyih 

3115079 – Pt Penyelidikn Sg Buloh 

3117070 – JPS Ampang 

3118102 – SK Kg Lui 

3119104 – Jln Genting Peres 

3216004 – SMJK Kepong 

3315037 – Tmn Bukit Rawang 

3315038 – Country Home 

 

Department of 

Irrigation &  

Drainage (DID), 

Malaysia 

Hydrological 

data bank 

3rd and 4th 

objective 

Radar The whole Klang Valley 

10th Jun 2003 

05th Nov 2004 

06th  Jan 2006 

26th  Feb 2006 

06th  Apr 2006 

10th May 2006 

 

Malaysian 

Meteorological 

Department 

(MMD), KLIA, 

Sepang 

Radar data 
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3.1.5 Data Analysis 

 

3.1.5.1 Separation of Rainfall Events 

 

Rainfall events must be isolated before they can be analysed.  The period without 

rainfall or interevent time definition is a typical criterion used to isolate an individual 

rainfall event from continuous rainfall.  The criterion is also well known as minimum 

interevent time (MIT) (Figure 3.6).  Many researchers used MIT values between 0 and 

50 hours to separate rainfall events (e.g. Hydroscience, 1979; Bedient and Huber, 2002) 

while Adams et. al., (1986) suggested MIT values between 1 and 6 hours for urban 

applications.  In this study, a rainfall event is defined from Minimum Interevent Time 

(MIT) method.  The annual numbers of rainfall events were plotted against different 

MIT values and an appropriate MIT value is selected from the graph at point after which 

increases in the MIT do not result in significant changes in the number of event. 

 

 
Figure 3.6 : Separation of rainfall events based on minimum interevent time (MIT) 
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3.1.6 Analysis of Convective Rain 

 

3.1.6.1 Temporal 

 

The aim of this study is to characterize convective rain in Klang Valley.  Initially 

rainfall data is analysed in terms of intensity, rainfall duration and total rainfall.  Short 

interval rainfall data recorded between years 2000 and 2004 were used.  In year 2000, 

DID has installed automatic raingauges that can record short intervals of 1-minute or 5-

minutes rather than 15-minutes intervals as previously recorded.  Shorter rainfall 

aggregation can give more accurate information about the duration of a storm and thus 

short intervals data is needed for analyse convective rain.  This is because convective 

storms usually lasted over a short period of time. 

 

A five year rainfall data recorded at JPS Ampang (3117070) was analysed.  In 

the beginning, the diurnal and monthly rainfall patterns at Ampang station were studied.  

The separation between non-convective and convective event were carried out based on 

a 35mm/hr threshold for each 5 minute interval.  This threshold is very often used in 

precipitation models for engineering applications to set apart non-convective from 

convective precipitation (Llasat, 2001).  Five minute intensity is used because rainfall 

data are already collected in 5 minutes interval.  The convective characteristics were 

clearly shown in storm shape where 10 storms were selected to show the rainfall pattern.  

Next, convective event was divided into four classes based on the β parameter.  This 

classification is according to their greater or lesser convective character (Llasat, 2001).  

The β parameter is determined using equation (3.2): 
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where, 

 ΔT  = time interval of accumulation of the precipitation 

I(ti,ti+ΔT) = precipitation measured between ti and ti+ΔT 



 56

L  = is set at 35 mm/hr 

N                     = total number of ΔT integration steps into which the 

episode is divided 

Llasat further divided the storms into four categories based on the β values as follows: 

β = 0 non-convective 

0 < β≤ 0.3 = slightly convective 

0.3 < β≤ 0.8 = moderately convective 

0.8 < β≤ 1.0 = strongly convective 

 

3.1.6.2 Spatial Distribution 

 

The spatial distribution of rainfall derived from meteorological radar data was 

compared with surface rainfall data (rain gauge) using Geographical Information System 

(GIS).  There are a number of softwares available in GIS, for example ArcView, ArcInfo 

and ArcGIS.  All of these softwares are developed by ESRI, which is one of the most 

analytically developed GIS products.  In this study, ArcGIS 9.1 is used to digitize radar 

data and displaying the image in rainfall contour.  Radar data need to be digitized first 

because the image which is taken from KLIA Meteorological Station is in JPEG format.  

This format is the end product of Interactive Radar Information System (IRIS), the radar 

software used at KLIA and IRIS cannot give rainfall image in GIS format.  Figure 3.7 

shows radar image taken from KLIA Meteorological Station. 

 

 The digitized images using ArcGIS can give the area of every colour code and 

the corresponding rainfall intensity.  On the other hand, the isohyetal line for surface 

rainfall was constructed using TIDEDA database.  TIDEDA is a computer program for 

processing time-dependent data, particularly hydrological data.  Comparison was made 

based on a 5-minutes rainfall.  For similar event and time four heavier rainfalls were 

selected for this analysis.  These events coincided with major flood events.  These events 

occurred on 10th Jun 2003, 05th Nov 2004, 06th Jan, 26th Feb, 06th Apr, and 10th May 

2006.  For every event, several images at different time were selected and digitized.  By 
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matching the same occurrence time, line rainfall contour from surface data (Kriging) 

were compared with rainfall contour radar image (digitized image).  Finally, a 

relationship between areas of rainfall contour (derived from Kriging) with rainfall depth 

was examined.  Table 3.3 shows the time of images, which are selected for spatial 

comparison and correlation. 

 

 
Figure 3.7 :  Radar image in JPEG format 

 

During these events, twenty rain gauge stations in Klang Valley exhibited 

relatively good continuity of rainfall data.  All of the rain gauges are selected to compare 

spatial distribution between radar data and surface rainfall data.  Figure 3.8 shows the 

locations rainfall stations used in this study. 

 

Table 3.3 : Times during which the digitized images were captured by TDR 
Date of events 

 

 
Jan 6, 

2006 

Feb 

26, 2006 

Apr 6, 

2006 

May 

10, 2006 

18:19 03:23 15:08 15:01 

18:25 04:55 15:13 15:12 

18:30 06:21 15:19 15:28 

18:36 06:32 15:29 15:33 

 06:38 15:35 15:39 

Capturing 

Time 

(hh:mm) 

 06:43 15:41  
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Figure 3.8 : Locations of twenty rain gauge stations selected in this study 
 

 

3.1.6.3 Procedure To Derive Rainfall Contour from Radar and Raingauge Data 

Using GIS 

 

As already noted in section 3.6.2.2, radar images which is taken from KLIA 

Meteorological Station is in JPEG format.  All images need to be digitized before 

rainfall contours is created.  Radar images need to be digitized with layer by layer 

according to the colour of intensity in that image.  Due to the number of intensities, it is 

visually to differentiate those colours.  To simplify the data analysis, the colour scales 

were reduced to seven by redigitizing the radar image (see Figure 3.5).  The new 

intensity scales and the corresponding radar intensity values were used in radar’s 

contour.  Figure 3.9 shows the flow chart to produce rainfall contour derived from radar.  

The process of digitizing radar image is shown in Appendix A. 
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Raw data from radar 
(JPEG image) 

Digitize radar image 
using GIS - ArcGIS 9.1 
(digitize layer by layer)

Union 
(merge all layers) 

Layer 1 
Red  

80 – 100 
mm/hr 

Layer 2 
Orange  
35 – 80 
mm/hr 

Layer 3 
Yellow  
8 – 35 
mm/hr 

Layer 4 
Green 
3 – 8 

mm/hr 

Layer 5 
Dark 
Green 
0.9 – 3 
mm/hr 

Layer 6 
Dark 
Blue  

0.5 – 0.9 
mm/hr 

Layer 7 
Blue  

0.3 – 0.6 
mm/hr 

Rainfall contours

Figure 3.9 : Flow chart of making rainfall contours derived from radar 

 

Rainfall contours from surface rainfall were derived by GIS also where Kriging 

Method was used in ArcGIS 9.1.  As noted in Chapter 2, Kriging produces an estimate 

of the underlying (usually assumed to be smooth) surface by a weighted average of the 

data, with weights declining with distance between the point at which the surface is 

being estimated and the locations of the data points.  Since raingauge station is selected, 

the location of rainfall station in Klang Valley was shown in point features in GIS.  All 

intensities for every raingauge station were key-in in GIS.  Using ArcGIS, Kriging 

Method can be implemented in two ways either Spatial Analyst or Geostatistical 

Analyst.  In this study, Geostatistical Analyst is chosen because the Matern model (now 

it is recognized as K-Bessel) tends to produce surfaces that are smoother locally (on a 

very fine scale) than some other models (such as the exponential or spherical).  Beside 
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that, among the advantages of the implementation of kriging in Geostatistical Analyst 

relative to that in Spatial Analyst are the ability to handle directionality in the data and 

the ability to make plots of prediction errors as a way of assessing uncertainty.  There 

have four steps to execute kriging in Geostatistical Analyst.  Figure 3.10 shows the flow 

chart of producing rainfall contours by ground data.  The four steps during interpolate 

the rainfall contour in ArcGIS can be seen in Appendix B.  After both of rainfall 

contours were created, the spatial distributions of rainfall were compared in term of 

intensity and area.  The area of rainfall contours also determined by GIS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st 
Geostatistical 

Method Selection 
(Ordinary Kriging) 

2nd 
Semivariogram / 

Covariance 
Modeling 

(Matern model / 
K-Bessel)

3rd 
Seraching 

Neighborhood 
 

4th 
Cross 

Validation  

Rainfall contours 

Choose Geostatistical Analyst 

Key-in ground data in ArcGIS 
(from 20 raingauge stations) 

Figure 3.10 : Flow chart of making rainfall contours derived from ground data 

 

 

3.1.6.4 Storm Movements and Depth Area Relationship 

 

The movement of rainfall pattern also observed.  In this study, four flash flood 

events that had occurred in the Klang Valley were chosen.  The storms bringing rains 

leading to the flash floods had exhibited convective characters.  These events also are a 
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good example of unusually strong convective events responsible for heavy rainfall.  To 

identify convective rainfall in radar images, a value of 35 dBZ is taken as reflectivity 

threshold.  This technique was developed by Dong and Hyung (2000), where they were 

used this value in study of heavy rainfall with mesoscale convective systems over the 

Korean Peninsular.  Beside that, this value also is already noted in radar’s rate, so it is 

easy to read the reflectivity according to radar’s colour code.  The highest reflectivity, 

which is greater than 35 dBZ is chosen as centre of the storm for convective events.  The 

centre of the storm is used as reference to show the movement of the storms.  The 

coordinates of every movements of centre of the storms were plotted in RSO (Rectified 

Skew Ortomorphic) Malaysia, which is one of coordinate system and it is interpreted 

from GIS (ArcGIS 9.1).   

 

Next, in order to get the relationship between area and rainfall depth, surface 

rainfall data from eleven raingauge stations were used.  The rainfall depth pattern and 

the area for every color code of rainfall contours in small catchment were presented in 

six selected storms.  The area of catchment is about 241.34 km2.  The areas between all 

pairs of neighbouring isohyets of the six selected storms were computed by ArcGIS 9.1.  

These rainfall contours also derived by Kriging Method as stated in section 3.6.2.3.  

After all of the area of every colour code were calculated, mean area precipitation 

(MAP) were computed.  MAP is the mean areas between all pairs of neighbouring 

isohyets.  Then, the percentage reduction of storm depth is determined and lastly, areal 

reduction curves for all storms were plotted.  All calculations to produce areal reduction 

curves were shown in Appendix C. 

 

 

3.1.7 Limitations in Analysing Convective Rainfalls 

 

The above sections have described the research methodologies for analyzing 

convective rains.  The data used in this analysis has some limitation as follows. 
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(a) Some rainfall stations in Klang Valley are no longer in operation and 

some stations have missing data.  This limit the numbers of rainfall 

stations used in this study. 

(b) Although a number of flash flood events occurred between year 2001 and 

2006, complete sets of rainfall data for both surface rainfall and radar 

rainfall are not always available. 

(c) Due to the small numbers of rainfall stations, rainfall contours derived by 

Kriging Method cannot give a smooth contour.  This is because Kriging 

works best with large input data and prediction errors are larger in areas 

with small number of samples. 

 

 

3.3 Stochastic Modeling of Rainfall  Series using Neyman-Scott Rectangular 

Pulses Model (NSRP) 

 

This study emphasizes on the single-site rainfall modeling for data collected on 

short time scale, that is hourly, both for describing adequately the high variability of 

these rainfall processes and for providing a basis for simulating rainfall processes for 

longer time scales. The progress made in this area is crucial to the generalization of the 

approach to temporal rainfall modeling.  The description of the model mathematical 

structure will be presented in this section. The presentation will consider many important 

features of temporal rainfall processes such as the structure of the rainfall depth, 

duration, intensity and occurrence. Some improvements that are proposed in the present 

study will be derived in this chapter.  

 

 

3.2.1 Determining the Best-fit Distribution for the Hourly Rainfall Series 

 

According to WMO, a wet day is defined as a day with a rainfall amount above a 

fixed threshold of 0.1 mm. This threshold will be chosen in this study with amount of 

greater than or equal to 0.1mm to be identified as wet hours.  The sequence of rainfall 
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amounts on wet hours is also considered as the intensity process ( Katz and Parlange, 

1995).  

 

 

3.3.2.1   Types of Distribution 

 

In this study, the distribution of hourly rainfall amounts is described by four 

functions the Exponential, Gamma, Weibull, and Mixed Exponential distribution.  

 

The probability density functions along with the log likelihood functions are as 

follows: 

 

a. The Exponential distribution with parameter λ   represents mean while x 

represents the hourly rainfall amounts. 

1( ) ,                , 0           
ix

f x e xλ λ
λ

−

= >   (3.3) 

 

b. The Weibull distribution with two-parameters, namely α and β  to represent 

shape and scale parameters respectively while x represents the hourly rainfall 

amounts. 

 

  (3.4) 
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c. The Gamma distribution with two-parameters, namely α and β  to represent 

shape and scale parameters respectively while x represents the hourly rainfall 

amounts. 
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d. The Mixed-Exponential distribution is a weighted average of two one-

parameter exponential distributions. The mixture distribution has three 

parameters, with α representing the mixing probability and 1β  and 

2β representing the scale parameters, while x representing the hourly rainfall 

amounts. 
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3.3.2.2  Parameter Estimation Methods 

 

The maximum likelihood method that is claimed to being a minimum variance 

unbiased estimator is used in estimating the parameters of the distributions. However, 

the method of moments is still being used to set up the initial points of the maximum 

likelihood method.  In the maximum likelihood estimation, it is assumed that Xi’s are 

independent and identically distributed where i=1, 2, …, n. The function f(Xi|θ1,…, θm) is 

the conditional density function of the observations Xi given the parameters θ1,…, θm. 

When the Xi’s are independent, the joint density function of Xi is the product of the 

marginal densities.  

 

The parameters θ1,…, θm are estimated by maximizing the following likelihood 

function: 

                                         (3.7) ),...,|(),...,( 1
1
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n

i
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The parameters are determined by taking the partial derivative of L(θ1,…,θm) with 

respect to each parameter setting the resulting equations to zero. These m partial 

derivative equations are solved for the m unknown parameters. In order to get the 

unknown parameters, it is easier to maximize the natural logarithm of the likelihood 

function because most of probability distributions involve the exponential function.    

   

a. Exponential : 

The first-order moment about the origin is  

                                 λ== )(1 XEM      (3.8) 

 

The corresponding sample moment is  

                               Mean ∑
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=
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i
ix
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1      (3.9) 

The estimate of the parameter  is λ̂ x . 

 

The log-likelihood is 
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b. Gamma: 

The first two moments about the origin is 

  1 ( ) /M E X β λ= =      (3.11) 
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The corresponding sample moments are 
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Equating the population and sample moments, the parameters are  
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The log-likelihood is:  

  

  1

1

1log log
( )

xn

i
L α β

αα β

−
−

=

x e
⎡ ⎤

= ⎢ ⎥
Γ⎢ ⎥⎣ ⎦

∑     (3.17) 

c. Weibull 

The first two moments about the origin is 

1
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The above equations are nonlinear and cannot be solved directly.  The coefficient 

of variation (COV) and the shape parameter γ is used to estimate the parameters (Cohen, 

1965): 
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The log-likelihood is 
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d. Mixed Exponential 

The first three moments about the origin are  

 1 ( ) (1 )M E X αξ α= = + − ξ
2

    (3.22) 

 2 2
2 ( ) 2 2(1 )M E X αξ α= = + − θ    (3.23) 
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 3 3
3 ( ) 6 6(1 )M E X 3αξ α= = + − θ    (3.24) 

The corresponding sample moments are  
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The log-likelihood is 

1

1log log
i ix xn

i

L e ξ θα α
ξ θ

− −

=

⎡ ⎤⎛ ⎞ −⎛ ⎞= +⎢ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∑ e ⎥     (3.28) 

 

 

3.2.1.3  Goodness of fit tests 

 

In determining the best-fit distributions five quantitative methods are used in this 

study.  

 

a. The mean and median absolute difference between the hypothesized distribution 

( )F x  and the empirical distribution, ( )nF x . 

 

Mean = 1

ˆ( ) ( , )
n

n i i
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Median ˆ( ) ( , )n i iF x F x θ−  

b. Kalmogorov-Smirnov (KS)  test calculates the maximum difference between the 

hypothesized distribution and empirical distribution. 
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c. Cramer-Von-Mises (CVM) calculates the squared difference between ( )F x and 

( )nF x . 
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d. Anderson-Darling (AD) test calculates the squared difference between ( )F x and 

( )nF x , and divided them by the weight function ( ) 1
( ) 1 ( )F x F x

−
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e. Akaike Information Criterion (AIC) is derived by minimizing the Kullback 

Leibler distance  between the proposed model and true one. The best model is the 

one having the smallest AIC. The AIC is given by 

 

AIC = -2 log (maximum likelihood) + 2 k   (3.33) 

        = -2MLL + 2k 

 

in which k denotes the number of parameters. 

 

 

3.2.2.4   Exceedance Probability 

 

The exceedance probability is defined as the probability of a rainfall amount 

occurring greater than that of a given amount. Example, the probability of rainfall 

exceeding a low amount (< 1 mm) would be high, while the probability of rainfall  

exceeding above 100 mm is a more unlikely event.  This probability is plotted on a semi-
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log scale and it is a qualitative tool to assess the performance of distributions considered.  

The horizontal axis represents the wet hours amount and the vertical axis represents the 

  

[1- ] and [1- ] where  represents the hypothesized distribution and the 

 represents the empirical distribution.  This plot will display every wet hours data 

distinctly. 

( )F x ( )nF x ( )F x

( )nF x

 

 

3.2.3  The Neyman-Scott Rectangular Pulses model (NSRP) 

 

The theoretical basis of stochastic point processes is needed in order to understand 

the Neyman-Scott model properly.  This will focus on special processes of potential 

importance in applications related to rainfall.  

 

 

3.2.2.3 Theory of Point Processes 

 

The use of point process theory have received widespread attention by scientists 

for the development of realistic rainfall models (e.g.,Rodriguez-Iturbe et al.1987a,b; 

Entekhabi et al. 1989; Islam et al.1990; Cowpertwait, 1991; Onof and Wheater,1993; 

Onof et al. 1994; Velghe et al. 1994; Cowpertwait et al. 1996a,b; Khaliq and Cunnane, 

1996; Cowpertwait, 1998,2002,2004) since the pioneering work of Kavvas and Delleur 

(1981); Waymire and Gupta (1981a,b,c); Rodriguez and Iturbe et al. (1984); Waymire et 

al. (1984); Smith and Karr (1985b,a); Valdes et al. (1985).  A point process is a model of 

points randomly distributed in some space .  The points may represent times of events, 

locations of objects or paths followed by a stochastic system.  One example of a point 

process event is the emission of radioactive from a source that occurs in an irregular 

sequence in time.  Each emission defines a time distant.  When a point process is 

defined, it is often of interest to count the numbers of points in subsets of the space .  

Let assume a realization T of a random point process on  is a denumerable point set 

E

E

E
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of . This mean that T can be enumerated as E { }1 2, ,.....T t t=  where each  denotes the 

coordinate of a point in . Let  be a subset of  .Then 

it

E A E

 

( , ) ( ),tR i
i

N A T I=∑        (3.34)  

is the number of  points that lie in  and each   is the coordinate of a point in T . A it ( )AI t  

denotes the set characteristic function of  and is defined as follows: A
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    defines a non-negative, integer-valued random process on ( , )N A T E . This process is 

called a counting process. 

 

 

3.2.2.4 The Poisson Process 

 

Consider the process as defined over the whole time axis . Let  

denotes the history of the process at time t , i.e. a specification of the positions of all 

points in . For u , let be a random variable giving the number of 

points in (u,v]. Then for a given constant

( , )−∞ ∞ tH

( , ]t−∞ v< ( , )N u v

ρ  with dimensions [time]-1, the Poisson 

process of rate ρ is defined by the requirements that for all t , as 0δ → + , 

 

{ ( , ) } ( ),tP N t t δ λδ ο δ+ Η = +      (3.36) 

{ ( , ) } ( )tP N t t δ ο δ+ Η =       (3.37) 

so that  
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{ ( , ) 0 } 1 ( ).tP N t t δ λδ ο δ+ = Η = − +      (3.38) 

 

From Eqs.(3.36) to (3.38), the probabilities concerned do not depend on Ht. It follows 

that the probability of finding a point in ( , ]t t δ+  does not depend on the number of 

points occurring just before t. In fact, the expression of Eq.(3.37) excludes the possibility 

of multiple simultaneous occurrences. However, there are two important results that can 

be deduced from the above specifications of the process. 

 

i. Consider the points  building a Poisson process of a constant 

rate 

1 2 30 ......T T T< < < <

.λ  The random variables  1 1 1,....... ( 2)n n nX T T T T n−= = − ≥  are independent and 

each has probability density function of  (.) exp( )xf xλ λ= − . This property provides 

the interval specification of the process. 

ii. Consider the number of events N(ai,bi) of the process that falls in 1i i ia b a +< ≤ . The 

Poisson process on the line is completely defined by the following equation. 

 

1

( ( )){ ( , ) , 1,......, } exp( ( ))
!

nik
i i

i i i i i
i

b aP N a b n i k b a
ni

λ λ
=

−
= = = − −∏   (3.39) 

 

This counting specification includes three important features: the number of points in 

each finite interval [ai,bi] has a Poisson distribution ; the number of points in disjoint 

intervals are independent random variables; the distributions are stationary and are 

dependent upon the respective lengths ib ai−  of the intervals. 

 

Cox and Isham (1980) defined the above Poisson process with three mutually 

equivalent specifications: the intensity specification Eqs.(3.36-3.37), the interval 

specification, and the counting specification. The interplay between the three 

specifications of the Poisson process is a recurring theme in the study of point processes. 

Note that the intensity specification can be used for building a realization of a Poisson 

process while the interval specification gives an efficient basis for such a construction. 
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3.2.2.3 Some basic definitions 

 

The complete intensity function is an important characteristic of point processes. 

It is defined as  

 
1

0
( ; ) lim { ( , ) 0 }.tt P N t t

δ
ρ δ δ

+

−

→
Η = + > Η t     (3.40) 

where Ht specifies the point process up to and including t. For the Poisson process, the 

complete intensity function is equal to ( ; )tt Hρ λ= . The probability of a point in 

[ , ]t t δ+  given the fact that there is a point at the origin is specified by the conditional 

intensity function 

 

1 2

1
2 2 1

, 0
( ) lim { ( , ) 0 ( ,0) 0}h t P N t t N

δ δ
δ δ δ

+

−

→
= + > − >    (3.41) 

The conditional intensity function will be used to derive the covariance of the counting 

process later. 

 

Stationarity and orderliness are another two important properties in point 

processes.  The intuitive notion of stationarity means that the distribution of the number 

of points lying in an interval depends on its length but not on its location; that is 

{ ( , ) }       ( 0, 0,1,2,.....)P N t t x k x k+ = > =      (3.42) 

depends on the length x but not on location t. 

The following definitions explain the characteristics in stationarity. 

 

 

Definition 1 

A point process is stationary when for every r = 1,2,….., and all bounded Borel subsets 

A1, A2,……Ar of the real line of the joint distribution of 

{ }1( ),......., ( )rN A t N A t+ +        (3.43) 

does not depend on t ( ) . t−∞ < < ∞
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Definition 2 

A point process is interval stationary when for every r = 1,2,…, and all integers i1,…..ir 

the joint distribution of { }1 ,.......i irkτ τ k+ +  does not depend on k, (k = 0, ±1,….). 

The non-existence of a multiple simultaneous occurrences in a process is called 

orderliness, that is  

{ ( ) 1        for some  } 0,P N t t> ∈ ¡ =

ξ

      (3.44) 

It can be shown that (3.36) implies (3.43)  and for most point processes they are in fact 

equivalent. 

 

The probability generating functional (pgf) is a generalization of the probability 

generating functions that provides a complete description of the random variable and is 

useful in the calculation of moments.   is defined  by (see Cox and Isham (1980, 

eq.(2.42)) 

(.)NG

 

( )
1

[ ] exp log ( ) ( ) ( )
n

i
i

G E t dN t E tξ ξ
=

⎡ ⎤⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
∏∫¡     (3.45) 

where {ti} are the random co-ordinates of the points. The two forms of [ ]G ξ  are 

equivalent because N is a step function. In Eq.(3.43) the product is unity if n = 0, and 

zero if n > 0 and ( ) 0itξ =  for any i. In order for the expectation to exist, 0 ( ) 1tξ≤ ≤   is 

required to be imposed.   

 

A more intuitive approach for the probability generating functional (pgf)  is 

obtained  by taking  to be a measurable partition of E and setting: 1 2, ,......., rA A A

 
1

( ) ( ),
i

r

i A
i

x z I xξ
=

=∑        (3.46) 

where IA(x) is the indicator function of the set A and 1iz ≤  for  i = 1,……,r. 

Substitution in (3.43) leads to 

 

      (3.47) ( )

1 1

(.) i

i

rr
N A

i A i
i i

G z I E z
= =

⎡⎡ ⎤ = ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∏ ⎤

⎥
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that is the multivariate probability generating function of the number of points in the sets 

of the given partition.  

 

An example is given by Cox and Isham (1980) with the probability generating 

functions for non-homogenous Poisson process with rate function ( )tλ , 

 

[ ] (exp (1 ( )) ( ) ,G tξ ξ λ= − −∫¡ )t dt       (3.48) 

which is equal to the probability generating function for a Poisson variable with 

parameter λ , given by ( ) exp( (1 )).G z zλ= − −  

 

Superposition of process is concerned with two or more independent processes 

that are superposed in term of summation. Let say there are two independent processes, 

namely N1 and N2. and 1 2( ) ( ) ( )N A N A N A= +    for all sets A. The resulting generating 

functional satisfy the relation
1 2

[ ] [ ] [ ].N N NG G Gξ ξ ξ= This is in fact a useful property of 

probability generating function and is shared by the probability generating functional as 

well.. 

 

 

3.2.2.5  Moments 

 

In this section the theory related to the moments of the counting process which 

will be used to derive the cross-covariance of the rainfall process is presented. 

Consider the first two moments of the counting process in the arbitrary sets A and B: 

 

[ ] [ ] [ ]( ) , ( ) , ( ), ( )E N A V N A Cov N A N B      (3.49) 

 

For stationary orderly processes of finite and fixed rate λ ,  

 

[ ]( )E N A Aλ= ,        (3.50) 
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where A  is the Lebesgue measure of the set A. Considering the covariance for the 

counting process for two disjoint sets A and B, we have 

 

[ ] [ ] [ ] [ ]2 ( ), ( ) ( ) ( ) ( )Cov N A N B Var N A B Var N A Var N B= ∪ − −   (3.51) 

 

This is the simplest case of a point process on a line. Lets consider A has the interval of 

[ ]0, t . 

 

0

( ) ( ).
t

N t dN z= ∫         (3.52) 

Applying the above formula, 

 

[ ] [ ] [0
00

( ) ( ) 2 ( ), ( ) ,
t

z t
u t z

Var N t Var dN z Cov dN z dN z u< <
< ≤ −

= +∫ ∫∫ ]+   (3.53) 

where the integral is to be considered as the limit of a sum. 

 

The definition of orderliness implies that ( , )N z z δ+  can take only the values of zero 

and one.  Hence, for an orderly manner, we get (Cox and Isham, 1980) 

[ ] [ ]( )
{ } { }( )

22

2

( , ) ( , ) ( , )

                          ( , ) 1 ( , ) 1 ( )

                          ( ),

Var N z z E N z z E N z z

P N z z P N z z

δ δ δ

δ δ ο

λδ ο δ

⎡ ⎤+ = + − +⎣ ⎦

= + = − + = +

= +

δ  (3.54)  

 

[ ]
[ ]

[ ] [ ]
{ } { }
{ } { }

1 2

2 1

1 2

1 2

1 2

1 2 2 1 2 1 2

0,
( , ), ( , )

( , ) ( , )

( , ) ( , )

( , ) 1 ( , ) 1 ( , ) 1

( , ) 1 ( , ) 1 ( )
( ) ( ),

u
Cov N z z N z u z u

E E N z u z u N z z

E N z z E N z u z u

P N z z P N z u z u N z z

P N z z P N z u z u
h u

δ δ

δ δ

δ δ

δ δ

δ δ ο
λ δ δ λ δ δ δ δ δ

>

+ + + +

= ⎡ + + + + ⎤ −⎣ ⎦
+ + + +

= + = + + + = +

− + = + + + = +

= − +

1

1 2

δ

δ δ

=
  (3.55) 



 76

where  is the conditional intensity function. Merging the above in the limit as (.)h 1δ  and 

2δ  move simultaneously to zero, we can now evaluate 

 

[ ] 2

0 0 0

2 2

0

( ) 2 ( ( ) )

                 2 ( ) ( ) .

t t t z

t

Var N t dz dz h u du

t t u h u du t

λ λ

λ λ λ

−

= + −

= + − −

∫ ∫ ∫

∫

λ
     (3.56) 

 

Hence, the variance can be written as follows 

 

[ ]
0 0

( ) ( )
t t

Var N t dz c u z du= −∫ ∫        (3.57) 

where 
2( ) ( ) ( ) ,       0,c u u h u uλδ λ λ= + − ≥  

with (.)δ  being the Dirac delta function. 

 

 

3.2.2.5 Cluster Processes 

 

 Kavvas and Delleur (1975,1981), Kavvas (1982a,b), Gupta and Waymire 

(1979), and Waymire and Gupta (1981a,b,c) have popularized the use of cluster models.  

Amorocho and Wu (1977) and Burlando (1989) suggested that cluster models are able to 

simulate the cellular structure of actual precipitation fields and able to preserve 

theoretically at least the relevant statistics on a wide range of temporal aggregation 

scales. Shaw (1983) found that cluster models were more appealing for rainfall time 

series simulation as they are able to preserve rainfall statistics over a range of time 

scales, and they have built into their structure the capability of representing rain cells, 

which are known to exist in actual rainfall events. Hence, the discussion of what is 

cluster process is discussed as follows.  
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The general structure of cluster processes involves the existence of a point 

process of cluster centers. Each cluster center is associated with a random number of 

points forming a subsidiary process or cluster.  These subsidiary points are being 

distributed about the cluster center in some specified ways. The cluster process then 

consists of the superposition of all the separate clusters, points belonging to the same 

cluster are not being identified as such. 

 

Let say Nc denotes the counts connected with the process of cluster centers.  

N(t)(A) is the number of subsidiary points in A arising from a cluster given to have center 

at t. The total number of points N(A) in A is 

 

( ){ ( )} { ( )} { ( )}tE N A E N A E dN t= c∫    (3.58) 

 

Suppose that the cluster centers have occurred at points ti.  The independence of the 

separate clusters implies that the conditional probability generating functional of the 

point process is 

 

( )( )exp log ( ) ( ) [ ; ],
it s

i i

E t dN t Gξ
∞ ∞

=−∞ =−∞

⎡ ⎤ =⎣ ⎦∏ ∫ itξ∏    (3.59) 

 

where [ ; ]s iG tξ  is the probability generating functional for a cluster centered at ti . An 

immediate consequence obtained by taking the expectation of Eq.(3.57) is  

 

[ ][ ] [ ;.]c sG G Gξ ξ=       (3.60) 

where  refers to the process of cluster centers. [ ] ( )c i
G E Tξ ξ⎡= ⎣∏ i ⎤⎦

 

The cluster process based on the Poisson process is the most frequently used and 

the simplest is obtained by treating the Poisson point as sites and locating at each site a 

random number of points. Neyman-Scott process is one of an example of the cluster-

based Poisson process and it is sometimes called the center-satellite process (Neyman 
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and Scott, 1958).This process uses Poisson points as centers or parents. At each center, 

independent of other centers, a random number of satellites are generated. The number 

of satellites per center is given by independent, identically distributed non-negative 

random variables. Each satellite is displaced from the center according to some dispersal 

distribution.  Hence, in the Neyman-Scott process the points in a cluster are 

independently and identically distributed around the cluster. Besides Neyman-Scott 

process there is another process called the Bartlet-Lewis process. In this process, at each 

center point a renewal process generates satellites. In relation to that, in the Bartlet-

Lewis process, the intervals between successive points in a cluster are independently and 

identically distributed (idd). 

 

The second-order counting properties of the Neyman-Scott and the Bartlett-

Lewis can be derived with the conditional intensity function h(.). Cox and Isham (1980) 

derived this function for the Neyman-Scott process in considering two cases depending 

on the position of two points (they either belong to the same cluster or not): 

 

[ ( 1)]( ) [ ] ( ) ( )
[ ]c

E C Ch u E C f x f x u dx
E C

λ
∞

−∞

−
= + +∫     (3.61) 

where Cλ is the rate of the Poisson process of the cluster centers. 

 

The probability generating functional for both processes can be obtained from Eq. (3.48) 

and Eq. (3.61) as 

 

( )[ ] exp (1 [ ; ])C SG Gξ λ ξ
∞

−∞
= − −∫ t dt         

 

The generating functional for a cluster with center at t may be expressed for the 

Neyman-Scott process as (see Cox and Isham (1980, eq. (3.58)) 
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            ( ) ( ) .
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G t E u dN u

g f u t u du f u t u du

G t u f u du

ξ ξ

ξ ξ

ξ

∞
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∞ ∞ ∞

−∞ −∞
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∫

∑ ∫ ∫

∫

  (3.62) 

 

 

3.2.4.6  Description of the Neyman-Scott Rectangular Pulses Model (NSRP) 

 
            The first proposed rainfall modeling scheme, referred hereafter as the Ney n-

Scott Rectangular Pulse (NSRP) model is a clustered point process model.  This model is 

used in modeling the rainfall event where in any event there exists a generating 

mechanism called the storm origin.  The storm origin may be passing fronts or some 

other criteria for convection storms from which rain cells arise. The Neyman-Scott 

models are described by 3 independent elementary stochastic processes:  They are 

 
• A process that sets the origin of the events; 

• A process that sets the number of rain cells generated by each event; 

• A process that sets the origin of the cells. 

 

Storm origins are governed by a Poisson process with parameter λ.  At a point on 

the ground the storm is conceptualized as a random number C of rain cells.  Natural 

candidates for the distribution of the number of cells C are the Poisson distribution and 

the geometric distribution.  The cell origins are independently separated from the storm 

origin by distances that are exponentially distributed with parameter .  It is assumed 

that there is no cell origins being located at the storm origin.  A rectangular pulse is 

associated independently with each cell origin with its duration and intensity (depth) 

being independent.  The duration is assumed to be exponentially distributed with 

parameter

b

h .   The intensity is assumed to be exponentially distributed with 

parameter 1

X

1/ x
m

= .  In summary, the NSRP model reproduces the characteristics of 

intermittency, persistency and periodicity of the rainfall series.  
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3.2.2.7 Mathematical Representation of the NSRP model 

 

The precipitation intensity at time t, Y(t), is given by the sum of the intensities of 

the individual active cells at time t: 

 

         (3.63) 

 0
( ) ( ) ( )t uu

Y t X u dN t u
¥

-=
= -ò

where is the random depth of the pulse originating at time u measured a time ( )uX k k  

later and {N(t)} counts occurrences in the Poisson process of pulse origins.  Note that the 

intensity of N(t) is , where  denotes the mean number E[C] of cells per storm. cl m cm

 

The derivative of the counting process is 

1        if there is a cell origin at  
( )

0       otherwise
t u

dN t u
ì -ïï- = íïïî

   (3.64) 

 

and for the rectangular pulses, we have 

 

    with probability  ( ) 
( )

0      with probability 1 ( )t u

X R
X u 80 

x
R x-

ìïï= íï -ïî
    (3.65)  

where ( )t uX u- is the intensity of the rectangular pulse triggered at time u and N(t) 

represents the counting stochastic process of the arrivals of the individual cells.  R(x) is 

the survival function of X.  

 

The moments of the counting process N(t) have been obtained by Waymire and 

Gupta (1981c) by derivation of the probability generating functional of the Neyman-

Scott process defined in Eq.(3.61).  The second order properties of Y(t) can be derived in 

various ways, most simply through (3.61).  This method has been used by Rodriquez-

Iturbe et al. (1987a).  The mean of the depth process can be represented directly as the 

product of the rate at which cell origins occur, the mean length of a cell and the mean 

depth of a cell, that is, 
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   [ ( )] c xE Y t l m m
h

=      (3.66) 

   

The variance and auto covariance at lag- have been expressed in terms of the 

conditional intensity function h(.) of the Neyman-Scott process defined in Equations 

(3.60)  which leads to the following expressions (Rodriguez-Iturbe et al., 1987a) 

t
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bt

ht

t t

b m l bml m
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-
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]
h

t dt

  (3.67) 

 
Since rainfall data are usually available only as rainfall depths in discrete time intervals 

(e.g. historical records of hourly or daily totals), the aggregated properties are needed to 

estimate the parameters of the model.  The aggregated process at time scale h (the total 

depth in a time interval h) is given by:  

 

( )

( )1
( )

ihh
i i h

Y Y
-

= ò           (3.68) 

 
81 The second-order properties of the aggregated process (Rodriguez-Iturbe et al., 1984) are 

 

 
0

( ) ( )

[ ] [ ( )],

[ ] 2 ( ) ( ) ,

[ , ] ( )( )

h
i

h
h

i Y

h
h h

i i k Yh

E Y hE Y t

Var Y h u c u du

Cov Y Y c kh v h v dv+ -

=

= -

= + -

ò
ò ,

   (3.69) 

 
Thus, if h is measured in hours, the series { }: 1,2,....h

iY i = is a rainfall time series at the 

h-hour level of aggregation, i.e. an h-hourly rainfall time series.  The second-order 

properties of the aggregated process [Rodriguez-Iturbe et al., 1987a]  are  

 
Mean:         
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ηλ /}{}{}{ )( XECEhYE h
i =        (3.70) 

 
Variance: 
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Covariance: 
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    (3.72) 

 
From now on, will be denoted as ( ) ( ) ( ) ( ){ }, { }, { , }h h h

i i i iE Y Var Y Cov Y Y +
h
k

ˆ ˆˆ ( ), ( ), ( , )h h h kμ γ γ respectively for convenience. The lag k autocorrelation function  

ˆ ( , )h kρ  is given by ˆ ˆ( , ) / ( )h k hγ γ . 

 

 

3.2.2.8 The choice of distributions for the rain cells numbers, C and the rain cell 

intensities, X. 

 

For the model to be completely defined distributions need to be chosen for C and 

X. Natural candidates for C are the Poisson distribution and the geometric distribution. 

Velghe et al. (1994) found that geometric N-S performed better than the Poisson N-S 

with regards to its ability to reproduce several properties of rainfall, but the result may 

not be representative since it was only applied to one station.  

 

In this study the Poisson distribution is chosen to represent the distribution for C. 

Following Velghe et al. (1994), the derivations of E( C) and E(C2-C) are as follows: 

 

Assume that C is strictly positive, then C-1 is said to have a Poisson distribution. Let y 

be a Poisson distribution with probability density function f(y) given   by 
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 ( )        0,1, 2,.....
!

yef y y
y

β β−

= =      (3.73) 

The mean E(y) and variance V(y) of the above distribution are both β . 

Since C is strictly positive, then 

 

1C = + y         (3.74) 

the expected value for C  and C2 is given as follows: 

[ ] 1cE C μ β= = +         (3.75) 

2 2[ ] [(1 ) ] 1 2 [E C E y E yβ= + = + + 2 ]

2

      (3.76) 

 From the above 
2 2[ ] [ ] [ ]E y Var y E y β β= + = +       (3.77) 
2[ ] 1 3E C 2β β= + +         (3.78a) 
2 2[ ] 2 cE C C β β μ− = + = −2 1       (3.78b) 

Therefore from (14), if we let cμ ν= ,then 

[ 1]E C 1ν− = −         (3.79a) 

[ ] cE C μ ν= =         (3.79b) 

2 2[ ]E C C ν− = −1        (3.79c) 

 

The rain cell intensity X in the model is following the exponential distribution. The 

cumulative distribution function is,  

  
0                if   0,

( ) { } 1 { }
1       if    0.x

x
F x P X x P X x

e xξ−

<⎧
= ≤ = − > = ⎨

− ≥⎩
                (3.80) 

and the probability distribution function is, 

 

0         if    0,
( )

  if     0.x

x
f x

e xξξ −

<⎧
= ⎨

>⎩
                    (3.81) 

 

The expected values for X and X2 are 
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1[ ]E X
ξ

=  and 2
2

2[ ]E X
ξ

=   respectively.    

  

Therefore in Eqs.(3.68)  to (3.70) the followings have to be substituted in order for the 

mean and the second order properties are  to be defined: 
2 2 2 2( ) ; ( ) 1; ( ) ; ( ) 2c xE C E C C E X E X 2μ ν ν μ ξ ξ− −≡ = − = − ≡ = = . 

 

With the above properties, the NSRP model has five parameters 

exp ( , , , , )λ ν β η ξΘ = .               (3.82) 

The parameters λ represents the storm origin, ν represents the number of cells, β 

represents the position of cells, η represents the duration of cells and ξ represents the 

intensity of the rain cells. Therefore, the model structure is based on the following 

assumptions.  The diagram in Figure 3.11 explains the following structure in details. 

 

i. The inter-arrival  time of  the storm origin follows the exponential distribution: 

( ) 1 n

n

l
L nP l e λ−= −             (3.83) 

   

ii. The number of rain cells is described by Poisson distribution: 

( )( )
!

C tt e
P C

C

νν −

=        (3.84) 

        

iii. The waiting times from the origin to the rain cells origin is described by 

exponential distribution: 

( ) 1 m

m

b
B mP b e β−= −        (3.85) 

iv. The duration of the rain cells is also described by exponential distribution 

function: 

( ) 1 t
TP t e η−= −         (3.86) 

v. The intensities are described by exponential distribution: 

( ) 1 x
XP x e ξ−= −        (3.87) 
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3.2.2.9 The proposed distribution for the rain cell intensities, X. 

 

The choice of the distributions to represent the rain cell intensities in the NSRP 

model is arbitrary. The exponential distribution was selected so that the model would 

have only a small number of parameter. However, a heavier-tailed distribution could be 

used to model the cell intensity to improve the fit to the historical extreme values. An 

obvious alternative to the exponential distribution which could be used to improve the fit 

to the extremes is the Weibull distribution (Cowpertwait,1996,2002) or Gamma 

distribution (e.g. Onof and Wheater ,1993,1994). Whether such distributions are needed 

would depend on the intended application for the model.  

 

In this study the mixed exponential distribution is proposed to represent the rain 

cell intensities.  This distribution is chosen following the results obtained for the fitting 

of the hourly amount using the goodness of fit test.  It was found that the mixed 

exponential distribution was the best among the other candidate distributions namely 

exponential, Gamma and Weibull in describing the hourly rainfall amount used in this 

study (Fadhilah et. al. 2007). 

 

The probability distribution function for the mixed exponential distribution is given as: 

( )1
( )

0;0 1; ), 0

x x

f x e e

x

ξ θαα
ξ θ
α ξ θ

⎛ ⎞− −⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠−

= +

> ≤ ≤ < <

     (3.88) 

 

The mixed-exponential distribution is a weighted average of two one-parameter 

exponential distributions. The mixture distribution has three parameters, with α  

representing the mixing probability, ξ  and θ  representing the scale parameters and x 

representing the hourly rainfall amounts per hour.  The distribution function F(x) is 

given as: 

( ) (1 )
x x

F x e eξ θα α
− −

= + −       (3.89) 
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i) Storm origins  (     )    arrive according to a Poisson Process          
 
          
 
 
 

 
 
ii) Each storm origin generates a random number of rain cells beginning at (        ) 

 
                Bm 

          
 

 
           Bm 

 
 
 
iii) The duration and intensity of each rain cell are exponentially distributed 
 
 
 
 
 
             X                                                             X 

          
 
 
 
 
iv) The total intensity at any point in time is the sum of the intensities due to all 

active rain cells at that point 
 
 
 
 
 
  
 
 
 
 

T T

Ln 

 
Figure 3.11:   A scheme for the Neyman-Scott rectangular pulses model.        
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The exceedence probability function R(x)= 1-F(x) is defined as : 

( ) 1 (1 )
x x

R x e eξ θα α
− −⎡ ⎤

= − + −⎢
⎢ ⎥⎣ ⎦

⎥      (3.90) 

The first three moments about the origin are 

 

1 ( ) ( ) (1 )M E X xf x dx αξ α
∞

−∞

= = = + −∫ θ

2

     (3.91) 

2 2 2
2 ( ) ( ) 2 2(1 )M E X x f x dx αξ α

∞

−∞

= = = + −∫ θ

3

    (3.92) 

3 3 3
3 ( ) ( ) 6 6(1 )M E X x f x dx αξ α

∞

−∞

= = = + −∫ θ     (3.93) 

 

Hence, the mean rain cell intensity for the NSRP model are 

given by Eqs. (3.68) and (3.69) respectively.  In addition, the E(C) and E(C2-C) are 

2( )  and ( )x E X E Xμ =

 

( )c E Cμ ν= =          (3.94a) 

2 2( ) 1cE C C μ ν− = − = −2 1        (3.94b) 

 

With the above properties, the NSRP model with mixed exponential distribution has 

seven parameters, namely λ, ν , β, η , α, ξ, and θ  that characterize respectively the 

origin of  storm, the number of cells, the positions of  cells relative to the storm origin, 

the duration of rain cells, the mixing probability and the intensity of the rain cells that is 

described by the last two parameters. Hence, 

 

( , , , , , , )λ ν β η α ξ θΘ =        (3.95) 

 

With the mixed exponential distribution to represent the rain cell intensities, the model 

structure follows Equations (3.82) to (3.85) but the rain cell intensities is described by: 
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( )( , , ) ( ) 1 1 1
x x

XP f x dx e ξ θα ξ θ α α
− −⎛ ⎞ ⎛ ⎞

= = − + − −⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠
∫ e ⎟    (3.96) 

 

 
3.2.2.10  Probability of dry periods 

 

The expression for the probability of an arbitrary interval of any chosen length 

being dry is a useful property to be derived as it may be used in fitting the model or 

comparing the model with field data.  Cowpertwait (1991) derived this expression in the 

case where the rain cells are distributed according to Poisson law.  

 

( )
1 1

( )

0

( 1) {1 exp[1 ( 1) ]}
P 0 exp

[1 ( )] )

h

h
i

h

h e
Y

p t dt

βλ λβ ν ν ν

λ

− − −

∞

⎡ ⎤− + − − − + −
⎢ ⎥= = ⎢ ⎥− −⎢ ⎥⎣ ⎦

∫
(3.97) 

in which 

{ }
{ }

( )

( )

( ) 1 ( /( )

exp ( 1) ( ) /( ) ( 1) ( 1)

t h t t
h

t t t t h

p t e e e
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η β η β

ν β η β ν ν
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− − − − +
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0

1[1 ( )] ln[( ) ( 1)]

where   is a Euler's constant = 0.5772.

h
hp t dt e βηγ

β η β
γ

∞
−⎧ ⎫

− = + − ⋅ −⎨ −⎩∫ ν ⎬
⎭

     

 

The transition probabilities, ( ) ( )
1( 0h h

i iP Y Y+ > > 0)  and ( ) ( )
1( 0h h

i iP Y Y+ 0)= = , denoted as 

( )WW hφ  and ( )DD hφ , respectively, can be expressed in terms of  the probability of dry 

period ( )( )P 0h
iY ( )hφ= =  as follows (Cowpertwait, 1996): 

 

( ) (2 ) / ( )DD h h hφ φ φ=         (3.98) 

( ) ( ) ( ) {1 ( )}{1 ( )}DD WWh h h h hφ φ φ φ φ= + − −      (3.99) 

so that 
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( ) {1 2 ( ) (2 )}/{1 ( )}WW h h h hφ φ φ φ= − + −      (3.100) 

 

 

3.2.2.11 Parameter Estimation 

 

The fitting of the parameters and the assessment of the adequacy of the fit raise 

many statistical questions. The different methods of parameter estimation of the NSRP 

model have been discussed extensively in Chapter 2.  However, the method of moments 

is the most frequently used for estimating the parameters of the NSRP(Rodriguez-Iturbe 

et. al., 1987a,b; Entekhabi et.al.,1989; Cowpertwait, 1991). Following Cowpertwait et. 

al.,(1996) the historical hourly series of rainfall data is aggregated at three different 

temporal scales that is, 1,6 and 24 hours scales using the expressions of the mean at 1-

hour (3.69), the variances at 1, 6 and 24-hour (3.70), lag-1 autocorrelation at 1, 6 and 24-

hour(3.70) and  probability of dry at 24-hour (daily) (3.96).  The using of mean of more 

than one level of aggregation is not possible since . Therefore, in this 

study parameter estimation procedure is to be achieved by minimizing the sum of 

squares, where the squared terms are the differences between the selected expressions of 

the model and their equivalent historical sampled values.  Let 

( ) ( )[ ] [kh h
iE Y kE Y= ]i

( , , , , )i iM M λ ν β η ξ≡  

be a function of the original NSRP model, and let s
iM be its historical sampled value. 

 
2

1

1          5    , , , 0, >1 and 0.
m

si
i is

i i

MS w m M
M

λ β η ξ ν
=

⎡ ⎤
= − ≥ >⎢ ⎥

⎣ ⎦
∑ >   (3.101) 

 

wi is a weight and it allows greater weight to be given to fitting some sample moments 

relative to others.  The use of a ratio of model function is to ensure that large numerical 

values do not dominate the fitting procedure.   Cowpertwait (1996) applied a weight of 

100 to the term relating to the sample mean to ensure that this is matched almost exactly 

by the model.  He also suggested the use of a larger set of sample moments (e.g. mean, 

variances and autocorrelations at different aggregations, probability of dry days and 
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transition probabilities), assigning weights to different statistics.  However, in this study, 

there are two proposed fitting procedures to be used: 

 

 

3.2.2.11.1 Model parameter estimation using autocorrelations  

 

As suggested by Rodriguez-Iturbe et al. (1987), Entekhabi et al. (1989) and 

Cowpertwait (1991, 1996), the sample moments to be used are 1 hour mean [ ˆ (1)μ ], 

variances at 1, 6 and 24 hourly [ ˆ ˆ ˆ(1), (6), (24)γ γ γ ], lag-1 autocorrelations at 1, 6, and 24 

hourly [ ˆ ˆ ˆ(1,1), (6,1), (24,1)ρ ρ ρ ], and probability of dry days [ ]. The following 

estimators of 

ˆ(24)φ

( ), ( ), ( ,1)h h hμ γ γ  were employed to avoid bias (e.g. see Trenberth, 1984): 

 

Mean:       (3.102) {
( )

( ) ( )
, ,

1 1

ˆ ( ) /
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h Y nμ
= =
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Covariance:     (3.104) { }{ } ({
( ) 1

( ) ( ) ( )
, , , 1,

1 1

ˆ ˆ ˆ( ,1) ( ) ( ) / 1
h

knn
h h h

i j k k i j k k k
i j

h Y h Y h nγ μ μ
−

+
= =

= − −∑ ∑

Where k is a calendar month index (k=1 for January, 2 for February, etc),  is the jth 

h-hourly total in year I for month k,  is the number of h-hourly totals in month k and 

n is the number of years of record. The autocorrelations of lag-k is 

( )
, ,
h

i j kY

( )h
kn

ˆ ˆ ˆ( , ) ( , ) / ( )h k h k hρ γ γ= . 

 

The weight of 100 is applied to term relating to sample mean and one to the 

others (Cowpertwait et. al.,1996).  Therefore, in this study, based on procedures 

proposed by  Cowpertwait et.al (1996) the following equation is optimized to estimate 

the parameters. 
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− + ⋅ − + ⋅ − + ⋅ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+ ⋅ (3.105) 

 

 

3.2.2.11.2 Model parameter estimation using transition probabilities 

 

 Cowpertwait et.al. (1996) found that NSRP model matched poorly the historical 

proportion of dry days when autocorrelations were used in the fitting procedures. The 

possible explanation for this is that the model is unable to match both the 

autocorrelations and the proportions of dry days.  Moreover, autocorrelations tend to 

have large sampling errors due to large number of zero depths.  Hence, the lag-1 

autocorrelations are excluded and transition probabilities in Eqs. (3.97) and (3.99) are 

used.  The choice of sample moments in this study was based upon G. Calenda 

Napolitano (1999) where the choice of aggregation scale must not be too close or else 

the optimization procedure may fail.  Hence the sample moments and the transition 

probabilities used were one-hour mean [ ˆ (1)μ ], variances at one, six and 24 hourly 

[ ˆ ˆ ˆ(1), (6), (24)γ γ γ ], transition probabilities of P00 (dry-dry event) and P11(wet-wet 

event) at hourly and daily scales [ ( ), ( )DD WWh hφ φ ] and the probability of dry days 

[ ( )hφ ].  The estimators for the mean and variances are given in Equations (3.100) and 

(3.101) respectively. The observed transition probabilities were computed using the 

following formulas: 

ˆ ( )ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

ˆ ( )ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

DD
DD DD

DD DW

WW
WW WW

WW WD

a hh p h
a h a h

a hh p h
a h a h

φ

φ

= =
+

= =
+

      (3.106) 
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Where denotes the number of times in the sample of observations of rainfall 
occurrences that a transition from state i on the hth hour to state j on the (h+1}th hour 
occurs and 

ˆ ( )ija h

.ˆ ˆ ˆ( ) ( )i iD iWa a h a h= + .        (3.107) 
 

Equal weights are given to all terms. Therefore the following equation is to be 

optimized: 
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3.2.2.12 Optimization Techniques 

 

The parameters of the model are to be estimated by minimizing Eqs.(3.104) or 

(3.107).  There are many methods discussed in literature on minimizing the objective 

functions.  However in this study the Shuffled Complex Evolution-University of Arizona 

(SCE-UA) method by Duan et. al.(1992) is used in minimizing the model function.  The  

SCE-UA is a global optimization method that has been shown to be able to provide more 

accurate and more efficient search for the optimal solution of complex nonlinear 

objective functions as compared to the local optimization technique such as Nelder and 

Mead Simplex or Quasi Newton Search (Duan et al.,1992).  This algorithm requires the 

knowledge of the model parameters upper and lower bounds before it can be 

implemented.  

 

The SCE-UA method starts with a population of points sampled randomly from 

the feasible space and the population is partitioned into several communities.  The 
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communities evolve based on a statistical reproduction process that uses the simplex 

geometric shape to direct the search in an improvement direction. As the search 

progresses, the entire population are shuffled and points are reassigned to communities 

to ensure information sharing.  If the initial population is large enough, the entire 

population tends to converge to the neighborhood of the global optimum.  

 

The SCE-UA method combines the strengths of the simplex procedure with the 

concepts of controlled random search, competitive evolution and the newly developed 

concept of complex shuffling. The strategy of the SCE-UA method is as follows (Duan 

et.al., 1992): 

 

i. Initializing process   

To select p  1 and m ≥  n+1, and to compute the sample size s = pm where p is 

the number of complexes, m is the number of points in each complex, and n is 

the dimension of the problem.  

≥

ii. Generation of a sample  

To sample s points x1, …, xs in the feasible space and to compute the function     

      value fi at each point xi using a uniform sampling distribution. 

iii. Rank of points 

To sort the s points in order of increasing function value and to store them in an 

array D = {xi, fi, i = 1,…, s}. 

iv. Partition of array D   

To partition D into p complexes A1,…, Ap, each containing m points, such that Ak   

= {xj
k, fj

k|xj
k = xk+p(j-1), fj

k = fk+p(j-1), j=1,…, m}. 

v. Evolution   

To evolve each complex Ak, k = 1,…, p, according to the competitive complex 

evolution algorithm. 

vi. Shuffling the complexes 

To replace A1,…, Ap into D, such that D = {Ak, k = 1,…, p} and to sort D in order 

of increasing function value. 
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vii. Convergence 

To stop if the convergence criteria are satisfied, or to return to step (iv).  

 

The population is portioned into several communities (complexes), each of which 

is permitted to evolve independently.  After a certain number of generations, the 

communities are mixed and new communities are formed through a process of shuffling. 

This procedure enhances survivability by a sharing of the information (about the search 

space) gained independently by each community (Duan et al., 1992).  This strategy uses 

the information contained in the sub complex to direct the evolution in an improved 

direction.  The processes of competitive evolution and complex shuffling inherent in the 

SCE-UA algorithm help to ensure that the information contained in the sample is 

efficiently and thoroughly exploited. They also help to ensure that the information set 

does not become degenerate.  These properties provide the SCE-UA method with good 

global convergence properties over a broad range of problems.  

 

As mentioned earlier the SCE-UA method requires the knowledge of the upper 

and lower bounds of the model parameters before the algorithm can be implemented. 

Based on the results by Cowpertwait et.al. (1996) and Calenda et.al. (1999), Table 3.4 

presents the range of parameter values used in this optimization computation.  The 

mixed exponential distribution is represented by parameters ξ and θ with α represents the 

mixing probabilities. The ξ is always smaller than θ.  Table 3.5 presents the SCE-UA 

method options in optimization program. These options are part of the requirements in 

the SCE-UA algorithm before the parameters could be estimated. The parameters 

obtained will be used in the generation of hourly rainfall data. Since seasonal variations 

are considered in this modeling the parameters are evaluated for each month with twelve 

sets of parameters for the calibrated NSRP model. 
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Table 3.4: Parameter ranges in optimization procedure 

Parameters Description Parameter 

ranges 

λ Inter-arrival times of storms 0.001 - 0.05 

ν Number of rain cells 1 - 20 

β Waiting times from the origin to the rain cell 0.01 - 0.5 

η Rain cell duration 0.1 - 5 

ξ Rain cell intensities (Exponential) 0.01 -  4 

ξ Rain cell intensities (Mixed Exponential) 0.001 - 20 

α Mixing probabilities  0 - 1 

θ Rain cell intensities (Mixed Exponential) 10 - 100 

 
Table 3.5:  SCE-UA method options in optimization program 

Option Description  Value 

MAXN Maximum number of trials 10000 

KSTOP Number of shuffling loops 10 

PECNTO Percentage by which the criterion value must change in the 
specified number of shuffling loops 

0.01 

NGS Number of complexes used in optimization search 2 

ISEED Random seed used in optimization search -1 

INIFLG Flag on whether to include the initial point in the starting 
population 

 1 

 

 

3.2.3 Simulation of the hourly rainfall series 

 

The MATLAB program was designed to simulate the rainfall data based upon 

the Neyman-Scott Rectangular Pulse (NSRP) model.   The NSRP model consists of five 

processes for describing the following properties: 

 

i. Numbers of storms from inter-arrival times - Storm origins occur as a Poisson 

process with a mean rate λ/hour.  

ii. Number of rain cells - Average number of rain cells per storm is ν. 
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iii. Waiting times from the origin to the rain cell - Average waiting time from the 

origin to the rain cell is 1/β hours. 

iv. Rain cell duration - Average rain cell duration is 1/η hours. 

v. Rain cell intensities - Average rain cell intensity is 1/ξ if the rain cells intensities 

are described by the Exponential Distribution.  If the rain cells intensities are 

described by the mixed exponential distribution, then the average rain cell 

intensity is 1/ξ and 1/θ with a mixing probability of α. 

 

The program includes Poisson and exponential random number generation procedure.  

 

The hourly rainfall simulation procedure of the NSRP model is illustrated in Figure 3.3.  

The following steps are followed in generating the hourly rainfall: 

 

i. Generate the number of storms in which the arrival rate is a Poisson process. 

ii. Generate a number of rain cells based upon the Poisson distribution 

originated from the storm origin. 

iii. Generate the time intervals, t, between the rain cells and the storm origin 

where t is exponentially distributed. 

iv. Generate the duration for each rain cell based upon the exponential 

distribution. 

v. Generate the intensities for each rain cell based upon the exponential or the 

mixed exponential distribution. 

vi. Calculate the position of the storms by adding up the waiting time between 

the storm origins. 

vii. Calculate the position of each rain cells by adding up the position of storm 

origin and the intervals between rain cells and storm origin. 

viii. Calculate the duration and the intensities of each storm. 

ix. Calculate the total intensities of the storm. 

x. Calculate the hourly intensities generated by the storms. 
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Series of rainfall data will be generated depending on the number of simulation chosen. 

Data is generated according to months.  Sample of MATLAB programs are given in 

Apendix D. 

 

 

3.2.4 Models Assessment 

 

In this study, the performance of the traditional NSRP using the exponential 

distribution for the rain cell intensities will be assessed and compared with the 

performance of the proposed NSRP using the mixed exponential. For each model, two 

fitting strategies were adopted, using autocorrelations or using transition probabilities as 

mentioned previously.  More specifically, the following cases of NSRP model 

calibration are considered.  

 

1. The NSRP model with exponential distribution to describe rain cell intensities. 

i. Using autocorrelations in the fitting procedure and is referred hereafter as the 

EXP. 

ii. Using transition probabilities in the fitting procedure and is referred hereafter 

as the EXPTRAN. 

 

2. The proposed NSRP model with mixed exponential distribution to describe rain 

cell intensities. 

i. Using autocorrelations in the fitting procedure and is referred hereafter as the 

MEXP. 

ii. Using transition probabilities in the fitting procedure and is referred hereafter 

as the MEXPTRAN. 

 

The flowchart of the working strategies for the NSRP models is given in Figure 3.14 
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3.2.4.1 Graphical Method 
 
 

Graphically, the simulated rainfall properties represented by the box-plots 

(Figure 3.12) are compared with the observed properties (represented by the dots 

connected by the dashed lines).  If the observed value is comparable to the median value 

(the middle 50%  value) of the boxplots, then the proposed model is said to have an 

“excellent” or “very well” ability in preserving the properties of the historical data.  If 

the observed value falls on the whiskers and within the range defined by the simulated 

minimum and maximum, then the proposed model is said to have a “fair” ability in 

preserving the properties of the historical data. Otherwise, the model either 

underestimates or overestimates the observed statistical characteristics. Figure 3.12 show 

the characteristics of a box plot. 

 

 

3.2.4.2 Root-mean-square error (RMSE). 

 

Quantitatively both models are compared using the root-mean-square errors 

(RMSE) calculated for each property tested. The root-mean-square error formula is as 

follows: 

RMSE =
( )

1
22

1

ˆ
n

m
i

M

S S
R

n
=

⎧ ⎫−⎪ ⎪⎪= ⎨
⎪ ⎪
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∑ ⎪
⎬      (3.109) 

where  is statistics of the observed, is the median of the simulated, n is the number 
of simulated statistics.  

S ˆ
mS
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3.2.4.3 Statistical Properties 

 

Statistical properties of 30 synthetic hourly time series produced by each model were 

analyzed graphically using box plots for the monthly comparisons of the 30 simulated 

series with the observed.  The statistical properties examined include: 

 

a. One-hour series 

 

The mean, variance, autocorrelation, coefficient of skewness of the hourly rainfall 

amount are to be computed from the generated hourly series. These properties will 

determine the model’s suitability and accuracy in preserving the observed at the same 

scale as the generated series using the generated hourly series. 

 

b. Six-hour series 

 

The generated hourly series are lumped or aggregated to  six- hourly rainfall series. The 

mean, variance, autocorrelation and coefficient of skewness  of the six-hour rainfall will 

be computed. These properties will determine the ability of the model in preserving the 

six-hour rainfall process. 

 

c. Twenty-four or Daily series 

 

The generated hourly series are then lumped or aggregated to 24-hourly series. This is 

equivalent to the daily scale. The mean, variance, autocorrelation and the coefficient of 

skewness  of the 24-hour rainfalls will be computed. These are daily rainfall properties 

and the properties will determine the model ability in describing the daily rainfall 

process.  
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Figure 3.12: Characteristics of a Box plot 

 

d. Monthly series 

 

The generated hourly series are lumped or aggregated to become monthly series. The 

lumping is done by accumulating from hourly to 24 hourly, then to one-month scale. 

Only the mean and variance will be computed to represent the statistical characteristics 

of the monthly scales. These properties will determine the  model ability to describe the 

rainfall process at monthly scale.  
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3.2.4.4 Physical Properties 

 

The physical properties of the rainfall series will represent the underlying process of 

rainfall events.  The properties identified as physical properties are: 

 

 

a. One-hour series 

 

The physical properties include the distribution of the maximum rainfall amounts, the 

probability of dry hours and the hourly transition probabilities of rainfall occurrences 

P00 (dry-dry hours) and P10 (wet-dry hours). These describe the rainfall process 

physically at hourly scale. 

 

b. Twenty-four-hour  or daily series 

 

The physical properties include the distribution of the maximum rainfall amounts, the 

probability of dry days and the hourly transition probabilities of dry-dry days and wet-

dry days. These are important physical characteristics that are required in the daily series 

and also crucial in the water management planning. This will determine the model 

ability in describing the physical process of daily rainfall. 

 

c. Monthly series 

 

The physical properties include the distribution of the maximum and minimum rainfall 

amounts. These properties are important for water management planning.  
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Figure 3.13:   Flowchart of simulation procedures of the NSRP model 
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Calculate Sample 
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Figure 3.14:  Flowchart of the working strategy for the NSRP models 
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3.3 Stochastic Rainfall Modeling using Markov Chain Mixed Exponential Model 

(MCME) 

 

3.3.1 Introduction 

 

A rainfall model based on daily precipitation is attractive because relatively long 

and reliable records are readily available and such a model is frequently efficient for 

many practical problems.  Stochastic models of daily rainfall are usually divided into 

two parts, a model of rainfall occurrence which provides a sequence of dry and wet days, 

and a model of rainfall amounts, which simulates the amount of rainfall occurring on 

each wet day and then both are superimposed to form the overall rainfall model. 

(Eagleson, 1978; Woolhiser et.al,1982, Roldan et.al,1982, ). 

 

One of the popular stochastic modeling of daily rainfall is the Markov Chain-

Mixed Exponential (MCME).  The first-order two-state Markov Chain model is used to 

describe the hourly rainfall occurrence process and the Mixed Exponential distribution is 

used to describe the hourly amount distribution.).  Many studies have used the 

combination of Markov Chain and Mixed Exponential(MCME) to  model daily rainfall 

series and the combined model had proven to be the best  in describing rainfall processes 

(Woolhiser and Pegram. 1979, Woolhiser et.al,1982, Han, 2001).  

 

An effort on modeling the hourly rainfall series using the two parts modeling was 

done by Katz and Parlange (1995) that fitted stochastic models to time series hourly data 

by using an extension of chain-dependent process commonly fit to daily rainfall amount, 

and the amount distribution is described by a power transformation of the normal.  The 

model was said to be competitive to the so-called conceptual model (pulse-based) but 

failed to reproduce the statistics of 12h and 24 h aggregation. However using MCME on 

hourly series has never been reported in literature yet.  Han et al (1982) pointed out that 

rainfall for short time intervals, is more difficult to model than long time period because 

of the sequential persistence between rainfall amounts, and also because the time-series 
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are dominated by zero values (intermittent process).  Therefore, this study will explore 

the possibility of using MCME in modeling the hourly rainfall process.  

 

 

3.3.2 The Hourly MCME Model Derivation  

 

According to Pattison (1965), a first-order Markov Chain could be used to model 

hourly rainfall observations during sequences of nonzero rainfall (wet hours). Using the 

WMO guideline, a wet day is defined as a day with a rainfall amount above a fixed 

threshold of 0.1 mm. This threshold will be used as well for defining the wet hours with 

rainfall amount of greater than or equal to 0.1 mm.   

In this study the MCME is to be applied on the hourly rainfall series with two 

states: dry or wet hours; modeled as either a 0 or 1 respectively with a first order Markov 

Chain explaining the dependence between wet and dry hours on successive hours. The 

rainfall amounts is modeled using the mixed exponential distribution. 

 

 

3.3.2.1 The Occurrence Process 

 

Let assume the amount of precipitation falling on hth hour and  tth day is a random 

variable 

 

( ) ( ). ( )t t tZ h X h Y h=        (3.110)  

where Xt (h) represents the occurrence process and Yt (h) represents the amount of 

precipitation when Xt (h) is wet. 

   

The hourly occurrence process { }( ) : 1, 2,..., 24; 1, 2,....tX h h t= =  is defined as 

 

1        if th hour of th day is wet
( )

0       otherwiset

h t
X h

⎧
= ⎨
⎩

    (3.111) 
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where wet hour refers to one on which measurable precipitation occurs. The 

conventions adopted are as follows: 

 

1 1 1 1( 1) (23), (0) (24), (25) (1), (26) (2),.......t t t t t t t tX X X X X X X X− − + +− = = = =  

 

It is assumed that the process Xt(h) constitutes a two-state, first order Markov 

Chain with transition probabilities 

 

{ }( ) ( ) ( 1)      , 0,1

1,2,........365
1,2,........24

ij t tP h P X h j X h i i j

t
h

= = − = =

=
=

          (3.112) 

1 0( ) 1 ( )          0,1i iP h P h i= − =  

Let  be the amount of rainfall that falls on day t and hour h when ( )tY h ( ) 1tX h = .  We 

assume that is serially independent and independent of ( )tY h ( 1) 1tX h − = . This means that 

there is dependence on rainfall occurrence from hour to hour but that the amount is 

independent of previous occurrences and amounts. The assumption of independence 

between the amounts of rainfall on successive days leads to significant simplifications in 

the model structure and has been used by several previous researchers (Coe and Stern, 

1982; Richardson and Wright, 1984). 

 

Woolhiser and Pegram [1979] recommended the maximum likelihood method to 

estimate the parameters of the Markov Chain using the daily series. Therefore, the same 

procedures are  applied to the hourly series. The log likelihood function: 

{ }( )
1 1 24

0 0 1

24
00 00 01 00

1 10 10 11 10

ln ( ) ln ( )

( ) ln ( ) ( ) ln(1 ( )
                  =

( ) ln ( ) ( ) ln(1 ( )

t ij ij
i j h

h

L X a h P h

a h P h a h P h
a h P h a h P h

= = =

=

=

é ù+ -ê ú
ê ú+ + -ë û

å å å

å
   (3.113) 

where 

.

( )
( )

( )
ij

ij
i

a h
P h

a h
=          (3.114) 
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and denotes the number of times in the sample of observations of precipitation 

occurrences that a transition from state i on the hth  hour of the day to state j on the 

(h+1}th hour occurs and 

( )ija h

 

. 0 1( ) ( )i i ia a h a h= + .        (3.115) 

 

In relation to the above definition, the maximum likelihood estimates of Markov Chain 

parameters that are calculated by computing the observed number of transitions aij,k(h) 

from state (i=0 or 1) on hour h to state (j=0 or 1) on hour h+1 in period k across the 

entire length of record where 0 represents a dry hour and 1 represents a wet hour are 

represented as follows by substituting equation(3.102) to equation (3.101). The two 

parameters to be estimated are P00 and P10 and the definitions are as follows: 

00,
00,

00, 01,

10,
10,

10, 11,

( )
( )

( ) ( )
( )

( )
( ) ( )

k
k

k k

k
k

k k

a h
p h

a h a h
a h

p h
a h a h

=
+

=
+

       (3.116) 

The unconditional probability of being wet on day t   and hour h can also be 

approximated by: 

 

00,

10, 00,

[1 ( )]
{ ( ) 1}

1 ( ) (
t

t
t t

p h
P X h

)p h p h
−

= ≈
+ −

     (3.117) 

 

 

 3.3.2.2The Amount Process 

 

In describing the rainfall amounts of the hourly series, the empirical observed 

frequency distribution were fitted to the theoretical probability density function.  The 

mixed exponential distribution was found to be the most accurate for describing the 

distribution of hourly rainfall amounts as compared to other popular candidate 

distributions such as simple exponential, gamma and Weibull (Fadhilah et al. 2007).  
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Let Yt(h) denotes the precipitation amount on the hth hour of the tth day.  If 

Xt(h)=1, then Yt(h) > 0 and is referred to as intensity. The convention is adopted that   

1 1 1( 1) (23), (0) (24),. (25) (1), (26) (2),...t t t t t t t tY Y Y Y Y Y Y Y− − + +− = = = = 1  

 

The distribution of the hourly rainfall amounts is described by the Mixed Exponential 

function. 

( )( ) ( )1 ( )( )( )
( ) ( )

0;0 ( ) 1;),0 ( ) ( )
1,...24.
1,.......365

t t

y y
h htt

t
t t

t

hhY h e e
h h

y h h
h
t

ξ θαα
ξ θ
α ξ θ

⎛ ⎞ ⎛− −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

−
= +

> ≤ ≤ < <

=
=

h

⎞
⎟
⎠

    (3.118) 

The mixed exponential distribution can be interpreted as the result of a random sample 

from two exponential distributions where the smaller mean ( )hξ  is sampled with 

probability ( )hα and the distribution with the larger mean ( )hθ is sampled with 

probability (1 ( ))hα− .  he maximum likelihood estimates of the parameters of the mixed 

exponential distribution were obtained by maximizing the log likelihood function : 

{ } ( )( ) ( )( )
( ) ( )

1

1 ( )( )ln ( ) ln
( ) ( )

kj k j

k

y h y hN k
h kk

k t
j k k

hhL Y h e e
h h

ξ αα
ξ θ

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= +⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ k hθ   (3.119) 

where ( ), ( ),k kh hα ξ and ( )k hθ  are the parameter values for the kth period,  is the 

amount of rainfall for the jth wet hours in period k, and N(k) is the number of wet hours 

in period k. 

kjy
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3.3.3 Parameter Estimation 

 

The hourly data is pooled according to calendar months. Instead of using a local 

optimization technique as in most previous studies, the Shuffled Complex Evolution 

(SCE) global optimization method (Duan et.al.,1992) is employed for finding the 

optimal solution of the minimization of the likelihood function. This global optimization 

technique was found to be able to provide more accurate and more robust results than the 

local optimization procedures (Peyron and Nguyen, 2004). The SCE-UA technique has 

been discussed at length in section 3.4.6.  

 

There are five parameters in which the two is used to describe the transitional 

probabilities and three explaining the mixed exponential  can be found for 12 sets of 

monthly data.  Each parameter set is then fitted to a finite Fourier series (Woolhiser and 

Pegram, 1979), where the parameters change periodically through the 12 months of the 

year.  The parameter set for the rainfall process for each month m can be written as: 

 

{ }00 10( ) ( ), ( ), ( ), ( ), ( )m p m p m m m mγ α ξ= θ      (3.120) 

 

The same orientation as in the daily MCME model is used in estimating the parameters 

of the model.  The parametric monthly Fourier series representation of the parameters 

for m = 1, 2, …..,w where w = 12 can be written as:   

 

1

2 2ˆ cos sin
h

m m j j
j

jmA B
w w
πγ μ

=

⎧ ⎛ ⎞ ⎛= + +⎨ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ jmπ ⎫⎞
⎬⎟     (3.121)  

Here, h is the maximum number of harmonics needed to specify the variation of 

parameter concerned, it is however set to a constant h = 5 for the purposes of this 

research based on the research of Sang-Yoon Han (2001). Thus, a maximum of 2h + 1 

coefficients are needed to describe each parameter , To make a parsimonious estimation, 
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a maximum of 2h +1 coefficient are needed to describe each parameter mγ . ˆmμ  is defined 

as the sample estimate of the unknown population periodic parameter mγ  where 

1

1ˆ
w

m
mw mμ μ
=

= ∑          (3.122) 

 

The coefficients of the Fourier series in Equation (3.108) are determined through 

maximum likelihood estimates as follows, for all j = 1, 2,….h harmonics specified as: 

 

1

2 2cos
w

j m
m

jmA
w w

πμ
=

⎛= ⎜
⎝ ⎠

∑ ⎞
⎟        (3.123) 

1

2 2sin
w

j m
m

jmB
w w

πμ
=

⎛= ⎜
⎝ ⎠

∑ ⎞
⎟        (3.124) 

 

An alternate polar form of the Fourier series were also considered but not applied to the 

final model. 

1

2ˆ cos
h

m m j j
j

jmC
w
πγ μ θ

=

⎡ ⎛= + +⎜⎢ ⎝ ⎠⎣ ⎦
∑ ⎤⎞

⎟⎥       (3.125) 

 

 

3.4.4 Simulation of Hourly Rainfall Process 

 

MATLAB functions were developed to create a software package to simulate 

hourly rainfall using the MCME model for any time series data. The stochastic model 

was created such that the occurrence and amounts on any given hour would be random.  

The software package for the hourly series was created based on the daily series 

software package developed by Hussain (2007).  Sample of this hourly MCME 

simulation programs are found in Appendix D. 
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Random number u 

 
Rainfall 

occurrence:  
 Markov Chain  
 
 Preceding  

Hour(n-1):dry  
 noyes 
 
 
 

u < p00 u < p10 
 no noyes yes  
 

Hour n Hour n Hour n Hour n  
is dry is wet is wet is dry  

 
 
 
 
 
 Random number v Rainfall am

Mixed Exponential 
distribution 

ount:  
 
 
 
 v < α(n) 
 
 

noyes  
 
 y = -ξ(n)logv + 

Threshold 
y = -β(n)logv + 

Threshold  
 
 
 

Figure 3.15:   Flowchart of the simulation procedures of the MCME model. 
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3.3.4.1 Hourly Scale 

 

In hourly simulation model, a day contained 24 values for occurrences and 

amounts. All the hourly data are separated into monthly data sets and twelve sets of 

monthly parameters are derived for the hourly rainfall MCME model. The data handling 

and random number generation procedure was much more computationally intensive for 

generating rainfall series for the hourly scale as compared to the procedure for the daily 

scale. 

 

The parameters obtained for each month will be used to simulate hourly rainfall 

series. The simulation program uses the first-order, two-state Markov Chain for hourly 

rainfall occurrences and the mixed exponential for hourly rainfall amounts.   The 

procedure for generating simulated hourly rainfall series is shown in Figure 3.15.  The 

algorithm for the simulation of the hourly MCME model is as follows: 

 

1. For any given hour, a uniform random number, u between 0 and 1 is 

generated. 

 

2. The parameter set of the month to which the simulated hour belongs is 

extracted. 

i. If the preceding hour is dry and u < p00, then the current hour is said 

to be dry and the process restart at step 1. However, if u > p00, the 

hour is said to be wet and a rainfall amount is then required to be 

generated. 

ii. If the preceding hour is wet and u < p10, then the current hour is said 

to be dry and the process restarts at step 1.  However, if u > p10, the 

hour is said to be wet and a rainfall amount is then required to be 

generated, 
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3. If step 2 determined a wet hour, another uniform random number, v is 

generated. 

 

For  the mixed exponential distribution, ( )nξ  and ( )nθ  are means of the smaller and the 

larger exponential distributions, respectively. If   is the mean of the hourly rainfall 

amount, it can be described by the following relation: 

( )u n

 

( ) ( ) ( ) (1 ( )) ( )n n n n nμ α ξ α θ= + − .    (3.126) 
 
If ( )nν α< , the depth, y, is generated from an exponential distribution with smaller 

means, ( )nξ , using the transformation: 

 

( ) logy n thresholdξ ν= − +       (3.127) 
  
If  ( )nν α≥ , the depth y is generated from an exponential distribution with larger 

means, ( )nθ  

 

( ) logy n thresholdθ ν= − +       (3.128) 

where threshold value in this study is equal to zero because a non-zero amount is 

considered as wet hour.  

 

 

3.3.4.2 Daily Scale 

 

The daily simulation MATLAB software package has been created by Hussain 

(2007). The same algorithm as stated above for the hourly process was used to describe 

successive day states and rainfall amounts. As expected, the data handling and random 

number generation was less intensive computationally. 
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3.4.5 Assessment of the MCME Model 

 

The assessment of the MCME model performance is carried out for both hourly 

and daily rainfall simulations.  

 

 

3.3.5.1 Assessment of the Hourly MCME Model 

 

The MCME stochastic hourly rainfall generator was calibrated with the hourly 

data from 1981 to 1990 available at the Gombak.  The mixed exponential goodness of fit 

test was assessed using observed hourly rainfall frequency within each month. Based on 

this calibration, a set of 50 simulated rainfall series were generated.  Both graphical and 

numerical comparisons were used in the comparisons of simulated and observed 

statistical and physical properties as described in sections (3.3.14.1) and (3.3.14.2).  The 

following parameters will be considered in this assessment. 

 

a. Hourly series 

 

The statistical properties consist of mean, standard deviation, coefficient of skewness, 

autocorrelations and  hourly correlogram.  The physical properties consist of maximum 

hourly rainfall amount and number of wet and dry hours.  

 

b. Twenty-four hourly or  daily series 

 

The hourly series are lumped or aggregated to 24 hourly series rainfall. The statistical 

properties consist of mean, standard deviation, coefficient of skewness, autocorrelations 

and daily correlogram. The physical properties consist of maximum daily amount of 

rainfall and the number of wet and dry days.  
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c. Monthly series  

 

The hourly series are lumped or aggregated to a one-month series rainfall. Statistical 

properties consist of mean and standard deviation while the physical properties consist 

of  monthly maximum and minimum rainfall amount. 

 

 

3.3.5.2  Assessment of the Daily MCME Model 

 

Similarly, the daily model was applied to daily data from the Gombak station  for 

the 1981-1990 period. The mixed exponential goodness of fit was assesses using 

observed daily rainfall frequency within each month. Based on the calibration, 50 

simulations were generated. For each simulation output, a set of statistical and physical 

properties describe above were used to evaluate the ability of the MCME model in 

preserving the observed characteristics of rainfall. Therefore, similar assessments as for 

the hourly model were carried out for the daily model.  

 

To test the accuracy of the hourly model in describing daily rainfall 

characteristics, the hourly simulations were lumped to form daily simulations and 

compared to the observed daily series. Similarly, to evaluate the performance of both 

hourly and daily models in preserving monthly rainfall properties both simulations were 

lumped to form monthly simulations and compared to the observed monthly rainfall 

series. The same statistical and physical  criteria were used in these assessments.  

 

 

3.5 NSRP and MCME Model Comparisons 
 
 

Following assessment of the accuracy of the NSRP and MCME models in 

preserving observed rainfall characteristics, the performance of these two models can be 

compared.  The comparisons to be made are as follows: 
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a. To compare the performance of NSRP with MCME hourly model 

b. To compare the performance of NSRP with MCME daily model  

 

To compare the model performance, only the properties at one-hour and 24-hour (daily) 

scales are chosen.   While these two series have many applications in the water 

management process, they are also important in understanding the underlying process of 

any rainfall events. 

 

a. Hourly series 

The statistical properties consist of mean, standard deviation, coefficient of skewness, 

and autocorrelations. The physical properties consist of maximum hourly amount and 

probability of dry hours. 

 

b. 24-hourly or daily series  

 

The statistical properties consist of mean, standard deviation, coefficient of 

skewness and autocorrelations. The physical properties consist of maximum daily 

amount and probability of dry days. Both graphical and numerical comparisons were 

used in this evaluation as discussed in sections 3.3.14.1 and 3.3.14.2 to determine the 

best stochastic model that could describe the rainfall process at the study site. 

 

 

3.6 NSRP and MCME Model Validation  
  

Much of the work done in this study was done in the calibration period, assessing 

the descriptive ability of both models.  To assess the predictive ability, the validation of 

the best NSRP hourly model and hourly MCME model can be carried out using 

available data from the 1991-2000 period at WP station.  The monthly descriptive 

statistics for rainfall data are given in Appendix B.  For this validation purposes, each 
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rainfall simulation was generated for 20 years.  The first 10-year simulated rainfall series 

were used for assessing the descriptive (calibration) ability of the models while the 

second 10-year series were used for evaluating their predictive (validation) ability.  

Statistical and physical properties of the observed and synthetic hourly and daily time 

series considered in the model validation are similar to the properties used to compare 

models.  Both graphical and numerical comparisons discussed in sections 3.3.14.1 and 

3.3.14.2 were used to evaluate and compare both models in the validation period in order 

to determine the best stochastic model that could predict the rainfall process at the study 

site. 

 

 

3.6 Stationary and Nonstationary Stochastic Models 

 

Stochastic means being or having a random variable.  A stochastic model is a 

tool for estimating probability distributions of potential outcomes by allowing random 

variation in one or more inputs over time.  The random variation is usually based on 

fluctuations observed in historical data for a selected period.  The models for time series 

are in fact stochastic models.   

 

An important class of stochastic models for describing time series is called 

stationary models.  It is assumed that the process remains in equilibrium about a constant 

mean level or the process in a particular state of statistical equilibrium.  A stochastic 

process is said to be strictly stationary if its properties are unaffected by a change of time 

origin, that is, if the joint probability distribution associated with m observations 

 made at any set times  is the same as that associated with  

observations  made at times 

,...,,,
21 mttt zzz ,...,,, 21 mttt m

,...,,,
21 ktktkt m

zzz +++ ...,,, 21 ktkt ++  .ktm +  

 

When , the stationarity assumption implies that the probability distribution 

 is the same for all times t  and may be written as 

1=m

( )tzf ( )zf .  Hence, the stationary 

process has a constant mean, 
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[ ] ( )∫
∞

∞−
== dzzzpZE tμ      (3.129) 

           

 

and a constant variance 

 

  ( )[ ] ( ) ( )∫
∞

∞−
−=−= dzzfzZE tz

222 μμσ .     (3.130) 

 

The mean μ  of the stochastic process can be estimated by the sample mean 

 

  ∑
=

=
N

t
tz

N
z

1

1        (3.131) 

 

of the time series, and the variance  of the stochastic process can be estimated by the 

sample variance  

2
zσ

 

  (∑
=

−=
N

t
tz zz

N
s

1

22 1 )       (3.132) 

 

of the time series. 

 

 The stationarity assumption also implies that the joint probability distribution 

( )
21

, tt zzp  is the same for all times  which are a constant interval apart.  The covariance 

between  and  that is separated by  intervals of time, which under the stationarity 

assumption must be the same for all t , is called the autocovariance at lag k . It is defined 

by 

21,tt

tz ktz + k

  [ ] ( )( )[ ]μμγ −−== ++ kttkttk ZZEZZ ,cov      (3.133) 

 

Similarly, the autocorrelation at lag  is k
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    (3.134) 

 

since for a stationary process, the variance  is the same at time  as at time 

.  Thus the autocorrelation at lag k , that is, the autocorrelation between  and , is 

0
2 γσ =z kt +

t tz ktz +

 

  
0γ

γ
ρ k

k =            (3.135)          

 

which implies that .10 =ρ   A number of estimates of the autocorrelation function have 

been suggested in the literature but the most satisfactory estimate of the th lag 

autocorrelation 

k

kρ  is 

 

  
0c

c
r k

k =        (3.136) 

 

where 

 

  ( )( ) Kkzzzz
N

c
kN

t
kttk ,...,2,1,0,1

1

=−−= ∑
−

=
+   (3.137) 

 

is the estimate of the autocovariance kγ , and z  is the sample mean of the time series.  It 

should also be noted that K  should not be larger that 4N .  Three conditions that should 

be considered are 
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         (3.138) 
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which implies that kρ  should be in the range [-1,1]. 

 

 Autocorrelation function is important in model identification because it can 

identify whether the model is stationary or nonstationary.  Theoretically, the series is 

stationary if the estimated autocorrelation function quickly reduces to zero with 

increasing lag . k

 

 Generally, there are three basic models for a Box-Jenkins stationary stochastic 

model.  The models are 

 

(i) Autoregressive model AR( p ) 

(ii) Moving Average model MA( q) 

(iii) Mixed Autoregressive-Moving Average model ( qp, ). 

 

 However, forecasting has been of particular importance in many fields where 

many time series are often represented as nonstationary and, in particular, as having no 

natural constant mean level over time.  Sometimes there are some trends in time series.  

Therefore, some simple operators that is the backward difference operators ∇, as 

follows, can be employed to the time series.  

 

  ntzzzy tttt ,...,3,2,1 =−=∇= −     (3.139) 

 

If the series is still nonstationary, then it can be differentiated once again so that it would 

be stationary. 
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( )

ntzzz
zzzy

ttt

tttt

,...,3,22 21

1
2

=+−=
−∇=∇=

−−

−    (3.140) 

 

 Theoretically, if a time series have been differentiated twice, the series will be 

stationary.  In Box-Jenkins, the model for the nonstationary stochastic model is called 

the Autoregressive Integrated Moving Average ARIMA( ) model.   qdp ,,

 

 

3.7 Univariate Box-Jenkins Model 

 

 There are two main models in Box-Jenkins.  These are seasonal model and 

nonseasonal model.  Here we will only discuss the nonseasonal model that consists of 

the stationary model and the nonstationary model for the univariate time series that is the 

Autoregressive model, AR( ), Moving Average model, MA( q), Mixed Autoregressive-

Moving Average model, ARMA( ) and the Autoregressive Integrated Moving 

Average model, ARIMA( ). 

p

qp,

qdp ,,

 

 

3.7.1 Autoregressive Model, AR(p) 

 

The general autoregressive model is given by 

 

 tptpttt azzzz ++++= −−−
~~~~

2211 φφφ Κ     (3.141) 

 

which is known as AR( p ) model or autoregressive model of order .  It is a 

transformation from  

p

 

  tptpttt azzzz +++++= −−− φφφμ Κ2211    (3.142) 

 

where 
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  observation at time t  =tz

=ta  shock at time t 

=μ  mean 

μ−= tt zz~  

 

 In (3.14), the variable z  is regressed on previous values of itself.  If we define an 

autoregressive operator of order p  by 

 

      (3.143) ( ) p
pp Β−−Β−−=Β φφφφ Κ2

211

 

then, equation (3.14) can be written as 

 

  ( ) ttp az =Β ~φ  

         (3.144) ( ) tpt az Β= −1~ φ

 

where . ( ) ptt
p zz −=Β ~~

 

 The model contains 2+p  unknown parameters , which have to 

be estimated from the data.  The parameter  is the variance of the white noise process 

. 

2
1 ,,,, ap σφφμ Κ

2
aσ

ta

 

3.7.2 Moving Average Model, MA(q) 

 

 Moving average model of order  is given by q

 

  qtqtttt aaaaz −−− −−−−+= θθθμ Κ2211    (3.145) 

 

where 
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   observation at time t  =tz

=ta  shock at time t 

=μ  mean 

 

Let μ−= tt zz~ .  Then, equation (3.18) will be 

 

  qtqtttt aaaaz −−− −−−−= θθθ Κ2211
~     (3.146) 

 If we define a moving average operator of order  by q

 

  =Β)(qθ
q

qΒ−−Β−Β− θθθ Κ2
211     (3.147) 

 

the moving average model may be written as 

 

      (3.148) ( t
q

qt az Β−−Β−Β−= θθθ Κ2
211 )

 

where . ( ) 1−=Β tt aa

 

 This model contains 2+q  unknown parameters  which are 

estimated from the data.   is the variance of the white noise process . 

2
1 ,,,, aq σθθμ Κ

2
aσ ta

 

 

3.7.3 Mixed Autoregressive-Moving Average Model, ARMA(p,q) 

 

 Mixed autoregressive-moving average model, ARMA( qp, ) model consists of 

both the autoregressive model of order p , AR( p ) and the moving average model of 

order , MA( ).  This model gives some flexibility in the fitting of actual time series 

by combining both of the models.  Thus, the autoregressive-moving average model of 

order 

q q

p  and  is given by q
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qtqtttptpttt aaaazzzz −−−−−− −−−−++++= θθθφφφ ΚΚ 22112211
~~~~          (3.149) 

 

By using the autoregressive operator of order p  and the moving average operator of 

order , the ARMA(q qp, ) model can be written as 

 

  ( ) ( ) tqtp az Β=Β θφ ~       (3.150) 

 

where  

 

  ( ) =Βpφ
p

pΒ−−Β−Β− φφφ Κ2
211  

  )(Βqθ
q

qΒ−−Β−Β−= θθθ Κ2
211  

 

 For ARMA( qp, ) model, there are 2++ qp  unknown parameters 

 that are estimated from the data.  In practice, it is 

frequently true that adequate representation of actually occurring stationary time series 

can be obtained with autoregressive, moving average or mixed autoregressive-moving 

average models, in which 

2
2121 ,,,,,,,,, aqp σθθθφφφμ ΚΚ

p  and  are not greater than 2. q

 

 

3.7.4 Autoregressive Integrated Moving Average Model, ARIMA(p,d,q) 

 

There are many empirical time series that behave as though they have no fixed 

mean.  However, they exhibit homogeneity in the sense that apart from local level and 

trend, one part of the series behaves much like any other part.   

 

Models that describe such homogeneous nonstationary behavior can be obtained 

by supposing some suitable difference of the process to be stationary.  We now consider 

the properties of the important class of models for the th differences which d 2≤d , of a 



 125

stationary mixed autoregressive-moving average process so that the series will be 

homogeneous and stationary.  These models are called autoregressive integrated moving 

average (ARIMA) process. 

 

The following table shows the d th difference for 2≤d : 

 

Table 3.6: th difference for the ARIMA model. d

         d=0         d=1           d=2 

1y  1y    

2y  2y  122 yyz −=   

3y  3y  233 yyz −=  1233 2 yyyz +−=  

Μ Μ Μ Μ 

1−ny  1−ny  Μ Μ 

ny  ny  1−−= nnn yyz  12 −− +−= nnnn zzzz
 

 

 

 After differentiating the ARMA( qp, ) model, the model will be the p th order 

autoregressive, th order moving average with th difference autoregressive integrated 

moving average, ARIMA( ).  The ARIMA( ) can be written as 

q d

qdp ,, qdp ,,

 

       (3.151) 
( ) ( )

( ) tq

t
d

pt

a

zz

Β=

∇Β=Β

θ

φϕ *

 

with  

  ( )dd Β−=∇ 1  

   
( )
( ) q

qq

p
pp

Β−−Β−Β−=Β

Β−−Β−Β−=Β

θθθθ

φφφφ

Κ

Κ
2

21

2
21

1

1

 

where 
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  ( )Βpφ   =  Autoregressive operator of order p  

  ( )Βqθ   =  Moving average operator of order  q

   =  d th differences d∇

   =  Time series data *
tz

ta  =  Shock at time t 

  Β  =  Backward shift operator 

 

 

3.8 Multivariate Box-Jenkins Model 

 

Multivariate process arise when instead of observing just a single process ( )tX , 

we observe simultaneously several processes, ( ) ( ) ....,,, 21 tXtXtX n ( )   For example, in an 

engineering context we may wish to study the simultaneously variations, over time, of 

current and voltage, or pressure, temperature and volume, or seismic records taken at a 

number of different geographical locations.  In economics we may be interested in 

studying inflation rates and money supply, unemployment and interest rates, or the 

supply and demand of a particular commodity.   

 

Although this would give us some information about each quantity, it could 

never reveal what might, in fact, be the most important feature of the study, namely, the 

interrelationships between the various quantities.  Just as in probability theory, we 

cannot examine relationships between random variables knowing only their marginal 

distributions.  Instead we also need to know their joint probability distribution.  So, in 

dealing with multivariate processes we need a framework for describing not only the 

properties of the individual processes but also the cross-links which may exist between 

them.  This is achieved by introducing the notions of cross-covariance or cross-

correlation functions. 
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3.8.1 Correlation of Multivariate Stationary Processes 

 

To introduce the new ideas involved in the study of multivariate processes we 

consider first the case of bivariate processes. 

 

Suppose we are given two stochastic processes, { } { } ,...2,1,0,, ,2,1 ±±=tXX tt .  

We may define the autocovariance functions of { } { }tt XX ,2,1 ,  in the usual way, namely,  

 

( ) { }{ }[ ]1,11,111 μμ −−= +stt XXEsR     (3.152) 

 ( ) { }{ }[ ]2,22,222 μμ −−= +stt XXEsR     (3.153) 

 

where [ ] [ ]tt XEXE ,22,11 , == μμ .  The cross-covariance function is defined by 

 

( ) { }
{ }{[ 2,21,1

,2,121 ,
μμ −−=

=

+

+

stt

stt

XXE
XXCovsR

}]    (3.154) 

 

The autocorrelation functions are then  

 

  ( ) ( ) ( )0111111 RsRs =ρ       (3.155) 

  ( ) ( ) ( )0222222 RsRs =ρ      (3.156) 

 

and the cross-correlations function is given by 

 

  ( ) ( )
( ) ( )00 2211

21
21 RR

sR
s =ρ      (3.157) 

 

Let  denotes the cross-covariance function with “  leading ”.  For the sake 

of symmetry, define the cross-covariance function with “  leading ” as 

( )sR21 tX ,1 tX ,2

tX ,2 tX ,1
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  ( ) { }{ }[ ]1,12,212 μμ −−= +stt XXEsR     (3.158) 

 

with ( )s12ρ  defined analogously to (3.29).  Note that the functions  contain 

equivalent information since, for all , 

( ) ( )sRsR 2112 ,

s

 

  ( ) ( )sRsR −= 2112       (3.159) 

 

The complete covariance properties of the bivariate process { }tt XX ,2,1 ,  are then 

summarized by the sequence of matrices, which is called the covariance matrix of lag , s

 

  ( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

sRsR
sRsR

s
2221

1211R      (3.160) 

 

The correlation matrix of lag  is defined as s

 

  ( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

ss
ss

s
2221

1211

ρρ
ρρ

ρ      (3.161) 

 

 If we have  parameter processes, n ( ) ( ) ,...,,, 21 tXtXtX n ( )  we define the 

covariance matrix at lag  by s

 

  ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

sRsRsR

sRsRsR
sRsRsR

s

nnnn

n

n

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

R    (3.162) 

 

where 

 

  ( ) { } { }[ ]istijtjij XXEsR μμ −−= +,, ,       (3.163) 
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 If tX  denotes the column vector, 

 

   
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

tn

t

t

t

X

X
X

,

,2

,1

Μ
X

 

then we may write, 

 

        (3.164) ( ) [ *tstEs XXR += ]
 

where the asterisk denotes both conjugate and transposition, and  clearly has the 

property  

( )sR

 

        (3.165) ( ) ( )ss −= RR *

 

 The sample autocovariance function of  and the sample cross covariance is 

given by 

tiX ,

 

 
( ) ( )( )

( ) ( )( ) ( )1,...,1,0,1ˆ

1ˆ

1
,,

1
,,

−±±=−−=

−−=

∑

∑
−

=
+

−

=
+

NsXXXX
N

sR

XXXX
N

sR

sN

t
istijtjij

sN

t
istiitiii

      (3.166) 

 

with 

 

  ∑
=

=
N

t
tii X

N
X

1
,

1  
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3.8.2 Multivariate AR, MA and ARMA Models   

 

In section 3.2 we discussed the three main types of univariate models, namely the 

autoregressive (AR), moving average (MA) and mixed autoregressive-moving average 

(ARMA).  Each of these models has its corresponding multivariate extension which is 

obtained by replacing the scalar parameters in the univariate model by matrix 

parameters. 

 

 

3.8.2.1 Autoregressive Models 

 

The -variate AR(n p ) model is given by 

 

 tptptt εXaXaX =+++ −− ...11     (3.167) 

where  are [ ] ptntt XX aaX ...,,,...,, 1,,1
′= nn×  matrices, and [ ]′= tntt ,,1 ...,, εεε  is a 

multivariate shock. 

 

 For example, for a bivariate AR(2) model, the  and  parameters can be 

defined as 

1a 2a

   ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2221

1211
2

2221

1211
1 ,

φφ
φφ

θθ
θθ

aa

 

 

3.8.2.2 Moving Average Models 

 

The -variate MA( q ) model is  n

 

 qtqtttt −−− ++++= εbεbεbεX ...2211        (3.168) 
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where  are  matrices.  For example, for a bivariate MA(2) model, the  

and  parameters can be defined by 

qbb ...,,1 nn× 1b

2b

 

   ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2221

1211
2

2221

1211
1 ,

δδ
δδ

γγ
γγ

bb

 

 

3.8.2.3 Mixed Autoregressive-Moving Average Models 

 

The -variate ARMA(n qp, ) model is written as 

 

 qtqtttptptt −−−−− ++++=+++ εbεbεbεXaXaX ...... 221111    (3.169) 

 

or in operator form 

 

        (3.170) ( ) ( ) tt BB εβXα =

 

where the matrix polynomials ( ) ( )BB βα ,  are defined as 

   ( ) ( )Iaaα == ∑
=

0
0

,
p

u

u
u BB

   ( ) ( )Ibbβ == ∑
=

0
0

,
q

u

u
u BB

 

with I , the identity matrix. 
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3.8.3 Multivariate Autoregressive Integrated Moving Average Models 

 

For several processes in which after th differences, , 

 that are nonstationary will be a stationary process.  It can then be 

modeled by the Multivariate Autoregressive Integrated Moving Average, MARIMA 

model.  Thus, writing , where 

d ti
d X ,Δ

( ) ( ) ( )tXtXtX n...,,, 21

ti
d

ti XY ,, Δ= ( )B−=Δ 1  denotes the difference operator, 

we may write 

 

        (3.171) ( ) ( ) tt BB εβYα =

 

where 
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Μ
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The corresponding model for  is tX

 

  ( ) ( ) ( ) tt
d BB εβXαBI =−      (3.172) 

 

where  
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CHAPTER 4 

 
 
 
 

RESULTS AND DISCUSSION 
 
 
 
 
4.1 Introduction 

 

This chapter will discuss in the results obtained from this study. It begins by 

discussing the results on the identification of the convective rainfalls, followed by the 

generation of the hourly rainfall series using the stochastic rainfall modeling and proceed 

with the method of forecasting the short-term rainfall. 

 

 

4.2 Identification of Convective Rainfall 

 

4.2.1 Diurnal and Monthly Distribution 

 

In order to characterize the convective storms, historical rainfall of 5-min 

intervals was extracted from the hydrological data bank of the Department of Irrigation 

and Drainage Malaysia.  Station 3117070 – JPS Ampang is chosen because the data sets 

have relatively good continuity. Only about 0.66 percent of data was missing.  The 

rainfall station is located at North 3° 9’ 20” and 101° 45’ 00” East. 

 

Knowledge of the diurnal cycle of rainfall is important for evaluating convective 

activity.  Previous studies by Ohsawa et.al. (2001) on the diurnal variations of 

convective activity and rainfall in tropical Asia suggests a strong possibility that late 
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night-early morning maxima of convective activity and rainfall have a great effect on 

energy and water cycles.  Figure 4.1 shows the diurnal and monthly distributions of 

rainfall (greater than 5 mm) in 2004 at Ampang station (3117070).  About, 79% of the 

total rainfall occurred during the daytime (07:00 – 19:00h).  The bulk of the rainfall, 

75% occurred between 13:00 and 19:00 and 12.5% fall between 19:00 and 22:00.  It 

means that most of rainfall occurred in the afternoon.  Convective storms are caused by 

differential solar heating of the ground and lower air layers, which typically occur during 

afternoons when warm moist air covers an area (Hewlett, 1969).  Consequently, most 

afternoon rainstorms in this area can be classified as convectional storms. 

Figure 4.1 : Diurnal and monthly distributions of rainfall (greater than 5 mm) in 2004 at  

                    JPS Ampang station 

 

 

4.2.2 Minimum Interevent Time (MIT) 

 

In this analysis, a rainfall event is defined based on the Minimum Interevent 

Time (MIT) method.  One year rainfall data is used to define this analysis.  The annual 
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number of rainfall events were plotted against different MIT values and an appropriate 

MIT value is selected from the graph at a point after which increases in the MIT do not 

result in significant changes in the number of event.  An MIT value of three hours is 

chosen.  As can be seen from Figure 4.2 after an MIT value of 3, changes in the numbers 

of events with respect to MIT values has become insignificant.  Therefore, rainfall 

events used in the analysis must were have a minimum separation time of 3 hours.  This 

value can be accepted because Adams et. al., (1986) suggested MIT values between 1 

and 6 hours for urban applications. 
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     Figure 4.2 : Annual number of rainfall events as a function of MIT 

 

 

4.2.3 Characterization of Convective Rain Based on Short Rainfall Duration Data 

 

4.2.3.1 Preliminary Analysis 

 

In this stage, the preliminary results on the characteristics of convective and non-

convective storms are presented in terms of total rainfall, intensity and duration.  Table 

4.1 presents the statistical summary of the event rainfalls between year 2000 and 2004.  

The separation between convective and non-convective storms is based on the 35 mm/hr 
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threshold intensity as described by Llasat (2001).  Convective rain occurred most 

frequently in November (45 times).  Of the total 297 convective storm events which 

exceeded 35 mm/hr, 130 storms or 44% occurred during inter-monsoon months (Oct – 

Nov and Apr – May).  The southwest and northeast monsoons recorded 27% and 30% of 

the events respectively.  This is maybe influenced by inter-monsoon process where 

during the inter-monsoon period the weather in Malaysia will be typically fair in the 

morning with strong convective clouds developing in the late morning and early 

afternoon.  Beside that, the wind direction during this period is often variable and the 

wind speeds seldom exceed 10 knots.  The frequency of storms event in different 

monsoon period is shown in Table 4.2. 

 

Table 4.1 : Summary statistics of monthly convective and non-convective rainfalls 

between 2000 and 2004 at Ampang station 
Northwest Inter Southwest Inter Precipitation 

class  
 and totals 

Month 
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Nonconvective  Total rainfall amounts 696.2 405.6 529.5 686.8 902.1 360.6 409.3 419.1 450.9 834.6 824.1 1312.6 
precipitation  Mean 139.2 81.1 105.9 137.4 180.4 72.1 81.9 83.8 90.2 166.9 164.8 262.5 

(mm) with rate  Median 99.9 66.4 66.2 114.8 164.4 80.5 86.0 61.8 50.6 146.6 163.0 263.8 

 < 35 mm/hr Standard Deviation 121.2 71.1 123.1 88.0 68.3 31.0 60.0 66.4 90.9 92.3 51.3 97.4 

  Coefficient of variation 0.9 0.9 1.2 0.6 0.4 0.4 0.7 0.8 1.0 0.6 0.3 0.4 

  Number of event 65 44 39 60 79 38 34 47 46 74 63 99 

  Precipitation event-1 10.7 9.2 13.6 11.4 11.4 9.5 12.0 8.9 9.8 11.3 13.1 13.3 

Convective  Total rainfall amounts 483.1 200.1 331.2 809.0 716.5 396.9 454.6 317.6 309.0 632.1 917.9 883.5 

precipitation  Mean 96.6 40.0 66.2 161.8 143.3 79.4 90.9 63.5 61.8 126.4 183.6 176.7 

(mm) with rate  Median 92.7 27.4 61.3 118.8 139.1 52.8 15.7 79.1 27.2 95.9 192.2 239.2 

 > 35 mm/hr Standard Deviation 51.0 36.1 24.8 150.9 50.2 60.6 129.3 61.3 70.7 69.9 102.4 121.1 

  Coefficient of variation 0.5 0.9 0.4 0.9 0.4 0.8 1.4 1.0 1.1 0.6 0.6 0.7 

  Number of event 18 15 22 33 33 16 18 14 17 30 36 45 

  Precipitation event-1 26.8 13.3 15.1 24.5 21.7 24.8 25.3 22.7 18.2 21.1 25.5 19.6 

Bulk all kinds  Total rainfall amounts 1179.3 605.7 860.7 1495.8 1618.6 757.5 863.9 764.5 759.9 1466.7 1742.0 2196.1 

 (mm) Mean 235.9 121.1 172.1 299.2 323.7 151.5 172.8 152.9 152.0 293.3 348.4 439.2 

  Median 183.9 93.8 129.0 295.0 351.7 143.9 190.1 140.9 172.1 324.5 359.9 470.5 

  Standard Deviation 143.4 102.5 119.7 176.9 90.4 81.3 148.5 111.6 97.7 107.7 77.1 136.3 

  Coefficient of variation 0.6 0.8 0.7 0.6 0.3 0.5 0.9 0.7 0.6 0.4 0.2 0.3 

  Number of event 83 59 61 93 112 54 52 64 63 104 99 144 
  Precipitation event-1 13.4 9.0 16.2 15.9 14.6 13.7 14.3 11.6 11.6 14.0 18.1 15.7 

 

Table 4.2  :  Frequency of convective storms events during monsoon and inter-monsoon 

periods 

Monsoon Frequency %Frequency 
Southwest 79 27 
Northeast 88 30 
Intermonsoon 130 44 
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4.2.4.2 Classification of Convective Events 

 

In order to classify convective events, it is useful to have a parameter for each 

one of them.  As noted in Chapter III, an intensity of 35 mm/hr is taken as the 5 minute 

mean intensity threshold (Llasat, 2001).  This threshold is useful in order to derive 

convective storm properties.  Table 4.3 shows the number of non-convective and 

convective events between 2000 and 2004.  In this analysis, it is found that convective 

events were contribute 30.1% from all of rainfall events whereas non-convective events 

represent 69.9%.  The highest number of convective event was fall in inter-monsoon 

months where 9 convective events were recorded in November. 

 

Table 4.3 : Number of convective and non convective events 

Season Northwest Inter-
monsoon Southwest Inter-

monsoon 
Month Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 
Non-convective events 
(< 35 mm/hr) 13 9 8 12 16 8 7 9 9 15 13 20 

Convective events 
(> 35 mm/hr) 4 3 4 7 7 3 4 3 3 6 7 9 

 

A classification of episodes based on the β parameter is shown in Figures 4.3 and 

4.4.  This classification is according to their greater or lesser convective character 

(Llasat, 2001).  The number of event which falls under moderately convective class is 

the highest in all months (Figure 4.3).  On a yearly basis the percentage of events trend 

fall under moderately convective storm range from 51.5 % to 69.3 % (Figure 4.4).  All 

percentages from Figure 4.4 were not include non convective events.  Only for event 

which have intensity greater than 35 mm/hr.   

 



 

 

 

 

 

 

 

Figure 4.3 : Monthly number of event for each class of convective storm 
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Figure 4.4 : Yearly percentage of occurrence of convective storm 
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Figure 4.5 :  Convective storms with the highest 5 –minutes intensity for each year
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4.2.4 Spatial Distribution of Convective Rainfall between Meteorological Radar 

Data and Surface Data 

 

In this analysis, the comparison of spatial distribution between meteorological 

radar data and surface rainfall were presented in terms of intensity and the area between 

isohyetal line.  In addition, the movement of storm centre for selected convective events 

were observed.  Finally, the depth-area relationship was plotted for six single events.   

 

 

4.3.4.1 Digitizing Radar Image 

 

In order to analyse storm areal coverage, the radar images were finest digitized to 

get a layer of isohyetal contour in GIS format.  The real images (JPEG image) from 

KLIA Meteorological Station were rectified with Klang Valley Map.  Then, the colours 

of rainfall image are digitized one by one until a rainfall contour is produced.  Figure 4.6 

shows the image of rainfall contour after being digitized using GIS (ArcGIS 9.1).   

 

  
Figure 4.6 : Digitized image using ArcGIS 9.1 
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4.2.4.2 Comparison on Intensity  

 

 A temporal comparison on intensity values between surface rainfall data and 

meteorological radar data was carried out for selected events.  Tables 4.4, 4.5, 4.6 and 

4.7 show the rainfall intensity between radar data and surface rainfall of the events.  

From Table 4.4, four times (18:19, 18:25, 18:30 and 18:36) was selected on January 6, 

2006 to compare the rainfall intensity.  All of these times were chosen during heavy 

rainfall.  There have four raingauge stations (R4, R5, R12 and R13) were got missing 

data.  Between this comparison, there was no similarity in intensity values from all 

selected times.  Table 4.5 shows event on February 26, 2006 and six times was selected 

(06:21, 06:32, 06:38, 06:43, 04:55 and 03:23).  There was no missing data observed but 

the case is same with Table 4.6 where differences in intensity value between raingauge 

and radar are too large.  Some intensity values from raingauge are bigger than radar data 

and vice versa.  Two more events April 6 and May 10, 2006 (Tables 4.6 and 4.7) also 

had shown a bad comparison between raingauge and radar data.  Even though many 

times were chosen to make this comparison, the results were still the same. 

 

 Overall, it is observed that both data produced remarkable different in intensity.  

For a given storm, the radar data can both overestimate or underestimate the surface 

rainfall.  The differences in intensity value between raingauge and radar are too large.  

The main challenge in getting close approximately between radar rainfall and surface 

rainfall is the difficulty in establishing the relationship between decibel of, Z-R in unit 

mm6/m3 and rainfall, R in unit mm/hr (Ray et., al 1988).  Another factor leading to error 

is evaporation of precipitation before reaching the ground, which could happen 

frequently in the tropics.  Also, winds may carry precipitation away from beneath the 

producing cloud.  Beside that, the discontinuities in the vertical distribution of 

precipitation in the cloud affect radar reflectivity and thus are also sources of error (Ray 

et al., 1988). 
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 In this analysis, the spatial distributions of the rainfall were derived by Kriging 

Method using intensity data for every raingauge.  However, out of four storms, only one 

event or January 6, 2006 produced smooth circular isohyetal lines.  The rainfall contour 

patterns for this event exhibits very similar patterns with radar data.  This storm started 

at 06.10 pm lasted about two hours.  Figure 4.7 comprises the spatial distribution 

between Kriging and the observed radar data for event on January 6, 2006 at different 

times.  This storm also shows increasing intensity as the storm centre moves from the 

northeast to the southwest.  However, the other three storms, fail to show good 

agreement between radar and raingauge data (February 26, April 6 and May 10). 
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 Table 4.4 : Surface and radar rainfall intensity on January 6th 2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ?

 =    missing data 

Time 18:19 18:25 18:30 18:36 
   

 Raingages 
Latitude Longitude RG RDR RG RDR RG RDR RG RDR 

R1 3217001-KM16 Gombak 3.2680 101.7291 0 0.6 0 0.5 0 0.8 6 2.0 
R2 3116006-Ldg Edinburgh Site 2 3.1833 101.6333 0 no rain 5 1.5 0 10 0 20.0 
R3 3217003-KM11 Gombak 3.2361 101.7139 0 0.5 0 0.7 0 1 6 0.8 
R4 3216001-Kg Sg Tua 3.2722 101.6861 ? 0.5 ? no rain ? 0.6 ? 0.7 
R5 3116003-JPS Msia 3.1514 101.6847 ? no rain ? no rain ? 2 ? 8.0 
R6 3018101-Emp. Semenyih 3.0856 101.8892 0 4 0 0.8 0 1.5 0 1.5 
R7 3118102-SK Kg Lui 3.1736 101.8722 21 0.5 21 0.9 4 3 1 2.0 
R8  311104-Jln Genting Peres 3.1403 101.9297 4.8 1 4.8 2 8.4 4 3.6 9.0 
R9 2917001-JPS Kajang 2.9917 101.7972 0 0.9 0 0.3 0 no rain 0 0.7 
R10 3117070-JPS Ampang 3.1556 101.7500 0 no rain 7.2 0.3 7.2 3 8.4 7.0 
R11 3115079-Pusat Penyldkn Sg Buloh 3.1583 101.5597 22.8 20 22.8 20 52.8 35 50.4 25.0 
R12 3315037-Tmn Bkt Rawang 3.3014 101.5008 ? 35 ? 20 ? 20 ? 5.0 
R13 3315038-Country Homes 3.0167 101.5022 ? 0.9 ? no rain ? no rain ? 0.7 
R14 3217004-Kg Kuala Sleh 3.2583 101.7903 6 1 6 0.3 0 0.7 0 0.8 
R15 3217002-Emp. Genting Klang 3.2361 101.7528 0 no rain 0 0.6 6 0.5 0 2.0 
R16 3216004-SMJK Kepong 3.2319 101.6361 0 15 0 20 0 10 0 0.8 
R17 3317001-Air Terjun Sg Batu 3.3347 101.7042 6 3 0 3 0 1.5 0 2.0 
R18 3317004-Genting Sempah 3.3681 101.7708 0 2 0 2 0 3 0 0.7 
R19 3014091-UiTM Shah Alam 3.0022 101.4019 15.6 2 10.8 1 8.4 1.5 79.2 6.0 
R20 3014084-JPS Klang 3.0389 101.4444 0 no rain 0 no rain 1.2 0.4 1.2 0.3 

 RG =   rain gauge 

 RDR =   radar 
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 Table 4.5 : Surface and radar rainfall intensity on February 26th 2006 

 

 

Time 6:21 6:32 6:38 6:43 4:55 3:23 
  Raingages Latitude Longitude RG RDR RG RDR RG RDR RG RDR RG RDR RG RDR 
R1 3217001-KM16 Gombak 3.2680 101.7291 12 9 18 6 18 4 18 6 48 0.4 0 0.3 
R2 3116006-Ldg Edinburgh Site 2 3.1833 101.6333 0 no rain 0 no rain 0 0.3 0 0.4 20 6 5 20 
R3 3217003-KM11 Gombak 3.2361 101.7139 0 9 0 2 0 1.5 6 3 12 0.6 0 3 
R4 3216001-Kg Sg Tua 3.2722 101.6861 6 6 24 6 24 15 12 15 0 0.6 48 65 
R5 3116003-JPS Msia 3.1514 101.6847 0 2 6 0.8 0 0.3 0 no rain 6 1.5 6 0.9 
R6 3018101-Emp. Semenyih 3.0856 101.8892 0 no rain 0 no rain 0 0.8 0 4 0 4 0 no rain 
R7 3118102-SK Kg Lui 3.1736 101.8722 0 no rain 33 0.9 28 10 28 8 0 no rain 0 no rain 
R8  311104-Jln Genting Peres 3.1403 101.9297 0 no rain 0 0.5 0 no rain 21.6 no rain 0 no rain 0 no rain 
R9 2917001-JPS Kajang 2.9917 101.7972 0 no rain 0 no rain 0 no rain 0 no rain 0 5 0 no rain 
R10 3117070-JPS Ampang 3.1556 101.7500 50.4 20 19.2 5 6 3 3.6 4 1.2 0.5 1.2 no rain 
R11 3115079-Pt Penyldkn Sg Buloh 3.1583 101.5597 0 no rain 0 no rain 0 no rain 0 no rain 0 4 18 2 
R12 3315037-Tmn Bkt Rawang 3.3014 101.5008 4 0.8 0 0.5 0 0.3 0 0.3 0 no rain 25 50 
R13 3315038-Country Homes 3.0167 101.5022 1 0.9 0 0.8 0 0.6 0 0.5 0 0.3 6 1.5 
R14 3217004-Kg Kuala Sleh 3.2583 101.7903 30 4 6 1.5 6 0.7 12 1.5 0 0.6 0 7 
R15 3217002-Emp. Genting Klang 3.2361 101.7528 30 6 18 1.5 6 9 6 20 0 1.5 0 0.6 
R16 3216004-SMJK Kepong 3.2319 101.6361 6 0.4 6 1 6 1 6 0.4 6 15 6 50 
R17 3317001-Air Terjun Sg Batu 3.3347 101.7042 18 2 6 6 48 5 42 5 0 0.4 0 no rain 
R18 3317004-Genting Sempah 3.3681 101.7708 12 0.8 6 0.8 6 1.5 6 1 6 no rain 0 no rain 
R19 3014091-UiTM Shah Alam 3.0022 101.4019 0 no rain 0 no rain 0 no rain 0 no rain 7.2 0.8 16.8 2 
R20 3014084-JPS Klang 3.0389 101.4444 0 0.7 0 no rain 0 no rain 0 no rain 0 0.5 0 no rain 

 

? =    missing data 

RG =   rain gauge 

RDR =   radar 
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 Table 4.6 : Surface and radar rainfall intensity on April 6th 2006 

 

Time 15:08 15:13 15:19 15:29 15:35 15:41 
   

 Raingages 
Latitude Longitude RG RDR RG RDR RG RDR RG RDR RG RDR RG RDR 

R1 3217001-KM16 Gombak 3.2680 101.7291 72 65 42 7 12 6 6 0.3 6 0.3 0 0.3 
R2 3116006-Ldg Edinburgh Site 2 3.1833 101.6333 5 0.5 15 0.8 5 no rain 5 no rain 5 no rain 0 no rain 
R3 3217003-KM11 Gombak 3.2361 101.7139 0 0.4 0 0.3 0 0.4 12 3 90 15 48 9 
R4 3216001-Kg Sg Tua 3.2722 101.6861 108 50 54 65 30 35 24 50 18 50 12 10 
R5 3116003-JPS Msia 3.1514 101.6847 0 0.9 6 6 6 15 24 35 24 6 12 9 
R6 3018101-Emp. Semenyih 3.0856 101.8892 0 0.5 0 2 0 20 0 15 0 15 0 7 
R7 3118102-SK Kg Lui 3.1736 101.8722 0 0.6 11 no rain 1 no rain 1 0.7 0 0.4 0 0.6 
R8  311104-Jln Genting Peres 3.1403 101.9297 1.2 1 1.2 1 4.8 0.7 25.2 1.5 20.4 2 6 0.9 
R9 2917001-JPS Kajang 2.9917 101.7972 ? no rain ? no rain ? 4 ? 50 ? 7 ? 1.5 
R10 3117070-JPS Ampang 3.1556 101.7500 2.4 15 3.6 35 7.2 20 10.8 35 8.4 35 14.4 35 
R11 3115079-Pt Penyldkn Sg Buloh 3.1583 101.5597 0 0.4 0 0.3 0 no rain 0 no rain 0 no rain 0 no rain 
R12 3315037-Tmn Bkt Rawang 3.3014 101.5008 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 5 no rain 
R13 3315038-Country Homes 3.0167 101.5022 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 0 0.3 
R14 3217004-Kg Kuala Sleh 3.2583 101.7903 0 no rain 0 no rain 0 0.6 0 50 0 35 0 65 
R15 3217002-Emp. Genting Klang 3.2361 101.7528 ? 65 ? 50 ? 20 ? 1 ? 1 ? 0.9 
R16 3216004-SMJK Kepong 3.2319 101.6361 0 no rain 0 0.4 0 no rain 0 0.4 0 no rain 0 no rain 
R17 3317001-Air Terjun Sg Batu 3.3347 101.7042 12 6 6 3 0 1.5 0 0.5 0 0.4 0 0.5 
R18 3317004-Genting Sempah 3.3681 101.7708 0 0.5 6 no rain 0 no rain 0 0.6 0 no rain 0 no rain 
R19 3014091-UiTM Shah Alam 3.0022 101.4019 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 
R20 3014084-JPS Klang 3.0389 101.4444 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 

 

? =    missing data 

RG =   rain gauge 

RDR =   radar 
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 Table 4.7 : Surface and radar rainfall intensity on May 10th 2006 

Time 15:01 15:12 15:28 15:33 15:39 
   

 Raingages 
Latitude Longitude RG RDR RG RDR RG RDR RG RDR RG RDR 

R1 3217001-KM16 Gombak 3.2680 101.7291 ? 0.8 ? 80 ? 35 ? 65 ? 50 
R2 3116006-Ldg Edinburgh Site 2 3.1833 101.6333 45 20 20 35 0 50 0 35 0 50 
R3 3217003-KM11 Gombak 3.2361 101.7139 ? no rain ? 6 ? 35 ? 15 ? 7 
R4 3216001-Kg Sg Tua 3.2722 101.6861 102 6 66 9 6 2 0 4 6 7 
R5 3116003-JPS Msia 3.1514 101.6847 90 65 20 65 10 50 10 15 10 7 
R6 3018101-Emp. Semenyih 3.0856 101.8892 ? 50  20 ? 2 ? 2 ? 0.9 
R7 3118102-SK Kg Lui 3.1736 101.8722 0 no rain 0 0.5 0 35 0 5 0 5 
R8  311104-Jln Genting Peres 3.1403 101.9297 0 1 0 35 0 6 0 0.8 0 3 
R9 2917001-JPS Kajang 2.9917 101.7972 15 15 10 9 0 1.5 0 0.7 0 no rain 
R10 3117070-JPS Ampang 3.1556 101.7500 21.6 15 42 0.4 0 0.3 0 no rain 0 0.3 
R11 3115079-Pusat Penyldkn Sg Buloh 3.1583 101.5597 0 no rain 0 0.3 23 0.3 5 1 11 2 
R12 3315037-Tmn Bkt Rawang 3.3014 101.5008 25 no rain 5 no rain 5 no rain 5 no rain 7 no rain 
R13 3315038-Country Homes 3.0167 101.5022 0 15 0 4 1 no rain 3 no rain 2 no rain 
R14 3217004-Kg Kuala Sleh 3.2583 101.7903 0 80 0 20 0 65 0 10 0 7 
R15 3217002-Emp. Genting Klang 3.2361 101.7528 0 20 0 80 0 35 6 35 24 50 
R16 3216004-SMJK Kepong 3.2319 101.6361 ? 20 ? 7 ? 0.3 ? 0.3 ? 0.3 
R17 3317001-Air Terjun Sg Batu 3.3347 101.7042 0 0.3 0 20 12 65 18 50 36 50 
R18 3317004-Genting Sempah 3.3681 101.7708 0 no rain 0 0.3 0 20 6 7 12 9 
R19 3014091-UiTM Shah Alam 3.0022 101.4019 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 
R20 3014084-JPS Klang 3.0389 101.4444 0 no rain 0 no rain 0 no rain 0 no rain 0 no rain 

? =    missing data 

RG =   rain gauge 

RDR =   radar 
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 Most of the isohyetal lines derived from raingauge data are not smooth as those 

derived from digitized images.  Moreover, there was no similarity in the spatial 

distributions between the radar and surface rainfall.  This might be due to the small 

number of raingauge station employed in the study and further complicated by the 

occurrence of missing data for some of the events.  Kriging methods require a large 

number of rainfall stations to produce smooth curves.  Prediction errors tend to be larger 

in areas with small number of station.  Beside the small number of rainfall station, the 

discrepancies arise from rainfall data but it also the way Doppler radar estimate rainfall 

intensity.  Doppler radar does not determine actual rainfall intensity, but only areas of 

returned energy.  It means the energy that is reflected back toward the radar (National 

Weather Service, 2006).  The more intense the precipitation, the greater the reflectivity 

(Ray et al., 1988).  Figures 4.8, 4.9 and 4.10 show the spatial distribution of rainfall on 

February 26, April 6, and May 10, 2006. 
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Figure 4.7 : Comparison of rainfall distribution derived from raingauge and radar for 

event on January 6,2006 
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Figure 4.8 : Comparison of rainfall distribution derived from raingauge and radar for 

event on February 26,2006 
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Figure 4.9 :  Comparison of rainfall distribution derived from raingauge and radar for 

event on April 6,2006 
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Figure 4.10 :  Comparison of rainfall distribution derived from raingauge and radar for 

event on May 10, 2006 
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4.3.5 Comparison of Area Rainfall between Radar and Surface Rainfall  

 

 A comparison on the areal rainfall derived from radar and surface rainfall is 

computed using GIS software (ArcGIS 9.1).  The colour represents the intensity level.  

The analysis used four selected storms.  Three of the storms analysed occurred in the 

afternoon.  Table 4.8 compares the areal coverage of rainfall intensity derived from radar 

against those from raingauge.  For event on January 6, 2006, the heaviest rainfall was 

detected at 18:36 pm.  Both of centre of the storms occurred in the western part of Klang 

Valley.  The area distribution between radar and surface rainfall is different.  The area of 

centre of the storm for rainfall contour derived from raingauge is bigger than those 

derived from radar (red colour).  This might be due to the number of raingauge station is 

small and rainfall data which is recorded the highest rainfall amount is less.  From twenty 

rainfall data which is recorded from twenty raingauge station, only one raingauge (R19) 

shows the highest intensity compared to the others with value of 79.2 mm/hr (red colour).  

This situation was made the interpolation process in Kriging did not produce smooth 

rainfall contours as those derived from digitized images (radar).  This is also caused the 

centre of the storm was not captured accurately by ground data. 

 

 Comparison of area distribution for event on February 26, 2006 was taken at 

04:55 am.  It is indicated that the highest intensity was within 35 – 80 mm/hr.  The area 

distribution still differs between ground data and radar data.  Most area of rainfall contour 

from ground data was bigger than those derived from radar.  This situation might be same 

with event on January 6, 2006 where the number of raingauge station is small and rainfall 

data which is recorded the highest rainfall amount is less.  This is caused the centre of the 

storm was not captured accurately by ground data.  The highest intensity at this time is 

only 48 mm/hr and that is why both of rainfall contours were show that orange colour in 

each image as the highest rainfall amount in that area.  The total rainfall at this moment is 

8.9 mm.  From surface rainfall data, only 8 raingauge stations were recorded rainfall 

amount. 
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 For event on April 6, 2006, there have two centres of the storm (red colour) with 

intensity within 80 – 100 mm/hr at 15:29 pm.  From Table 4.8, it is indicated that low 

intensities were give a bigger area compared to high intensities from surface rainfall data.  

This is might be influenced by ground data where no high intensity value is recorded at 

this moment.  From rainfall contour which is derived from surface rainfall (Figure 4.11), 

there have three centres of the storm in that area.  All of centres of the storm were 

occurred at raingauges numbered R4, R5 and R8 with intensity values of 24, 24 and 25.2 

mm/hr respectively.  Both of these spatial distributions were give a different result.  It 

seems that radar shows more accurate than surface rainfall.  This might be due to the 

effectiveness of radar detecting rainfall area.  The colours of radar represent the values of 

energy reflected toward the radar.  The higher the dBZ, the stronger the rain intensity.  

Beside that, only eight raingauges was recorded rainfall intensity.  This is also might be 

one of factor that why rainfall contour from ground cannot capture accurately.  This is 

because contour from ground needs more raingauge stations to interpolate in Kriging.  

Wind also could be one factor.  Wind can bring rain far from the location where it is start 

to fall. 

 

 Event on May 10, 2006 is quiet similar with event on April 6, 2006.  There have 

only one centre of the storm in ground contour but in radar contour shows two centres of 

the storm at 15:12 pm.  Low intensities were giving a bigger area than high intensities.  

The location of centre of the storm between both of contours is also different.  Rainfall 

contour derived from radar shows more accurate compared to those derived from surface 

rainfall.  Beside that, only six raingauges was recorded rainfall amount.  This is caused 

the interpolation process cannot give a smooth rainfall contour because the more data 

used for interpolation, the better contour can be produced.  Figure 4.11 comprises the 

area distribution between radar and surface rainfall for four selected storms. 

 

 Overall, it is evident that the two analyses produced remarkably different results.   

Such discrepancies could be due to interpolation process in Kriging Method where the 

procedure of spatial interpolation require an estimate of unknown values of a variable at 

unsampled points by using measured values from other points (Weise, 2001).  Moreover, 
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a few raingauges had missing data.  This has worsen the interpolation process in Kriging 

compared to the digitized images (radar).  Beside that, it is not only due to the raingauge 

data but other factor also impacted to this result.  Another factor leading to error is 

evaporation of precipitation before reaching the ground, which happen frequently in 

tropics.  Also winds may carry precipitation away from beneath the producing cloud.  All 

of these are sources of error. 

 

Table 4.8 : Areal distribution of storm intensity obtained from radar and raingauge 

Date 6-Jan-06 26-Feb-06 6-Apr-06 10-May-06 
Time 18:36 4:55 15:29 15:12 

Area (km2) Area (km2) Area (km2) Area (km2) Intensity 
(mm/hr) Radar Raingauge Radar Raingauge Radar Raingauge Radar Raingauge
0.3-0.5 309.86 767.68 463.11 893.28 303.83 765.27 213.81 1270.45 
0.5-0.9 277.37 560.18 408.87 331.33 159.15 223.4 189.88 375.71 
0.9-3.0 457.4 425.49 539.74 306.71 167.55 1423.71 237.34 999.32 
3.0-8.0 555.11 206.00 370.48 411.08 128.86 408.68 239.36 151.87 
8.0-35 234.24 285.05 202.63 500.26 240.51 29.07 303.98 44.42 
35-80 186.24 549.19 94.90 413.16 362.60 5.42 284.56 11.11 
80-100 5.76 62.24 0.00 0.00 3.03 0.28 2.38 2.95 
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Figure 4.11 : Comparison of areal distribution of intensity between surface rainfall and 

radar 
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4.3.6 Storm Movement 

 

In is interesting to investigate the movement pattern of convective storms by 

tracking the centre of the storm.  It is known that an area situated in the tropics 

experiences predominantly convective precipitation, which is an active component of the 

tropical weather system (Hastenrath, 1991).  Two features of storms which receive 

attention from researchers are the velocity and direction storm cells movement.  It was 

found that the storm velocities and directions change seasonally (Niemczynowicz and 

Dahlblom 1984; Chaudry et. al., 1994).  The movement and intensity of convective storm 

are important to predict the magnitude and location of flash flood (Doswell et. al., 1996).  

This section is to investigate what are indicators and predictors were in the evolution and 

movement of convective storms resulting in heavy rainfall, and the reliability of radar 

retrieved rainfall data to improve very short-range forecasts.  In this analysis, four flash 

flood events that had occurred in the Klang Valley were chosen.  The storms bringing 

rains leading to the flash floods had exhibited convective characters.  These events also 

are a good example of unusually strong convective events responsible for heavy rainfall.  

Radar images were used to perform this analysis.  Figures 4.12, 4.13, 4.14 and 4.15 

illustrate the storm movement for the events. 

 

Pascual et al., (2004) used 30 to 45 dBZ to differentiate convective and stratiform 

precipitation.  On the other hand, Rigo and Llasat (2002) used 43 dBZ to analyse 

convective event derived from meteorological radar.  Whilst Dong and Hyung (2000) 

used 35 dBZ in study of heavy rainfall with mesoscale convective systems over the 

Korean Peninsular.  In this study a value of 35 dBZ is taken as reflectivity threshold to 

identify convective rainfall from radar images.  This value also corresponds with the  

radar’s rate, thus ease the reading the reflectivity according to radar’s colour code.  The 

highest reflectivity, (> 35 dBZ) is chosen as centre of the storm.  The centre of the storm 

is used track the movement of the storms (Figures 4.12, 4.13, 4.14 and 4.15).  The 

coordinates of storm movement were then plotted in Malaysia’s RSO (Rectified Skew 

Ortomorphic), which is a coordinate system in GIS (ArcGIS 9.1).  Tables 4.9 and 4.10 

present the coordinates of the storm centre and the corresponding reflectivity values.  For 
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storm on January 6, 2006, the storm centre developed at 18:03 hr with reflectivity of 65 

dBZ or 90 mm/hr.  This storm exhibited decreasing reflectivity as it move from northeast 

to the southwest (Figure 4.12).  The duration of this movement was 1 hour and 5 minutes.  

The storm on February 26, 2006 moved from northwest to southeast and the storm centre 

at 03:39 hr (Figure 4.13).  The storm duration was 1 hour and 16 minutes until the centre 

of the storm disappeared.  Initially, the reflectivity was 65 dBZ or 90 mm/hr and 

decreased to 35 dBZ until the storm ceased. 
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Figure 4.12 : Storm movement on January 6, 2006 
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Figure 4.13 : Storm movement on February 26, 2006 

 

 

Table 4.9 : The coordinates and intensity of storm centres on 6.01.2006 and 26.02.2006 

 6-Jan-06 26-Feb-06 

No Time Coordinate 
x 

Coordinate 
y dBZ mm/hr Time Coordinate 

x 
Coordinate 
y dBZ mm/hr 

1 18:03 403611.86 366344.86 65 90 3:39 363432.7 371967.6 65 90 
2 18:09 395780.33 364193.73 65 90 3:50 366902.1 367303.8 65 90 
3 18:14 394085.73 363303.39 50 80 3:55 370233.0 364128.4 65 90 
4 18:30 393554.94 359183.38 50 80 4:06 371106.8 360999.8 65 90 
5 18:36 392603.98 356918.98 35 65 4:11 372464.8 358668.4 35 65 
6 18:47 391620.26 346201.21 35 65 4:17 374450.8 357020.6 35 65 
7 18:52 387676.04 340387.28 35 65 4:22 379764.0 355024.8 35 65 
8 19:08 381964.49 332887.73 35 65 4:28 383585.9 353876.2 35 65 
9      4:33 387431.4 351956.7 35 65 
10      4:38 395388.3 349947.7 35 65 
11      4:44 398607.4 348651.6 35 65 
12      4:49 400997.3 347367.0 35 65 
13      4:55 405145.4 343049.8 35 65 
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For the other two storms, their durations were very short, only 20-30 minutes and 

over short paths.  As such it is difficult to determine the centre of these storms.  Beside 

that, an observation from radar images was shown that during convective storm 

developed in some part of Klang Valley, the convective lines (the movement of 

convective storms) were broken abruptly and another strong convective storms were 

generated at different location and then pre-existing convective storms began at a new 

time (not shown).  The boundaries of convective storm developed into a very complex 

shape with time.  Figures 4.14 and 4.15 show the storm movement on April 6 and May 

10, 2006.  These figures show the movement of very strong convective storms during 

those events.  Table 4.10 presents the storm centres coordinates and their reflectivity 

values. 

 

From overall analysis, it is showed that an area situated in the tropics experiences 

predominantly convective precipitation.  Heavy rainfall was resulted from strong 

convective events.  The movement could be one line and varied.  The duration of this 

movement was taken about 20 minutes to 1 hour until the centres of the storms were 

shrunk.  Sometime, the evolution of centre of the storm is difficult to predict especially 

for short duration movement.  This is because the centre of the storm abruptly initiated 

and broken rapidly then new strong convective storms were produced and begans at a 

new time.  Beside that, it is indicated that the storm movement for short duration was 

very limited.  The highest intensity of centre of the storm from all events analysed is 80 

dBZ or 100 mm/hr in events on April 6, and May 10, 2006.   
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Table 4.10 : The coordinates and intensity of storm centres on 6.04.2006 and 10.05.2006 

  6-Apr-06 10-May-06 
N
o Time Coordinat

e x 
Coordinat
e y 

dB
Z mm/hr Time Coordinat

e x 
Coordinat
e y 

dB
Z 

mm/h
r 

1 
15:4
6 408014.4 354555.7 80 100 

14:3
9 407001.2 357150.4 80 100 

2 
15:5
1 403815.7 351078.0 65 90 

14:4
5 406613.6 357002.2 80 100 

3 
15:5
7 403583.0 350619.2 65 90 

14:5
0 406296.3 349207.7 65 90 

4 
16:0
2 405663.6 349146.6 35 65 

15:0
1 403297.0 349818.1 65 90 

5 
16:0
8 409915.8 345370.8 50 80           

6 
16:1
3 409608.4 343723.8 35 65           
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Figure 4.14 : Storm movement on April 6, 2006 
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Storm on May 10, 2006 
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Figure 4.15 : Storm movement on May 10, 2006 

 

 

4.3.7 Depth-Area Relationship 

 

In order to obtain information on the size of rainfall cells and on the areal volume 

distribution during a single event depth-area relationships were derived.  This analysis 

focused on a smaller area using eleven raingauges which cover 241.34 km2.  The areas 

between all pairs of neighbouring isohyets of the six selected storms computed by 

ArcGIS 9.1 are shown in Figure 4.16.  As shown, four of the storms (on January 6, 2006, 

February 26, 2006, May 10, 2006 and November 5, 2004) have the highest rainfall depth 

at the southwest and decrease as the storm move to the northestern part of the catchment.  

However, the storms on April 6, 2006 and June 10, 2003 exhibited no direction of rainfall 

depth.  It is observed that six raingauges had missing data in these events and might be 

one of factor that made the interpolation process in Kriging did not produce smooth 

rainfall contours.  The percentages reduction of rainfall depth is plotted against the 

cumulative area from the storm centre (Figure 4.17).  The shapes of the areal reduction 
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curves were different for all the storms analysed.  An average curve for all six storms was 

also drawn.  Despite the large differences in the depth area curve patterns, the graph 

generally show that total rainfall depth decrease as the area increase.  This finding is 

consistent with the property of convective events in section 4.5.1 where the highest 

intensity covers a small fraction of area. 

 

From all curves plotted, it seems that the Areal Reduction Factors (ARF) values 

are consistent among each curve.  Next, the ARF curve was then determined and 

compared with the ARFs from other areas.  Figure 4.18 shows other curves derived by 

Desa (1997), Niemczynowicz (1984) for Lund in Sweden and by Shaw (1989) in the 

United Kingdom (1986).  Desa (1997) was plotted ARF curve in small urban area (23 

km2) in Kuala Lumpur region.  In his study, it is shown that the average ARF curve is 

lower than average ARF curve in this study but the curve almost similar with study by 

Niemczynowicz (1984).  This is might be due to similar time and space resolution, 

similar size of area and of raingauge density and both catchments are situated in urban 

areas (Desa, 1997).  From the graph also, it can be noticed that the area reduction curve 

derived in this study is quiet similar with previous curve derived for Malaysia by Yan and 

Lin (1986) for 1 hour.  Nevertheless, the difference between this study is their curves 

were derived from data with poorer temporal and spatial resolution: 0.5 mm per tipping 

bucket with a weekly paper chart recorder and 23 raingauges covering an area of 200km2.  

This study used 0.2 per tipping bucket with 20 raingauges covering an area of 241.34 

km2.  Therefore, this graph possibly more accurate than graph by Yan and Lin (1986).  

However, further studies need to be done because the used of 20 raingauges might be not 

sufficient for an area of more than 200 km2. 

 

The results indicate that the shapes of such curves can only be compared between 

other locations if the temporal and spatial resolutions of the measurements are similar.  

This conclusion must be verified by more detailed analyses of areal and dynamic 

properties of single rainfall cells. 
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Figure 4.16 : Spatial variation of rainfall depth (mm) of six selected storms 
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Figure 4.17 : Depth-area relationships for six selected storms. 

 

 
Figure 4.18 :  Comparison of depth-area curves obtained in this study and at other 

locations (After Desa, 1997) 
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4.4 Stochastic Modeling of Hourly Rainfall Series 
 

 The modeling of hourly rainfall begins by finding the best-fit distribution for the 

hourly rainfall series. 

 

 

4.3.1 Fitting the Best-fit Distribution for the Hourly Rainfall Amounts  

 

Several methods have been proposed in literature for modeling rainfall amounts at 

the  daily scale. The most common approach is to assume that rainfall amounts on 

successive days are independent and fit some theoretical distribution to the rainfall 

amounts (Todorovic and Woolhiser, 1975; Woolhiser and Roldan, 1982).  However, 

there is no attempt so far to extend the method to the hourly rainfall amounts. Hence, this 

study will explore the methods proposed by Todorovic and Woolhiser (1975) 

andWoolhiser and Roldan (1982) for the hourly rainfall amounts in the Wilayah 

Persekutuan  area. The best fitting distribution for the hourly rainfall amounts based upon 

several criteria of goodness-of-fit tests is to be determined. Four theoretical distributions 

considered include the Exponential, the Weibull, the Gamma and the Mixed-Exponential.  

 

 

4.3.2 Fitting Distributions  

 

There are 13 rainfall stations located in the vicinity. Historical rainfall data of 

every 15 minutes and daily amount are supplied by Department of Irrigation and 

Drainage (DID) Selangor for this study. The 15 minutes data are then aggregated to 

become hourly data. For this study, twelve stations were chosen based upon the 

completeness of the data. The study period ranges from 1981-1991 with most stations 

having a ten-year period hourly data (see Figure 4.1 and Table 4.1 for further details 

regarding these data).  
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The summary of the descriptive statistics for the stations used in this study is 

shown in Table 4.1.  The means and variances are ranged from 3 mm/h to 4.3mm/h and 

from 5.5mm/h to 7.3mm/h respectively. As a result, the coefficients of variations are 

rather consistent throughout the state ranging from 1.533 to 1.794.  This shows that the 

hourly rainfall variability over the whole state is quite homogenous.  

 

In the ten-year periods, station 3217003 (KM 11 Gombak) shows the highest 

hourly maximum amount followed by station 3217001(KM 16 Gombak) having the 

lowest hourly maximum. However, station 3217001 experienced the highest number of 

wet days. All stations are positively skewed with the values of the coefficients are 

consistent throughout the stations. 

 

Four theoretical distributions namely the Exponential, the Gamma, the Weibull 

and the Mixed Exponential are used in determining the best-fit distribution to describe 

the hourly rainfall amounts in Wilayah Persekutuan. Using the goodness-of-fit tests that 

has been  discussed in Chapter 3, the best-fit distribution is chosen based upon the 

minimum error. The distributions are ranked according to these criteria. Table 4.12 shows 

the results of the tests. 

 

Among the four distributions tested, the Mixed-Exponential was found to be the 

best fitting distributions for all stations where almost all the criteria of goodness-of-fit 

tests resulted in a minimum error to the Mixed-Exponential. This is followed by the 

Weibull, the Gamma, and finally the Exponential distributions.  

 

The above results can be verified further by presenting the graphical 

representations through the plot of the exceedance probability. From the graphs given in 

Figures 4.19a to 4.19d, the Mixed-Exponential plot has the nearest plot to the observed. 

Hence, the Mixed-Exponential distribution was found to be the best in describing the 

hourly rainfall amounts in the Wilayah Persekutuan. 
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The estimated parameters for the Mixed-Exponential distribution are shown in 

Table 4.3. The mixing probability that indicated the percentage of variation of the hourly 

rainfall amounts in the Wilayah Persekutuan has shown an approximate value of between 

0.6 to 0.7.  The weighted average of two exponential distributions in the mixed-

exponential distributions may refer to the two types of rainfall, namely “light” or 

“heavy”. Hence, it can be interpreted that between 60% and 70% of the hourly rainfall 

series in the Wilayah Persekutuan is contributed by the light rain. Hence, the remainder is 

being contributed by the heavy rain. This is true due to the higher frequency of light rain 

for the hourly data.  

 

However, the total estimated mean shows that about 80% is attributed to heavy 

rainfall. This implies that most of the rainfall amounts recorded in the study area is 

received from heavy rains even though there is a higher occurrence of light rainfall. The 

hourly duration used indicates short duration heavy rainfall has a large impact on the 

rainfall amount received and potentially is the main contribution to flash flood events. 
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Table 4.11: Descriptive statistics of the rainfall amounts for the Wilayah Persekutuan . 
 

 
Station 
no. 

 
Station 
names 

 
 
Duration 

 
Hourly 
Mean 

 
Std. 
Dev. 

 
 
CV 

 
 
Skewness 

 
 
Kurtosis 

No.of 
wet 
hours 

Max. 
amou
nt 
rainf
all 
(mm) 
 

3015001 Puchong 
Drop 

1982-
1990 3.997 7.17 1.794 3.712 18.814  

4057 82.10 

3116005 Sek.Ren. 
Taman 
Maluri 

1981-
1990 3.663 6.337 

1.73 
3.768 20.946 

 
6466 92.50 

3116006 Ladang 
Edinburgh 
Site 2 

1981-
1990 
 

3.68 6.249 
1.698 

3.808 20.234 
5598 

72.70 

3216001 Kampung 
Sg. Tua 

1981-
1990 3.98 6.102 1.533 3.28 14.504 6074 69.60 

3216004 SMJK  
Kepong 

1982-
1991 4.3 7.346 1.708 3.736 19.277 4328 75.50 

3217001 KM 16 
Gombak 

1981-
1990 3.359 5.682 1.692 3.815 20.313 7102 58.20 

3217002 Empangan 
Genting 
Kelang 

1981-
1990 3.145 5.495 

1.747 
3.901 20.313 

6819 
57.70 

3217003 KM11 
Gombak 

1981-
1990 3.779 6.318 1.672 3.789 21.830 5551 92.90 

3217004 Kpg. Kuala  
Saleh 

1981-
1990 4.16 7.046 1.694 3.682 18.399 4549 72.30 

3217005 Gombak 
Damsite 

1982-
1991 3.768 6.753 1.792 3.771 18.954 3447 70.10 

3317001 Air Terjun 
Sg.Batu 

1985-
1994 4.042 6.732 1.666 3.524 16.986 5279 69.70 

3317004 Genting 
Sempah 

1981-
1990 3.018 5.272 1.747 4.2 27.805 7484 83.00 
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Figure 4.19a:  Exceedance Probabilities for the Hourly Rainfall Amount 
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Figure 4.19b: Exceedance Probabilities for the Hourly Rainfall Amount 
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Figure 4.19c: Exceedance Probabilities for the Hourly Rainfall Amount 
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Figure 4.19d: Exceedance Probabilities for the Hourly Rainfall Amount 
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Table 4.12: The ranking of distributions using AIC and goodness-of-fit tests 
No. Stations AIC KS CVM AD Means Median 
1 3015001 1.MEX 

2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

2 3116005 1.MEX 
2.WE 
3.GM 
4.EXP 

1.GM 
2.MEX 
3.WE 
EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

3. 3116006 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEXP 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

4. 3216001 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
3.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

5. 3216004 1.MEX 
2.WE 
3.GM 
4.EXP 

1.GM 
2.MEX 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

6. 3217001 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

7. 3217002 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

8. 3217003 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

9 3217004 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

10. 3217005 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

11. 3317001 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

12. 3317004 1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.GM 
3.WE 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

1.MEX 
2.WE 
3.GM 
4.EXP 

MEX=MIXED-
EXPONENTIAL;WE=WEIBULL;GM=GAMMA;EXP=EXPONENTIAL;AIC=AIKAK
E  INFORMATION CRITERION;KS=KOLMOGOROV-SMIRNOV;CVM=CRAMER-
VON-MISES;AD=ANDERSON-DARLING 
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Table 4.13:  The estimated parameters for the Mixed Exponential distribution 
 

 
Station no. 

 
Station names 

Mixing probability 

(α ) 

Scale 1 

( 1β ) 

Scale 2 

( 2β ) 

Estimated 

mean 

3015001 Puchong 
Drop 

0.6772 1.137 

[19%] 

9.996 

[81%] 

3.997 

3116005 Sek.Ren. 
Taman 
Maluri 

0.6504 1.077 

 

[19%] 

8.474 

 

[81%] 

3.663 

3116006 Ladang 
Edinburgh 
Site 2 

0.6261 

 

 

1.108 

 

[19%] 

7.985 

 

[81%] 

3.68 

3216001 Kampung 
Sg. Tua 

0.6218 1.44 

[23%] 

8.154 

[77%] 

3.977 

3216004 SMJK  
Kepong 

0.6302 1.253 

[18%] 

9.48 

[82%] 

4.295 

3217001 KM 16 
Gombak 

0.687 1.193 

[24%] 

8.114 

[76%] 

3.359 

3217002 Empangan 
Genting 
Kelang 

0.702 1.114 

 

[25%] 

7.93 

 

[75%] 

3.145 

3217003 KM11 
Gombak 

0.6433 1.211 

[21%] 

8.409 

[79%] 

3.778 

3217004 Kpg. Kuala  
Saleh 

0.6482 1.313 

[20%] 

9.4 

[80%] 

4.158 

3217005 Gombak 
Damsite 

0.6477 1.002 

[17%] 

8.853 

[83%] 

3.768 

3317001 Air Terjun 
Sg.Batu 

0.6245 1.178 

[18%] 

8.804 

[82%] 

4.042 

3317004 Genting 
Sempah 

0.6998 1.066 

[25%] 

7.57 

[75%] 

3.019 

The percentages in the brackets refer to the estimated means of the hourly rainfall amounts contributed by 
both scales. 
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4.3.5 Summary 

 

The distribution of the hourly rainfall amounts in the Wilayah Persekutuan is  best 

described  by the Mixed-Exponential distribution. The Weibull and the Gamma 

distribution are ranked second and third respectively, and the last in the ranking is the 

Exponential distribution. These are based on the goodness-of-fit tests performed on the 

studied station, as discussed in section 3.3. 

 

From the estimated parameters of the Mixed-Exponential distribution obtained, it 

could be interpreted that between 60% and 70% of the wet hourly series in the Wilayah  

Persekutuan is contributed by the light rainfall and the remainder by the heavy rainfall. 

However the total estimated mean shows that about 80% is attributed to heavy rainfall. 

This implies that most of the rainfall amounts recorded in the study area are received 

from heavy rains even though there is a higher occurrence of light rainfalls. The hourly 

duration used indicates short duration heavy rainfalls have a large impact on the rain 

amounts received and potentially could be the main contribution to flash flood events. 

These would indeed provide grounds for further studies on convective rainfall and flash 

floods. 

 

 

4.3.4  NSRP model with mixed exponential distribution 

  

 The model is referred as the MEXPTRAN in this study. Figure 4.20 shows the 

comparison between the observed and the simulated statistical properties of rainfalls for 

the one-hour scale. The model simulation accurately preserved the observed values of the 

one-hour mean and variance.  The one-hour rainfall coefficients of skewness  and 

autocorrelations were matched very well the observed values for some of the months.  

 

 Figure 4.21 shows the comparison between the observed and the simulated 

physical properties of rainfalls for the one-hour scale. The model matched fairly well the 
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one-hour maximum rainfall for the whole year. The transition probabilities of rainfall 

occurrence P10 (wet-dry hour) and P00 (dry-dry hour) were matched poorly by the 

model.  Similarly, the model underestimated the probability of dry hours of rainfall.  

 

 Figure 4.22  shows the comparison between the observed and the simulated of 

rainfalls for  six-hour scale. The mean, variance and coefficients of skewness of six-hour 

rainfalls were preserved accurately by the model simulation.  However, autocorrelations 

of six-hour observed rainfalls were overestimated.  

 

 Figure 4.23 shows the comparison between the observed and the simulated 

statistical properties of rainfalls for the 24-hour scale. The mean, variance and the 

coefficients of skewness of the 24-hour rainfalls of the observed  were accurately 

reproduced by the model.  The autocorrelations of 24-hour rainfalls were adequately 

preserved. 

 

 Figure 4.24 shows the comparison between the observed and the simulated 

physical properties of rainfalls for the 24-hour scale.  The  24-hour maximum rainfalls 

were preserved fairly well by the model.  However, the probability of dry days of  the 

observed rainfalls were preserved  very well by the model.  Similarly, the daily  transition 

probabilities of rainfall occurrences P10 (wet-dry day) and P00(dry-dry day) of the 

observed could be preserved accurately by the model simulation.  

 

 Figure 4.25 shows the comparison between the observed and the simulated at the 

properties of rainfalls for the monthly scale.  The observed monthly mean had close 

agreement with the medians of the box plots for the whole year.  However, the standard 

deviations, maximum and minimum monthly rainfalls of the observed were fairly 

matched by the model. 
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 In general, the MEXPTRAN performed very well in preserving the observed 

means and variances of rainfalls at various time scales. The model has also managed to 

describe accurately the probability of dry days and the transition probabilities of rainfall 

occurrences for the the whole year.  However, the autocorrelations and the coefficients of 

skewness of rainfalls at various timescales were only fairly preserved, but within the 

range of the simulated properties considered.  Nevertheless, the MEXPTRAN simulation 

preserved the seasonal trend of the observed properties very well.  
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Figure 4.20: Monthly Statistical Properties of 1-Hour Rainfall (in mm) of simulated 

MEXPTRAN 
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Figure 4.21: Monthly Statistical Properties of 1-Hour Rainfall (in mm) of simulated 
MEXP 
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Figure 4.22: Monthly Properties of 6-Hour Rainfall (in mm) of simulated MEXPTRAN 



 179

 

 

 

 

Figure 4.23: Monthly Statistical Properties of 24-Hour Rainfall (in mm) of simulated 
MEXPTRAN 
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Figure 4.24: Monthly Physical Properties of 24-Hour Rainfall (in mm) of simu
MEXPTRAN 

lated 
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Figure 4.25: Monthly Properties of 1-Month Rainfall (in mm) of simulated 
MEXPTRAN 
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 model 4.3.5 MCME

 

 Mixed Exponential (MCME) model is a daily rainfall model. 

The performance of the model on the daily rainfall series was extensively acknowledged 

in liter

4.3.5.3 erformance of Hourly MCME model 

 series was applied from 1981-1990 

obtained from Station 3217001 at KM 16 Gombak. The Mixed-Exponential represents 

the hou

4.3.5.2 Fitting of the Mixed Exponential Distribution to Observed data 

ourly rainfall 

amounts in the Wilayah Persekutuan has found that the mixed exponential distribution 

was th

The Markov Chain

ature (e.g. Woolhiser et al. 1984, Eagleson, 1978; Woolhiser et.al,1982, Roldan 

et.al,1982, Richardson, 1981). However, in this study the model was modified and 

applied to the hourly rainfall series. This chapter basically discussed the suitability and 

applicability of the modified hourly MCME model.  The performance of the model on the 

daily series was also evaluated and compared with the performance of the modified 

hourly MCME model.. 

 

 

 P
 

The Markov Chain process for hourly

rly rainfall amounts from the same station.  Monthly parameters for the rainfall 

distribution and occurrences were estimated using the SCE method. Following Fourier 

series fitting of each variable for seasonal variability throughout the year, simulations for 

the synthetic time series were conducted for 10-year period using the parameter sets 

obtained from the hourly series.  

 

 

 

In  Section 4.3.3, the study on finding the best distribution for the h

e best distribution.  However, to assess the descriptive ability of the mixed 

exponential distribution the exceedance probability curves were used for each month. The 

exceedence probability of monthly rainfall plotted on a semi-log scale provides a 

qualitative tool to assess the performance of the mixed exponential distribution.  The 
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semi-log scale helps to determine the mixed exponential nature of the data if it exists. The 

rainfall distribution of a particular month would follow an exponential function if the 

observed probability follows a straight line. In Figures 4.26a and 4.26b, the dots represent 

the observed probabilities while the dashed line represents the theoretical values. 

However, for all months the exceedance probability curves contain at least two slopes, 

which indicate a mixed-exponential distribution. The break in slopes points to the 

physical evidence concerning the presence of at least two different types of storm rainfall 

(convective and non-convective) and this further supports the use of mixed exponential 

distribution (Hussain, 2007).  The use of the mixed exponential is the most appropriate 

because of its flexibility in capturing the mixture of storm types, as well as a single 

exponential pattern.  

 

 

4.3.5.3 ourier Series Fit to Parameter Sets. 

bilities (P00 and P10) and three mixed 

exponential parameters (

 F
 

Two Markov Chain transitional proba

,α ξ  and θ ) were generated for each month. Thus, a total of 

sixty p

unca

ared to the non-fitted transition probabilities and 

mixed exponential parameters as shown to determine whether the parameters are well 

represe

arameters were needed to describe the rainfall process. However, the number can 

be reduced by using a tr ted polar Fourier series. The seasonal variability of each 

parameter through the twelve months of the year was represented by using maximum 

likelihood estimates of the periodic parameters using five harmonics (Han, 2001).  The 

number of harmonics may be reduced or increased to create a more parsimonious model.  

If the number of harmonic increases the total parameters to be estimated would also 

increase.  The use of five harmonics for all five parameters would lower the total number 

of parameters from sixty to fifty-five.  

 

The Fourier series fit is comp

nted by the Fourier series.  As shown in Figure 4.27 the Fourier fits for all 

transition probabilities are in very close agreement.  The dots represent the MCME 

parameters and the dashed lines represent the Fouries series fit.  However, the parameter 



 184

θ that represents the higher (larger) mean is not as well presented as the parameter ξ that 

represent the lower (smaller) mean. This perhaps implies that the larger mean is not be 

well predicted by Fourier series fit.  Nevertheless, as whole the seasonal variability of the 

rainfall process is well described by the Fourier series fit. 

 

 

4.3.5.4 imulation Verification 

 the rainfall amounts using the Fourier series fits of 

the MCME, 50 simulations of hourly rainfall series of the same length were generated.  

The st

4.3.5.5 imulated Transitional Probabilities 

 the transition probabilities calculated for 

50 sets of monthly data from 50 simulations as compared to the empirical transition 

probab

 of a dry hour following a dry hour is as expected, very high. A 

further investigation of the transition probabilities shows that an hour is more likely to be 

dry if t

 S
 

Following the calibration of

atistical properties and the physical properties of the generated series were 

compared with the observed series.  

 

 

 S
 

The box plot in Figure 4.28 represents

ilities (represented by dots connected by the dashed line).  The simulated transition 

probabilities are well preserved and comparable to the empirical values. The median of 

the box plots is excellently matched with the empirical value and the spread around the 

median represent the variability that exists in 50 simulations. The seasonal variability can 

also be seen in general trend of the monthly box plots for the whole year. Therefore, it 

can be said that the simulation of the hourly rainfall occurrences is comparable to that of 

the observed pattern.  

 

The probability

he previous hour is wet in the months of June and March.  
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Figure 4.26a:  Exceedance Probabilities for Hourly Rainfall from January to June. 
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Figure 4.26b:  Exceedance Probabilities for Hourly Rainfall from July to December 
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Figure  4.27:  Fourier Series Fits ( dashed line)  and MCME parameters (dots).  

 



 188

Figure 4.28:  Comparison between simulated (box plots) and Empirical (dots connected 

by dashed lines) MCME parameters of the hourly rainfall series. 
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Figure 4.29:  Monthly Statistical Properties of 1-Hour Rainfall (in mm) using hourly 

MCME model 
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Similarly, there is a higher probability of rain on a given hour if the previous hour 

was als

.3.5.6 Simulated Mixed Exponential Parameters 

igure 4.28 also shows the comparison between the simulated and the empirical 

MCME

o rainy in September and May. The probability for a wet hour occurring following 

a dry hour is very low, but more likely in November and September.  Therefore, the 

hourly rainfall occurrence characteristics were well described by the MCME hourly 

model. 

 

 

4

 

F

 parameters.  When comparing simulated mixed exponential parameters to the 

empirical (observed values), it can be seen that the median of the simulated box plots and 

the empirical parameter values show close agreement in value as well as the trend. There 

is also a noticeable seasonal periodic variation in all parameters. The higher mean has 

large range of simulated values. However, the empirical values are still in the middle 

50% of the simulated values in the box plots. This is consistent with the Fourier series fit 

results where the higher mean is not well represented by the Fourier series. 

 

 
Figure 4.30:  Comparison of observed and simulated correlograms of hourly  

rainfall series using hourly MCME model 
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Figure 4.31:  Monthly Physical Properties of 1-Hour Rainfall (in mm) using 

hourly MCME model 

  

 



 192

4.3.6 Properties of Simulated and Observed Series 

ollowing the comparison of the MCME empirical and simulated parameters, the 

statistic

4.3.6.1 Statistical Properties 

he statistical properties to be evaluated in this study include mean, standard 

deviatio

4.3.6.2 Physical Properties 

he physical properties include the hourly maximum and number of dry or rainy 

hours e

 

F

al and physical properties of 50 simulations and the observed hourly rainfall 

series were compared as shown in the following. 

 

 

 

T

n, coefficient of skewness and correlogram of 1-hour rainfall series  evaluated on 

monthly basis, as shown from Figures 4.29 to 4.30.  The observed is represented by the 

dots connected by dashed lines and the simulated is represented by the box plots.  The 

one-hour rainfall mean has close agreement with the medians of the box plots for the 

whole year.  Similar results obtained for the standard deviation for the one-hour rainfall 

where the model performed very well with the observed has comparable values with the 

medians of the simulated box plots throughout the years except in February.  The model 

preserved the one-hour rainfall coefficients of skewness accurately for some of the 

months.  The time dependence characteristics of the hourly rainfall series is basically 

presented using the correlogram (r(k ) which is a plot of lag-k autocorrelation versus the 

k.  The correlograms, r(k) values were fairly well reproduced by the model except for 

lags 1 and 4.  Overall, the seasonal variability and trend of the observed properties of 

rainfall are comparable to the simulated properties.  Therefore, the hourly statistical 

properties of observed rainfalls could be described well by the hourly MCME model.  

 

 

  

 

T

valuated on monthly basis. Figure 4.31 shows the physical properties of the 

observed and simulated hourly rainfall series. For the one-hour maximum rainfall, the 
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observed values were contained in the middle 50% of the box plots for most of the 

months except in January, February and June. The hourly number of rainy hours and dry 

hours has shown excellent agreements between the observed values and the medians of 

simulated properties. The number of rainy hours was the highest in November, followed 

by September, while the lowest was in June.  The number of dry hours was highest in 

January.  The seasonal trends of the properties were well preserved.  Therefore, the 

physical properties of the hourly rainfall were preserved well by the hourly MCME 

simulation. 

 

 

4.3.6.3 Lumping to daily rainfall series 

A further analysis was conducted to see whether the hourly rainfall data 

could b “lum

 general, the lumped daily performance was not as good as the hourly 

perform

MCME model.  

   
 

  

e ped” to form a 24 hourly or a daily equivalent.  This analysis was done to 

determine whether the hourly MCME model is able to reproduce accurately the 

properties of the rainfall series for daily scale by lumping the hourly data.  The simulated 

statistical and physical properties of the 24-hour rainfalls were then compared to the 

observed daily data from the same period. Figures 4.32 to 4.33 show the statistical 

properties of the simulated 24-hour box plots and the observed daily.   It can be seen that 

the simulated 24-hour mean of rainfall has an excellent agreement with observed with the 

median of the simulated mean has an almost equal value to observed daily mean.  The 

standard deviations of the observed daily rainfall was preserved only fairly well by the 

model. The coefficients of skewness of daily rainfall was underestimated in April and 

July but the daily rainfall autocorrelations was underestimated in most of the months by 

the hourly MCME model. The daily correlogram only shows an excellent fit with the 

medians of the simulated 24-hour correlogram at lags 4, 10, and 15.   

 

In

ance in preserving the statistical properties of the observed.  Nevertheless, the 

seasonal trends of the daily rainfall properties were very well preserved by the hourly 
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Figure 4.34 shows the physical properties of the 24-hour simulated series and the 

daily observed series.  The daily maximum  rainfall of the observed values were managed 

to be c

4.3.6.4 umping to monthly rainfall series 

o form a daily series, a further lumping was 

done to form a 1-month scale data. This analysis was done to determine whether the 

MCME

aptured in the middle 50% of simulated in the box plots in February, March, May, 

August, October and November only.  However, this is not true for the simulation of the 

number of rainy days and the number of dry days, where the middle 50% of the simulated 

values in the box plots do not manage to capture the observed values.  While the physical 

properties of the observed daily series were unable to be matched accurately in the hourly 

MCME simulations, the seasonal trend of the observed daily properties was very well 

preserved.  

 

 

 L
 

Following the lumping of the hourly t

 hourly model is able reproduce accurately the monthly properties of the rainfall 

series as well. The simulated statistical and physical properties of the 1-month rainfalls 

amounts were then compared to the observed monthly data for the same period. Figure 

4.35 shows the statistical properties of the simulated lumped monthly box plots and the 

observed monthly properties. It can be seen that the simulated monthly mean of rainfall 

has an excellent agreement with the observed.  However, the standard deviation of the 

observed monthly rainfall series were unable to be captured in the middle 50% of the box 

plots for the whole year. The simulated monthly maximum and minimum or rainfall were 

also unable to capture the observed in the middle 50% in most of the months. Hence, the 

properties of 1-month scale rainfall amount were not able to be preserved accurately by 

the MCME hourly simulations. Nevertheless, the hourly MCME model preserved the 

seasonal trends of the observed monthly rainfall series. 
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Figure 4.32:  Monthly Statistical Properties of 24-Hour Rainfall (in mm) using hourly 

MCME model 
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Figure 4.33: Comparison of observed and simulated correlograms of 24 hourly 

rainfall series using hourly MCME model 

 

 

 
  Monthly Physical Properties of  24-Hour Rainfall (in mm) using hourly 

MCME model 

Figure 4.34:
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Figure 4.35:  Monthly Properties of  1-Month Rainfall (in mm) using hourly MCME 

model 
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4.3.7 Validation of the NSRP and MCME models 

 

In assessing the predictive ability of the models, the simulations of both models 

d to assess the models’ descriptive 

ability which has been covered in Chapter 4, while the last 10 years was used to assess 

their p

SRP model 

The descriptive ability of the NSRP model has been discussed.  It was found that 

l distribution to represent the rain cell intensity 

nd combined with the use of the transition probabilities of rainfall occurrences in the 

estimat

he one-hour scale. The one-hour observed rainfall 

mean was matched very well only in January, July and October.  However, the standard 

deviati

were extended to 20 years. The first 10 years were use

redictive ability. The last 10 years simulation was compared with the observed 

series from 1991 to 2000.  

 

 

4.3.7.1 Validation of the N

 

the NSRP model with mixed exponentia

a

ion of parameters procedures also referred, as the MEXPTRAN was the best 

model to represent the NSRP.  Therefore, to determine the strength of the model in 

extrapolating beyond the data points (1981-1990), the predictive ability is to be assessed 

to ensure that the model has the ability to be used in simulating the hourly rainfall series 

at any length and at any data points.  

 

Figure 4.36 shows the comparison between the observed and the simulated 

statistical properties of rainfall for t

on of one-hour rainfall   was matched within the range  of the maximum and 

minimum value of the box plots in most months except in February, June and July.  The 

coefficients of skewness of one- hour rainfall could be adequately preserved for January, 

February, May and July.  However, the autocorrelation of one-hour rainfall was 

underestimated in most of the months.  
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Figure 4.37 shows the comparison between the observed and the simulated 

physical properties of rainfall for the one-hour scale. The maximum of one-hour rainfall 

as matched well and within the range in all months except in September.  However, the 

probab

rties of rainfall at the 24-hour scale.  The  mean of  24-hour rainfall was 

matched excellently in January, July and October.  The variances, autocorrelations and 

coeffic

fall at the 24-hour scale. The maximum 24-hour rainfall. was 

matched fairly well for the whole year.  However, the probability of dry days was either 

overest

 

w

ility of dry hours of rainfall series was poorly matched and underestimated in most 

of the months. 

 

Figure 4.38 shows the comparison between the observed and the simulated 

statistical prope

ients of skewness of the 24-hour rainfall were fairly matched within the range of 

the simulated properties.  

 

Figure 4.39 shows the comparison between the observed and the simulated 

physical properties of rain

imated or underestimated for some months. 
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Figure 4.36: Validation of Monthly Statistical Properties of 1-hour Rainfall (mm) of 

MEXPTRAN model 
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) of 

 

 
Figure 4.37: Validation of Monthly Physical Properties of 1-hour Rainfall (mm

MEXPTRAN model 
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MEXPTRAN model 

 

 

 
Figure 4.38: Validation of Monthly Statistical Properties of 24-Hour Rainfall of 
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Figure 4.39: Validation of Monthly Physical Properties of 24-Hour Rainfa

MEXPTRAN 

ll (mm) of 

del preserved the 

 

using the hourly and the daily simulation 

odel. Figure 4.40 shows the comparison between the observed and the 

 

 

In general, the performance of the NSRP model in the validation period was not 

as good as in the calibration period.  The model was unable to predict the properties of 

the observed rainfall accurately at various timescales. However, the mo

seasonal trends of the observed rainfall properties 

 

 

4.3.7.2 Validation of the MCME model 

The validation of this model was done 

of the MCME m
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simulat

of one-hour rainfall was much 

nderestimated.  

 

on between the observed and the simulated 

hysical properties of rainfall for the one-hour scale.  The probability of dry hours was 

poorly 

seen for the mean, variances and coefficients of skewness  of the 24-

hour rainfalls where all these properties were only fairly matched. However, the 

autocor

 the 24-hour scale (lumped daily).  The maximum 24-hour rainfall 

was only fairly matched with the medians of the box plots for the whole year. The 

probab

 the observed rainfall accurately at one-hour scale as well as at 24-hour 

scale.  However, the model could preserve the seasonal trends  of the rainfall series.  

ed statistical properties of rainfall for the one-hour scale. The means, variances 

and coefficients of skewness of one-hour rainfall were fairly matched in which most of 

the observed rainfall properties fall outside the box but within the range of the simulated 

values. However, the lag-1 autocorrelation 

u

Figure 4.41 shows the comparis

p

matched in most of the months.  However, the maximum one-hour rainfall was 

matched very well in most of the months except in September where the observed values 

were underestimated. 

 

Figures 4.42 show the comparison between the observed and the simulated 

statistical properties for the 24-hour scale (lumped daily). Similar performance as in the 

1-hour scale was 

relations of 24-hour rainfall could be preserved fairly well by the model 

simulation.  

 

Figure 4.43  shows the comparison between the observed and the simulated 

physical properties for

ility of dry days was seen to be either underestimated or overestimated in some of 

the months. 

 

Therefore, the performance of the hourly MCME model in the validation period 

was also not as good as in the calibration period. The model was unable to preserve the 

properties of
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The validation of the MCME model was also done using the daily model. Figure 

4.44 shows the comparison between the observed and the simulated statistical properties 

of rainfall at daily scale. The means, standard deviations, coefficients of skewness and 

utocorrelations of the daily rainfalls were only fairly matched in most of the months.   

 be 

adequately preserved for the whole year. 

 

ll 

process can be considered more accurate than the lumped daily from the hourly MCME 

model.

E model has better ability in predicting the 

ily rainfall series.  

a

 

Figures 4.45 shows the comparison between the observed and the simulated 

physical properties of rainfall at daily scale.  The probability of dry days was also fairly 

matched in most of the months.  However, the daily maximum rainfall could

 

 In general, the performance of the daily MCME model in describing the daily 

rainfall process during the validation period was not as good as in the calibration period.  

However, the predictive ability of the daily MCME model in predicting the daily rainfa

  This may be justified by the RMSE evaluated from the monthly square errors 

between the observed and the medians for the daily properties as given in Table 4.14.  It 

clearly shows that the daily MCME simulation has smaller RMSE in all properties 

considered.  Therefore, the daily MCM

properties of da
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Figure 4.40: Validation of Monthly Statistical Properties of 1-hour Rainfall (mm)  

of hourly MCME model 
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Figure 4.41: Validation of Monthly Physical Properties of 1-hour Rainfall (mm)  
of hourly MCME model 
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Figure 4.42: Validation of Monthly Statistical Properties of 24-hour Rainfall (mm) of 

hourly MCME model 
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Figure 4.43: Validation of Monthly Physical Properties of 1-hour Rainfall (mm

of hourly MCME model 

 

 

 

 

 

 

 

)  
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Figure 4.44:  Validation of Monthly Statistical Properties of Daily Rainfall (mm) of daily 

MCME model 
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Figure 4.45: Validation of Monthly Physical Properties of 1-hour Rainfall (mm) of daily 

 

MCME model 
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Table 4.14:  The RMSE of the MCME models at 24-hour scale in the validation period 
(1991-2000) 

24-Hour Mean   24-Hour  Autocorrelation  

Month Hourly MCME Daily MCME  Month Hourly MCME 
Daily 
MCME 

Jan 0.0259 0.3444  Jan 0.0067 0.0004 
Feb 2.5948 6.9634  Feb 0.0003 0.0022 
Mar 1.7067 2.2995  Mar 0.0011 0.0004 
Apr 2.0155 1.5293  Apr 0.0061 0.0058 
May 2.3201 0.6087  May 0.0005 0.0010 
Jun 12.1441 9.1436  Jun 0.0079 0.0045 
Jul 0.0313 0.5505  Jul 0.0023 0.0003 
Aug 3.1964 0.9155  Aug 0.0003 0.0000 
Sep 1.8324 0.6572  Sep 0.0029 0.0028 
Oct 0.2392 0.5778  Oct 0.0284 0.0225 
Nov 1.6205 0.3758  Nov 0.0002 0.0003 
Dec 8.6367 5.4281  Dec 0.0252 0.0177 
SSE 3.030 495  SSE 0.0068 0.0048 3 2.4
RMSE 1.7408 .5651 .0695 1  RMSE 0.0826 0
24-Hour Standard Deviation  24-Hour Maximum  

Month CME ME h CME Hourly M Daily MC  Mont Hourly M
Daily 
MCME 

Jan 2.0274 0.6192  Jan 331.2400  51.8400
Feb 0.0170 10.6289  0 Feb 33.9889 424.360
Mar 18.3808   910.3509  Mar 11.6964 142.324
Apr 11.5406  1 012.1602  Apr 375.972 342.250
May 1.8458 0.9436  May 1437.1681 0166.410
Jun 49.6250  00 520.5073  Jun 1840.41 170.302
Jul 10.5633 0  1.1452  Jul 676.000 31.6969
Aug 10.6138 1  1.3874  Aug 299.636 25.5025
Sep 0.2263 0.7298  Sep 89.4916 0.0900 
Oct 0.0123 1.3482  Oct 7.6729 10.3041 
Nov 22.1177 76 01.9125  Nov 2424.57 470.890
Dec 35.3403 41 04.4554  Dec 2893.36 123.210
SSE 13.5259 8 15.5157  SSE 868.434 163.265
RMSE 3.6778 2.3486 2.7775  RMSE 29.4692 1
24-Hour Coefficient of Skewness  Probability of Dry Days  

Month CME ME h ME Hourly M Daily MC  Mont Hourly MC
Daily 
MCME 

Jan 0.5660 0.0711  Jan 0.0049 0.0071 
Feb 1.1179 0.7333  Feb 0.0154 0.0064 
Mar 0.0001 0.2049  Mar 0.0065 0.0010 
Apr 0.0052 0.0241  Apr 0.0001 0.0016 
May 1.6479 0.2150  May 0.0267 0.0058 
Jun 0.2169 1.5146  Jun 0.0016 0.0052 
Jul 0.8843 0.0028  Jul 0.0070 0.0004 
Aug 0.0456 0.0001  Aug 0.0065 0.0097 
Sep 0.1547 0.0024  Sep 0.0374 0.0064 
Oct 0.1504 0.0985  Oct 0.0120 0.0019 
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Nov 2.7492 0.9045  Nov 0.0069 0.0002 
Dec 0.3511 0.4128  Dec 0.0007 0.0100 
SSE 0.6574 0.3487  SSE 0.0105 0.0046 
RMSE 0.8108 0.5905  RMSE 0.1024 0.0682 

 
T . S r  MCME  m t one-

ur scale alidati  period -20
Hou  One-Ho toc  
h AN H ME Month PT ourly MCM

able 4 15: The RM E of the Hou ly  and the MEXPTRAN odels a
ho  in the v on (1991 00) 

One- r Mean  ur Au orrelation
Mont MEXPTR ourly MC  MEX RAN H E 
Jan 8.51E-05 4. Jan 54 1 46E-05  0.06 1.24E-0
Feb 4.35E-03 4. 90 1 59E-03  Feb 0.08 1.67E-0
Mar 6.38E-04 2. Mar 95 1 96E-03  0.03 1.13E-0
Apr 8.70E-03 7. Apr 302 1 26E-03  0.0 1.73E-0
May 4.55E-03 4. May 20 1 03E-03  0.01 1.17E-0
Jun 1.90E-02 2. Jun 68 1 11E-02  0.02 1.53E-0
Jul 1.27E-04 5. Jul 02 1 50E-05  0.00 1.15E-0
Aug 6.64E-03 0.0055 Aug 26  0.06 0.1116 
Sep 2.46E-02 0.0027 Sep 60  0.02 0.0947 
Oct 1.94E-07 0.0004 Oct 9 .1162  0.056 0
Nov 3.32E-03 0.0008 Nov 5  0.015 0.1127 
Dec 1.32E-02 0.0150  Dec 0.0189 0.1955 
SSE 7.10E-03 0.0054  SSE 0.0369 0.1328 
RMSE 8.43E 0.3644 -02 0.0733  RMSE 0.1922 
One-Hour Standard Deviation  One-Hour Maximum  
Month MEXPTRAN Hourly MCME  Month MEXPTRAN Hourly MCME 
Jan 1.3E-03 6.58E-03  Jan 1.3059 3.97E-01 
Feb 2.2E-01 1.93E-01  Feb 69.5681 7.08E+00 
Mar 1.8E-03 4.91E-02  Mar 639.1593 2.60E-01 
Apr 7.2E-02 2.52E-02  Apr 60.4633 9.14E+01 
May 3.6E-03 2.73E-06  May 35.5229 1.93E+00 
Jun 3.1E-01 2.89E-01  Jun 7.1642 2.69E+01 
Jul 4.9E-02 4.11E-02  Jul 40.6068 2.70E+02 
Aug 3.61E-02 0.0511  Aug 167.3517 0.7396 
Sep 7.13E-01 0.0109  Sep 1947.0774 4 839.840
Oct 1.31E-02 0.0482  Oct 159.8663 7.3984 
Nov 6.92E-02 0.0610  Nov 41.7323  28.4089
Dec 1.06E-01 0.0866  Dec 101.4613  33.4084
SSE 1.33E-01 0.0718  SSE 272.6066 5 108.950
RMSE 3.64E-01 0.2680  RMSE 16.5108  10.4379
One-Hour Coefficient of Skewness rs Probability of Dry Hou  
Month MEXPTRAN Hourly MCME  Month MEXPTRAN Hourly MCME 
Jan 0.0415 4.68E-01  Jan 1.81E-04 4.05E-07 
Feb 0.4754 1.52E+00  Feb 3.39E-03 1.65E-04 
Mar 12.7860 9.32E-01  Mar 4.59E-04 2.47E-05 
Apr 9.4990 7.22E+00  Apr 1.00E-03 1.44E-06 
May 0.1182 1.82E-01  May 8.62E-03 3.02E-03 
Jun 52.4319 1.94E+01  Jun 2.68E-06 5.09E-04 
Jul 0.2846 7.35E+00  Jul 1.17E-03 6.48E-05 
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Aug 20.9572 2.8529  Aug 5.79E-04 0.0002 
Sep 2.6364 12.8155  Sep 1.20E-04 0.0028 
Oct 14.4105 0.1189  Oct 3.88E-03 0.0002 
Nov 3.8816 2.9280  Nov 1.24E-02 0.0013 
Dec 69.5820 36.2565  Dec 1.64E-04 0.0004 
SSE 15.5920 7.6685  SSE 2.67E-03 0.0007 
RMSE 3.9487 2.7692  RMSE 5.16E-02 0.0266 

 
 
T  4. he RM  Hour  E

ale in ion pe 91-
our ou latio
h AN ME th N ME 

able 16: T SE of the ly MCM  and MEXPTRAN models at 24-hour 
sc the validat riod (19 2000) 

24-H Mean   24-H r Autocorre n 
Mont MEXPTR Hourly MC  Mon MEXPTRA Hourly MC
Jan 0.0492 0.0259  Jan 0.00247 0.0067 
Feb 2.4612 2.5948  Feb 0.00550 0.0003 
Mar 0.3678 1.7067  Mar 0.00016 0.0011 
Apr 0.1500 2.0155  Apr 0.00533 0.0061 
May 2.6218 2.3201  May  0.00148 0.0005
Jun 10.9352 12.1441   Jun 0.00315 0.0079
Jul 0.0729 0.0313  Jul 0.00004 0.0023 
Aug 3.8253 3.1964  Aug 0.00009 0.0003 
Sep 13.3249 1.8324  Sep 0.00408 0.0029 
Oct 0.0001 0.2392  Oct 0.02343 0.0284 
Nov 3.9482 1.6205  Nov 0.00000 0.0002 
Dec 7.6001 8.6367  Dec 0.01229 0.0252 
SSE 3.7797 3.0303  SSE 0.00483 0.0068 
RMSE 1.944 3 0.0826 2 1.7408  RMSE 0.0695
24-Hour Standard Deviation  24-Hour Maximum  
Month MEXPTRAN HourlyMCME  Month MEXPTRAN Hourly MCME 
Jan 0.55 2.0274  Jan 89.8310 331.2400 
Feb 5.20 0.0170  Feb 204.9284  33.9889
Mar 3.64 18.3808 7   Mar 1213.098 11.6964
Apr 6.19 11.5406 1  Apr 1.0896 375.972
May 0.25 1.8458  May 344.0778 81 1437.16
Jun 24.49 49.6250  Jun 166.3316 00 1840.41
Jul 0.00 10.5633  0  Jul 527.9208 676.000
Aug 2.650 10.6138 1  Aug 7.9073 299.636
Sep 40.663 0.2263  Sep 1321.4356  89.4916
Oct 0.707 0.0123  Oct 114.1783 7.6729 
Nov 5.584 22.1177  76  Nov 595.1729 2424.57
Dec 15.482 35.3403  41  Dec 447.3336 2893.36
SSE 8.783 13.5259  8  SSE 419.4421 868.434
RMSE 2.964 3.6778  RMSE 20.4803 29.4692 
24-Hour Coefficient of Skewness   ays   Probability   of   Dry D
Month MEXPTRAN Hourly MCME  Month MEXPTRAN Hourly MCME 
Jan 0.1470 0.5660  Jan 0.00 0.0049 
Feb 0.2178 1.1179  Feb 0.00 0.0154 
Mar 0.6230 0.0001  Mar 0.00 0.0065 
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Apr 0.0692 0.0052  Apr 0.00 0.0001 
May 0.3266 1.6479  May 0.02 0.0267 
Jun 2.7179 0.2169  Jun 0.01 0.0016 
Jul 0.1023 0.8843  Jul 0.00 0.0070 
Aug 0.2163 0.0456  Aug 0.024 0.0065 
Sep 0.1405 0.1547  Sep 0.001 0.0374 
Oct 0.0799 0.1504  Oct 0.000 0.0120 
Nov 1.1461 2.7492  Nov 0.001 0.0069 
Dec 1.1760 0.3511  Dec 0.025 0.0007 
SSE 0.5802 0.6574  SSE 0.007 0.0105 
RMSE 0.7617 0.8108  RMSE 0.086 0.1024 

 
 
T  4. he RM e Daily MC nd PTRAN  at daily scale in 

e valid riod (199 -  
our  ou correlatio
h AN ME  th PTRAN CME 

able 17: T SE of th ME a  MEX  models
th ation pe 1 2000)

24-H Mean  24-H r Auto n 
Mont MEXPTR Daily MC Mon MEX Daily M
Jan 0.0492 0.3444  247  Jan 0.00 0.0004
Feb 2.4612 6.9634   550  Feb 0.00 0.0022
Mar 0.3678 2.2995  r 016  Ma 0.00 0.0004
Apr 0.1500 1.5293  33  Apr 0.005 0.0058
May 2.6218 0.6087   8  May 0.0014 0.0010
Jun 10.9352   5  9.1436 Jun 0.0031 0.0045
Jul 0.0729 0.5505  4  Jul 0.0000 0.0003
Aug 3.8253 0.9155   09  Aug 0.000 0.0000
Sep 13.3249  08  0.6572 Sep 0.004 0.0028
Oct 0.0001 0.5778  3  Oct 0.0234 0.0225
Nov 3.9482 0.3758  Nov 0.00000 0.0003 
Dec 7.6001 5.4281  Dec 0.01229 0.0177 
SSE 3.7797 2.4495  SSE 0.00483 0.0048 
RMSE 1.944 0.06953 0.0695 2 1.5651  RMSE
24-Hour Standard Deviation  24-Hour Maximum  
Month MEXPTRAN Daily MCME  Month MEXPTRAN Daily MCME 
Jan 0.55 0.6192  Jan 89.8310 51.8400 
Feb 5.20 10.6289  0  Feb 204.9284 424.360
Mar 3.64 10.3509 7 9  Mar 1213.098 142.324
Apr 6.19 12.1602 0  Apr 1.0896 342.250
May 0.25 0.9436  May 344.0778 0 166.410
Jun 24.49 20.5073  5  Jun 166.3316 170.302
Jul 0.00 1.1452  Jul 527.9208  31.6969
Aug 2.650 1.3874  Aug 7.9073 25.5025 
Sep 40.663 0.7298  Sep 1321.4356 0.0900 
Oct 0.707 1.3482  Oct 114.1783  10.3041
Nov 5.584 1.9125  Nov 595.1729 0 470.890
Dec 15.482 4.4554  Dec 447.3336 0 123.210
SSE 8.783 5.5157  SSE 419.4421 1 163.265
RMSE 2.964 2.3486  RMSE 20.4803 12.7775 
24-Hour Coefficient of Skewness   ays  Probability  of    Dry D
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Month MEXPTRAN Daily MCME  Month MEXPTRAN Daily MCME 
Jan 0.1470 0.0711  Jan 0.00 0.0071 
Feb 0.2178 0.7333  Feb 0.00 0.0064 
Mar 0.6230 0.2049  Mar 0.00 0.0010 
Apr 0.0692 0.0241  Apr 0.00 0.0016 
May 0.3266 0.2150  May 0.02 0.0058 
Jun 2.7179 1.5146  Jun 0.01 0.0052 
Jul 0.1023 0.0028  Jul 0.00 0.0004 
Aug 0.2163 0.0001  Aug 0.024 0.0097 
Sep 0.1405 0.0024  Sep 0.001 0.0064 
Oct 0.0799 0.0985  Oct 0.000 0.0019 
Nov 1.1461 0.9045  Nov 0.001 0.0002 
Dec 1.1760 0.4128  Dec 0.025 0.0100 
SSE 0.5802 0.3487  SSE 0.007 0.0046 
RMSE 0.7617 0.5905  RMSE 0.086 0.0682 

 
 
T  4. he sum f the MSE the NSRP and MCME models in the 

alidatio d (199 -2000

rty
r 

r 
ard 
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wn

1-h
Maximum

1-hou
Auto

rob. Dry 
ours 

able 18:   T mary o R  for 
V n Perio 1 ) 

Prope  Mean 
1-hou

1-hou
Stand
Devaition

1-hou
Coe of 
Ske ess

our r P
corr. H

Hourly 
E  6 99 1 10  0.364 .02663 MCM 0.0732  0.267 2.7692  .43794 40 0

MEXPTR .08427 30 94867 16.51080 0.192 .05163 AN 0  0.364 3.  15 0
 

ert y Mean
 
ev 

 Coeff. 
 

 D
Autocorr. 

Prob. 
Dry 
day Prop y Dail  Std.D

Daily Daily
of Skewness

Daily
Max. 

aily 

Hourly 
08 8 .8108 92 0.0826 0.1024 MCME 1.74 3.677 0  29.46

Daily  
MCME 1.5651 2.3486 0.5905 12.7775 0.0695 0.0682 
NSRP 1.9442 2.9636 0.7617 20.4803 0.0695 0.0857 

 

 

4 meri p w th ls  

 

at an th w as  in the 

alibration period.  Nevertheless, the comparisons between both models were also  done  

numerically using RMSE e 4.1  RM aluated  the 

m u tw ob  ns of ed erties 

for the MEXPTRAN and the hourly MCME model. Table 4.17 shows the RMSE 

e d be e dail E a EXPTR the daily rainfall properties 

.3.8 Nu cal Com arison bet een the MCME and e MEXPTRAN mode

Qualit ively, the perform ce of bo models  ere not good as

c

. Tabl

een the 

5 and 4.16 sho

served and the

w the

media

SE ev

the simulat

 from

 proponthly sq are errors be

valuate tween th y MCM nd the M AN for 
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and Table 4.18 gives the summary of the RMSE for ert idered he 

ne-hour scale, the hourly MCME has smaller RMSE values than the MEXPTRAN in all 

roperties considered, except for the one-hour autocorrelation of rainfalls. When the 

r 

MSE values than the hourly MCME model for most of the daily rainfall properties 

conside

4.3.9 ummary 

 

 better the properties of 

e observed when their parameters were estimated using data at the same scale as the 

bserved. But when the series were lumped to other scales, the performance fails to 

, the hourly and daily MCME models do preserve well the observed 

roperties at the respective scales. 

 all prop ies cons .  For t

o

p

hourly series were lumped to daily series, the MEXPTRAN model could provide smalle

R

red in the study.  The daily MCME model can provide even smaller RMSE values 

than the MEXPTRAN for all the properties considered for the daily scale.  

 

From the numerical analysis results, it can be concluded that both models have the 

same predictive ability.  The predictive ability of the MCME hourly model was found to 

be better than the NSRP in predicting the hourly rainfall process. When the hourly series 

were lumped to daily series, the NSRP model performed better than the hourly MCME 

model in predicting the daily rainfall process.  However, the predictive ability of  daily 

MCME model was even better than the NSRP in predicting the daily rainfall process. 

While both models did not perform as well as in the calibration period, both were able to 

preserve the seasonal trends of the observed rainfall properties.   

 

 

S

In assessing the descriptive ability of the model using the hourly and daily 

observed series from year 1981-1990,  the performance of both models  discussed in 

Chapter 4 and 5 was compared using the qualitative and numerical analysis.  From the 

RMSE values obtained for all properties  considered, it was found that the NSRP 

(MEXPTRAN) model has the ability to describe the properties of the observed at various 

timescales, especially at one-hour and daily scales, even though the model only generate 

hourly rainfall series.  The MCME model was found to describe

th

o

maintain. Therefore

p
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In assessing the predictive ability of both models, the hourly and daily series from 

the same station from year 1991-2000 was used in the validation process. In general, both 

NSRP and MCME models were found to have the same predictive ability.  While both 

models did not perform as well as in the calibration period, both were able to preserve the 

seasonal trends of the observed rainfall properties.  However, the predictive ability of the 

daily MCME model was found to be better than the predictive ability of the NSRP and 

hourly MCME model in predicting the daily rainfall process. 

 

 

4.4 Short-term Forecast of Rainfall in Lembah Klang 

 

damages and pollutions. 

 

ue 

 of lack of information on Malaysia storm movements. 

The data analyzed were an hourly rainfall intensity data.  The technique employed 

was a short-term forecasting technique where the prediction was only for a one-hour 

ahead.  According to Burlando (1996), a forecast lead time of a couple of hours, which 

was close to the response time of the drainage system to surface runoff, could be useful in 

view of an efficient control of pumping stations and hydraulic control of gates that may 

prevent flash flood.  This can also reduce overflow volumes of water in tanks and 

channels of the sewer system, and prevent the water from any 

 

 

4.4.2 Stations Selection Criterion  

 

In the current study, the stations were selected based on the analysis of station-to-

station correlations, performed on the available rain gage data. As suggested in the 

literature, the correlation criterion for the correct pairing of stations can be used if long 

historical records of data are available.  This is to make sure that the stations are truly 

correlated. In other words, they are not correlated in only a short period of time.  

Although this method of selecting pairing stations is not as good as the one that is based 

on the storm movements, this is the only way to select stations for the current study d

to
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X  and YThe correlation coefficient X,ρ  between two random variables Y  with 

xpected values e  and , and standard deviations  and can be written as Xμ Yμ Xσ Yσ
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             (4.1) 

 

If we have a series of n  measurements of  X  and Y  written as x  and y  where t t

nt ...,,2,1= , then the Pearson product-mome rrelation coefficient, denoted as  

can be n o

nt co XYr , 

used to estimate the correlatio f X  and Y .  The formula is 
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are the sample means, samples variances and sample covariances.  

The correlation is defined only if both of the standard deviations are finite and 

b  of the Cauchy-Schwarz inequality that the 

correlation does not exceed one in absolute value.  The correlation is one in the case of an 

 the case of a decreasing linear relationship, 

and some values in between in all other cases, indicating the degree of linear dependence 

iables.  The closer the coefficient is to either negative one or positive one, 

the stronger the correlation between the variables.  If the variables are independent then 

, but the converse is not true because the correlation coefficient 

between the var

increasing linear relationship, negative one in

One reason why the stations were highly correlated was because the distances 

between the stations were near.  Another reason was the storm movements.  This can be 

concluded from the sample radar maps for the storms on 6th April 2006 and 10th  May 

2006 where both were during the inter-monsoon season.   

The results from the analysis of station-to-station correlations for all the stations 

are shown in Table 4.19.  From this table, the two stations that were highly correlated 

compared to other station combinations were station Empangan Genting Kelang with 

station Km.11 Gombak, followed by station Empangan Genting Kelang with station 

Kampung Kuala Saleh.  The correlation values were calculated using hourly rainfall data 

from 1st  April 2002 till 29th April 2002 as recorded in each station by the rain gages.  

This data have been taken because it was during the intermonsoon season where the 

convective rains always occurred during this monsoon seasons.  It is also because there 

was no missing data during this period.  

detects only linear dependencies between two variables. 

the correlation is zero

oth of them are nonzero.  It is a corollary
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: Analysis of station-to-station correlation for all the stations listed. 
Station 
Number 3015001 3116003 3116006 3216001 3216004 3217001 3217002 3217 004 3 17004 

3015001 1 0.165326 0.233653 -0.01111 0.060295 0.163399 0.158303 0.10 0. 31556 

3216001 -0.01111 0.016552 -0.00803 1 0.028524 0.226348 0.022059 0.41 0. 01727 

3317004 0.031556 0.085266 0.068528 0.01727 0.041727 0.169044 0.215985 0.1545 0.1971 1 

3317001 0.021069 0.252736 0.269431 0.110088 0.205013 0.401712 0.117254 0.28 97104 

003 3217 317001 33

2992 0.111002 021069 0.0

3116003 0.165326 1 0.372016 0.016552 0.327303 0.248401 0.093928 0.25 0. 85266 1626 0.11503 252736 0.0

3116006 0.233653 0.372016 1 -0.00803 0.461648 0.192583 0.185403 0.18 0. 68528 1281 0.094348 269431 0.0

4294 -0.00926 110088 0.

3216004 0.060295 0.327303 0.461648 0.028524 1 0.148068 0.044899 0.14 0. 41727 8925 0.023438 205013 0.0

3217001 0.163399 0.248401 0.192583 0.226348 0.148068 1 0.186133 0.32 0. 69044 8398 0.073964 401712 0.1

3217002 0.158303 0.093928 0.185403 0.022059 0.044899 0.186133 1 0.65 0. 15985 3569 0.526572 117254 0.2

3217003 0.102992 0.251626 0.181281 0.414294 0.148925 0.328398 0.653569 0.2842 54582 1 0.297141 31 0.1

3217004 0.111002 0.11503 0.094348 -0.00926 0.023438 0.073964 0.526572 0.29 0.0691 15312 7141 1 79 0.

1 0.14231 0.069179

0482 0.15312

 

Table 4.19
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For th a s t e e A M mployed using rainfalls 

data fr r g s e r t p n u . e first pairing study area was 

station Em g G i K n i t n .11 Gombak and the second pairing 

study area was station Em n  t  K mpung Kuala Saleh.   

 

 

4.4.2 Data Modeling  

 

 e o s r w efini  identification, followed by the 

process of parameter estimation.  The MARIMA model obtained will then be used to 

foreca  v es for the rainfalls inten .

 

 

2.2 n s

a r t  o l  n ic models can be viewed as a 

sti o c  due t l e e t  of the rainfall intensity as 

erved at usual temporal aggregation scales, for example 1 hour.  This can be looked as 

ff o e r c unp i i l h  can be argued based on the 

e tha h ts i e  bserved at a point in space 

wadzki, 1987).  The dynamics of the rainfall process can explain this effect by 

in t  lution of the rainfall proces t  in space as a result of two 

rtw d s.

e st me n  s e r  as observed 

 nate s e o  t torm v nt.  The persistence in this 

em d r  h a n c m o ation structure of the process 

rla , 199   o o c  m ovement, that originates the 

m modification normally observed at a fixed point as a result of the continuous 

f n  d  t   

a t r rrelation at a point in space, 

e re son  sta ed arli r, the M RI A model was then e
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which is generally smaller than the Lagrangian space-time correlation.  This property 

comes out from the analysis of actual data (Bacchi and Borga, 1994), as well as of 

rainfall fields simulated by space-time models (Waymire et al., 1984). 

 

It is thus expected that a stochastic model of the autoregressive type would be 

ore successful if based on data recorded by a rain gage hypothetically moving jointly 

ased on the Lagrangian cross-correlation structure detected by 

dar measurements.  However, radar maps do not provide reliable quantitative 

timat

depth.  On the other hand, forecasting 

odels based only on the Eulerian cross-correlation analysis of rain data are affected by a 

eaker persistence effect than the one that could be observed from a reference system 

recasting models based on the Eulerian cross-correlation would 

us benefit of poorer information, thus resulting in poorer performance (Burlando, 

1996). 

  They account thus for both the Eulerian and the Lagrangian 

orrelations of the process (Burlando, 1996). 

 

m

with the storm, that is b

ra

es ions of rainfall intensity, which is better estimated based on rain gage 

measurements.  Rainfall data based only on the use of radar maps could therefore be 

misleading in the estimation of the effective 

m

w

linked to the storm.  Fo

th

 

Accordingly, a successful forecasting model should combine rain gage data and 

radar maps in order to reduce the limitations that affect both these types of the 

measurements.  In this view, MARIMA models represent an interesting tool, because 

they allow to forecast rainfall intensity at a point in space, that is the rain gage station, as 

a function of current and past rainfall occurrences observed at several points in the basin, 

including the point itself.

c

Setting up this type of model to forecast rainfall at a rain gage station would 

therefore require selecting those stations where current and past rainfall occurrences 

show the highest level of cross-correlation with the ones observed at the forecasting site.  

Such a selection can be better afforded on the basis of the kinematic behaviour of the 

storm that can be detected from radar maps.  When the storm speed has been estimated, 

the time lag for the evaluation of the cross-correlation between rainfall records observed 
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at different sites along the storm trajectory can be selected equal or close to the time the 

storm takes to travel from those sites to the forecasting one (Burlando, 1996). 

 

However, as mentioned earlier, because of lack of technologies in Malaysian 

Meteor

he general form of a MARIMA model with 

ological Department, not enough information for the storm movement could be 

obtained.  Hence, the stations were selected based on the analysis of correlation between 

two stations.   

 

 MARIMA models allow the computations of future occurrences of a time series 

as a linear combination of  

 

(i) past occurrences of the time series itself and of time series which are 

cross-correlated to it; that is the autoregressive component  

(ii) the present and past occurrences of a random white noise component; that 

is the moving average component.  

 

pT  autoregressive terms and  moving 

averag

 

q

e terms can be written as 
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              (4.3) 

 

where ( ) t
d

t XBIY −= . 

 

tX  is the stochastic process under study, where in this case is the rainfall 

intensity.  I  is the identity matrix, B  is the backward shift operator, and d  is the 

differencing order of the model.  The vector tε  consists of N  uncorrelated shocks (white 

noise) of zero mean and unit variance, and tε  being uncorrelated with τY , for t<τ .  

Both tY  and tX  are N-dimension column matrices where N  is the number of series 
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considered in the time series problem.  Both should have zero mean, although tX  is 

allowed to have non-zero mean if 0>d  (Box and Jenkins, 1976).  α  and β  are the 

NN×  autoregressive and movi arameters matrices of the model.   

 

A change of the values of 

ng average p

 

4.4.2.2 Model Identification 

 

p  and  allows to formulate m els of different 

characterized by a number of parameters 

ger with increasing orders 

q od

orders, each one characterized by different correlation structure and number of 

parameters.  The model defined by (4.3) is 

pwhich is lar  and .  This can be regarded as a major 

limitation ation in those 

cases where a lim

estimation process.  This rameter estimation, which is 

 to lead to better performance of the forecasting model as compared 

precipitation data set (Burlando et al., 1993).  Accordingly, the values of the orders 

q

 with respect to analytical tractability, and to parameter estim

ited number of actual observations are available for being used in the 

 is just the case of an event based pa

generally recognized

to the ones obtained from the model estimated using the raw historical continuous 

p  

and , as well as the number of series, , which are considered by the model, should be 

selected as a compromise result between the conflicting needs of descriptiveness and of 

actability. 

 

Consider the autoregressive first order model, MARIMA (1,1,0) which can be 

 as , applied to only two time series requiring the estimation of 4 

eters.  An event-based estimation of the model would therefore require a minimum 

ber of c

of parameters increases.  A high number of parameters would therefore limit the benefit 

e

s u

 q N

mathematical tr

 0,1,1 === qdpwritten

param

num urrent observations, being necessary to increase this minimum as the number 

from the us  of the forecasting model only to long lasting events.  Moreover, the time 

required for the estimation and forecasting procedure should be negligible with respect to 

the lead time of the forecast, which is generally constrained by the flood forecasting and 

warning system .  Th s, the need for an operational tool, which can be suitable for 
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practical purposes, suggested to limit this study to the first order autoregressive m el, 

MARIMA(1,1,0), as applied to a two-sites time series, with the purpo e of forecasting 

l in one of them. 

od

s

rainfal

 

 

reover,

only those which become available as the storm event evolves in time.  For this reason 

s and the least squares method.  In view of the operational 

purposes that motivate this study, the method of moments has been preferred, especially 

because

 system could be

 

4.4.2.4 Parameter Estimation

 

As mentioned earlier, an event-based estimation approach was carried out in this 

study.  According to this approach, each storm event regardless of the month or season is 

considered separately for parameter estimation.  A different parameter set is therefore 

determined for each storm event considered.  Mo  the data used for estimation are 

the model can be run only when the number of current event observations is sufficient to 

allow the effective estimation of the parameters.  As a new observation becomes 

available from the monitoring system, the estimation procedure is repeated and the 

updated parameter set is used by the model to issue a new rainfall forecast for the 

designed lead time.  It is thus expected that forecasts become much more reliable as the 

event evolves in time. 

 

The estimation procedure can be set-up following two traditional procedures, that 

is the method of moment

 it performs more rapidly than the latter one, so that a possible use within a 

forecasting nefit by saving computing time. 

 

 For the autoregressive first order model, MARIMA(1,1,0), 

 

  ttt εαYY += −1                 (4.4) 

where 

  



 227

( )

=
−=

−=

t

tt

tt

X
BXIX
XBIY

 

1−− tX

Therefore, 

εαXXαIX
εX

+−+=

 

  
(tt Xα )

( ) tttt

tttXX −=− −1 +

−−

−−

21

21              (4.5) 

 

 parameters for every one hour prediction for each station 

peatedly is a tedious task. To simplify the task, a computer program has been written 

using t

ce, two performance 

easures will be used that is the average values of the residuals and the root mean square 

 Both perfor ance measures are e way  to qu ntify 

which an estimator differs from the true value of the quantity being estimated.   

 

where tε  is assumed to be a white noise, and stationarity is assumed to hold, the 

parameter estimation has been performed by the method of moments.  This consists of 

solving the system 

 

  1
01
−= MMα                 (4.6) 

 

where 0M  and 1M  denote respectively the covariance and the lag 1 covariance matrices. 

 

 Estimating the

re

he Microsoft Visual C++.  By running the program, the new parameter values will 

be estimated each time before a forecast is made.  

 

 

4.4.3 Performance Measure 

 

For the purposes of measuring the forecast performan

m

error (RMSE). m th s a the amount by 
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This performance measure also can be used to compare the models that been used 

for an estimation or forecast process.  By comparing the value of both performance 

measure for each model, we can determine the best model in terms of the error of the 

here the best model have the lowest performance measure values.  

 

rage values of the residuals can be denoted as 

estimator, w

The ave ,εμ  where 

 

n
i

ii∑
=

−
= 1

θθ
μ  

 

n
ˆ

ε

hile the root mean square error (RMSE) can be written as  w
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ere 

  = sample size 

4.5 

h station.  

Before the second hour forecast can be made, the parameters need to be estimated again.  

This technique was repeated each time before a forecast was produced to ensure that the 

wh  

 

 valueestimated ˆ thii =θ  

   valueobserved thii =θ  

n  

 

 

Prediction of Rainfalls Using the MARIMA Model 

 

After estimating the parameters, the forecast value can be calculated using the 

MARIMA (1,1,0) model.  However this is only an hour ahead forecasts for eac
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model 

ted by the 

model.  There was a problem encountered where some of the forecast values obtained 

were n than zero, it is 

considers that there is no rain for that hour.   

 

The scatter plots for th alls intensity data for each station and the 

forecast values cannot be plotted using this program because there were more than 1000 

data.  Therefore, to solve this problem, the Microsoft Office Excel was used to do the 

 

 

4.5.1 Study Area 1 

 

ill forecast the rainfalls intensities for station Empangan Genting 

elang with station Km.11 Gombak.  The lead time of the forecast has been assumed to 

be equal to one hour.  Results for these stations are shown in Figures 4.46, 4.47, 4.48 and 

figures show the h etographs of observed rainfall intensity and 

f -hour ahead, the observed and forecasted cumulative 

infall intensities.   

was used correctly.  These tedious works have been simplified by writing a 

computer program using the Microsoft Visual C++.   

 

By using the program, the forecast values were automatically calcula

egative (less than zero).  Since rainfalls intensity is never less 

e past rainf

scatter plots. 
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Figure 4.46: The hyetographs of observed rainfall intensity and MARIMA one-hour 

ahead forecast for station Empangan Genting Kelang. 
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Figure 4.47: The hyetographs of observed rainfall intensity and MARIMA one-hour 

ahead forecast for station Km.11 Gombak. 
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Figure 4.48: The observed and MARIMA one-hour ahead forecast cumulative rainfall 

intensity for station Empangan Genting Kelang. 
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Figure 4.49: The observed and MARIMA one-hour ahead forecast cumulative rainfall 

intensity for station Km.11 Gombak. 
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 From Figures 4.46 and 4.47, we can see that the forecasted values for both 

stations are most likely the same as the observed values especially for the zero value 

observed data.  However, if we see the pattern of the forecasted values, those values were 

much influenced by the values of its last two hours.  The cumulative forecast values for 

both station shown in Figures 4.48 and 4.49 shows that it is most likely the same as the 

cumulative observed values. 

 

Table 4.20 shows the numerical results for this forecast.  In this table, “E” 

represents station Empangan Genting Kelang and “G” stands for station Km.11 Gombak 

where it includes the observed values (obs.), forecasted values (pre.), the error between 

the observed values and the forecasted values (error), the squared error between the 

observed values and the forecasted values (error2), the cumulative observed values (c ) 

nd the cumulative forecasted values (pre.cum) for both stations.  The estimated 

 

um

a

parameters for these study area will be shown in the appendices.  
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Table 4.20: Results for MARIMA model forecast of rainfalls intensity s o n nting l    Km

Gombak 

days E(obs) E(pre) G(obs) G(pre) E(error) E(error2) ) E re.cum) 

for tati n Empa gan Ge

G(error) G(error2) E(cum

 Ke ang and station .11 

(pre.cum) G(cum) G(p
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 5.2000 0.0000 17.8000 0.0000 -5.2000 27.0400 0.0000 -17.800 316.8400 5.2000 0.0000 17.8000
29 66.0000 0.0000 21.7000 0.0000 -66.000 4356.0000 0 0.0000 -21.700 470.8900 71.200 0.0000 39.5000
29 7.9000 6.2725 3.2000 24.6598 -1.6275 2.6488 0 24.6598 21.4598 460.5230 79.100 6.2725 42.7000
29 0.0000 68.7757 4.8000 23.6321 68.7757 4730.0969 0 48.2919 18.8321 354.6480 79.100 75.0482 47.5000
29 3.8000 0.0000 4.8000 0.0000 -3.8000 14.4400 0 48.2919 -4.8000 23.0400 82.900 75.0482 52.3000
29 11.6000 0.0000 4.8000 4.9856 -11.600 134.5600 0 53.2775 0.1856 0.0344 94.500 75.0482 57.1000
29 7.0000 4.3131 4.8000 4.9137 -2.6869 7.2194 0 58.1912 0.1137 0.0129 101.500 79.3613 61.9000
29 2.7000 12.6704 4.8000 5.0290 9.9704 99.4089 0 63.2202 0.2290 0.0524 104.200 92.0317 66.7000
29 5.2000 6.3066 4.8000 4.6485 1.1066 1.2246 0 67.8687 -0.1515 0.0230 109.400 98.3383 71.5000
29 4.7000 2.0401 4.8000 4.6420 -2.6599 7.0751 0 10 72.5107 -0.1580 0.0250 114.100 0.3784 76.3000
29 1.0000 5.5846 1.2000 4.8904 4.5846 21.0186 0 10 77.4011 3.6904 13.6191 115.100 5.9630 77.5000
29 0.0000 4.6217 0.0000 4.7813 4.6217 21.3601 0 11 82.1824 4.7813 22.8608 115.100 0.5847 77.5000
30 0.5000 0.0000 0.0000 0.0000 -0.5000 0.2500 0 11 82.1824 0.0000 0.0000 115.600 0.5847 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 11 82.1824 0.0000 0.0000 115.600 0.5847 77.5000
30 0.0000 0.5875 0.0000 0.0188 0.5875 0.3452 0 11 82.2012 0.0188 0.0004 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 11 82.2012 .0000 0.0000 115.600 1.1722 77.5000
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days E(obs) E(pre) G(obs) G(pre) E(error) E(error2) G(error) G(error2) E(cum) E(pre.cum) G(cum) G(pre.cum) 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 111.1722 77.5000 82.2012 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 111.1722 77.5000 82.2012 
30 0.0000  10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 15.6000 111.1722 77.5000 82.2012 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 111.1722 77.5000 82.2012 
30 0.8000 0.0000 0.0000 0.0000 -0.8000 0.6400 0.0000 0.0000 11 11 86.4000 1.1722 77.5000 2.2012 
30 4.2000 0.0000 1.0000 0.0000 -4.2000 1 12 11 87.6400 -1.0000 1.0000 0.6000 1.1722 78.5000 2.2012 
30 0.0000 0.9257 0.3000 0.0302 0.9257 0.8569 -0.2698 0.0728 12 11 80.6000 2.0979 78.8000 2.2314 
30 0.5000 4.9288 1.2000 1.4296 4.4288 1 12 11 89.6143 0.2296 0.0527 1.1000 7.0267 80.0000 3.6610 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 11 81.1000 7.0267 80.0000 3.6610 
30 0.0000 0.7529 0.0000 1.4901 0.7529 0.5669 1.4901 2.2204 1 11 821.1000 7.7796 80.0000 5.1511 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 117.7796 80.0000 85.1511 
1 0.5000 0.0000 1.1000 0.0000 -0.5000 0.2500 -1.1000 1.2100 121.6000 117.7796 81.1000 85.1511 
1 2.0000 0.0000 1.4000 0.0000 -2.0000 4.0000 -1.4000 1.9600 123.6000 117.7796 82.5000 85.1511 
1 0.5000 0.7916 0.0000 1.4504 0.2916 0.0850 1.4504 2.1037 124.1000 118.5712 82.5000 86.6015 
1 0.0000 2.2938 0.0000 1.5466 2.2938 5.2615 1.5466 2.3920 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 

da E E E( G G E G(pys (obs) E(pre) G(obs) G(pre) (error) error2) (error) (error2) E(cum) (pre.cum) G(cum) re.cum) 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
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 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 120.8650 82.5000 88.1481 

 
= ed or Em n G Kela

t  fo n E an  Kel

= ed or K om

t  fo n K o

E( r) = - 
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E( 2) =  - 2 

2) = (G(obs) - G(pre))2 

E(cu ) = ati rv e fo n E an G Kel

u re val tati  

G(cum) = ati rv e fo n K om

u re al tat 11 G

 
 
 
 
 
 
 
 
 
 

E(obs)  Observ  value f  station panga enting ng 

E(pre) = Forecas ed value r statio mpang Genting ang 

G(obs)  Observ  value f  station m.11 G bak 

G(pre) = Forecas ed value r statio m.11 G mbak 

erro  E(obs) E(pre) 

G(error)  G(obs) G(pre) 

error  (E(obs)  E(pre))

G(error

m  Cumul ve obse ed valu r statio mpang enting ang 

E(pre.cum)  = Cum lative fo casted ue for s on Empangan Genting Kelang

 Cumul ve obse ed valu r statio m.11 G bak 

G(pre.cum) = Cum lative fo casted v ue for s ion Km. ombak 

 



 236

4.5.2 Study Area 2 

 

To ensure that this model can fit to other study area too, we then applied the 

MA(1,1,0) to predict the rainfalls for station Empangan Genting Kelang with 

station Kampung Kuala Saleh.  Results for these stations are shown in Figures 4.50 4.51, 

nd 4.53. 
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Figure 4.51: The hyetographs of observed rainfall intensity and MARIMA one-hour 

ahead forecast for station Kampung Kuala Saleh. 
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Figure 4.52: The observed and MARIMA one-hour ahead forecast cumulative rainfall 

intensity for station Empangan Genting Kelang. 
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Figure 4.53: The observed and MARIMA one-hour ahead forecast cumulative rainfall 

Figure 4.50 show that the forecasted values were more the same as the observed 

values however some of the forecasted values is much the same as its past two hour 

observed values.  The same results also go for Figure 4.51.  However, Figure 4.52 shows 

that the cumulative forecasted values for station Empangan Genting Kelang that were 

jointly modeled with station Kampung Kuala Saleh were more likely the same as the 

cumulative observed values compared to the cumulative forecasted values for station 

Empangan Genting Kelang that were jointly modeled with station Km.11 Gombak shown 

in Figure 4.48.  Figure 4.53 shows that the cumulative forecasted values were slightly 

differed from the cumulative observed values. 

 

For these study area, the numerical results are shown in Table 4.21.  In this table, 

“E” represents station Empangan Genting Kelang and “K” stands for station Kampung 

Kuala Saleh where it includes the observed values (obs), forecasted values (pre), the error 

etween the observed values and the forecasted values (error), the squared error between 

intensity for station Kampung Kuala Saleh. 

 

 

b

the observed values and the forecasted values (error2), the cumulative observed values 



 

(cum

param
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) and the cumulative forecasted values (pre.cum) for both stations.  The estimated 

eters for these study area will be shown in the appendices. 
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Table 4.21: Results for MARIMA model forecast of rainfalls intensity for station Empangan Genting Kelang and station Ka

Kuala Saleh 

days E(obs) E(pre) K(obs) K(pre) E(error) E(error2) K(error) K(error2) E(cum) E(pre.cum) K(cum) K )

mpung 

(pre.cum
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00.000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00.000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00.000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00.000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00.000
29 5.2000 0.0000 0.0000 0.0000 -5.2000 27.0400 0.0000 0.0000 5.2000 0.0000 0.0000 00.000
29 66.0000 0.0000 24.3000 0.0000 -66.000 4356.0000 -24.300 590.4900 71.2000 0.0000 24.3000 0.0000
29 7.9000 6.6008 1.2000 0.0990 -1.2992 1.6879 -1.1010 1.2122 79.1000 6.6008 25.5000 0.0990
29 0.0000 72.3596 0.0000 28.6702 72.3596 5235.9117 28.6702 821.9804 79.1000 78.9604 25.5000 228.769
29 3.8000 0.0000 2.3000 0.0000 -3.8000 14.4400 -2.3000 5.2900 82.9000 78.9604 27.8000 228.769
29 11.6000 0.0000 6.2000 0.0000 -11.600 134.5600 -6.2000 38.4400 94.5000 78.9604 34.0000 228.769
29 7.0000 4.6056 0.5000 2.7657 -2.3944 5.7332 2.2657 5.1334 101.5000 83.5660 34.5000 931.534
29 2.7000 13.2479 3.5000 7.0210 10.5479 111.2582 3.5210 12.3974 104.2000 96.8139 38.0000 938.555
29 5.2000 5.8543 4.0000 0.0000 0.6543 0.4281 -4.0000 16.0000 109.4000 102.6682 42.0000 938.555
29 4.7000 1.8842 3.3000 4.0555 -2.8158 7.9287 0.7555 0.5708 114.1000 104.5524 45.3000 442.611
29 1.0000 5.7478 0.0000 4.1267 4.7478 22.5416 4.1267 17.0297 115.1000 110.3002 45.3000 146.738
29 0.0000 4.5688 0.0000 3.1509 4.5688 20.8739 3.1509 9.9282 115.1000 114.8690 45.3000 049.889
30 0.5000 0.0895 0.0000 0.0000 -0.4105 0.1685 0.0000 0.0000 115.6000 114.9585 45.3000 049.889
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 114.9585 45.3000 049.889
30 0.0000 0.6081 0.0000 0.0052 0.6081 0.3698 0.0052 0.0000 115.6000 115.5666 45.3000 249.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49 2.894
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days E(obs) E(pre) K(obs) K(pre) E(error) E(error2) K(error) K(error2) E(cum) E(pre.cum) K(cum) K(pre.cum)
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49.8942
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49.8942
30 0.0000   10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 15.6000 115.5666 45.3000 49.8942
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115.6000 115.5666 45.3000 49.8942
30 0.8000 0.0000 1.9000 0.0000 -0.8000 0.6400 -1.9000 3.6100 11 11 4 46.4000 5.5666 7.2000 9.8942
30 4.2000 0.0000 4.6000 0.0000 -4.2000 17.6400 -4.6000 2 12 11 5 41.1600 0.6000 5.5666 1.8000 9.8942
30 0.0000 1.0368 0.0000 2.2990 1.0368 1.0750 2.2990 5.2854 12 11 5 50.6000 6.6034 1.8000 2.1932
30 0.5000 5.0248 0.0000 5.1891 4.5248 20.4738 5.1891 2 12 12 5 56.9268 1.1000 1.6282 1.8000 7.3823
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 12 5 51.1000 1.6282 1.8000 7.3823
30 0.0000 0.6078 0.0000 0.0049 0.6078 0.3694 0.0049 0.0000 1 12 521.1000 2.2360 51.8000 7.3872
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 12 521.1000 2.2360 51.8000 7.3872
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 121.1000 22.2360 51.8000 57.3872
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 121.1000 22.2360 51.8000 57.3872

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 121.1000 22.2360 51.8000 57.3872
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 122.2360 51.8000 57.3872
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 122.2360 51.8000 57.3872
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 122.2360 51.8000 57.3872
1 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 -0.5000 0.2500 121.1000 122.2360 52.3000 57.3872
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 121.1000 122.2360 52.3000 57.3872
1 0.5000 0.0168 0.0000 0.6028 -0.4832 0.2335 0.6028 0.3634 121.6000 122.2528 52.3000 57.9900
1 2.0000 0.0000 1.5000 0.0000 -2.0000 4.0000 -1.5000 2.2500 123.6000 122.2528 53.8000 57.9900
1 0.5000 0.6079 0.0000 0.0049 0.1079 0.0116 0.0049 0.0000 124.1000 122.8607 53.8000 57.9949
1 0.0000 2.3737 0.0000 1.8226 2.3737 5.6345 1.8226 3.3219 124.1000 125.2344 53.8000 59.8175
1 0.0000 0.1262 0.0000 0.0000 0.1262 0.0159 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175

da E E( K K E K(pys E(obs) E(pre) K(obs) K(pre) (error) error2) (error) (error2) E(cum) (pre.cum) K(cum) re.cum)
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
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1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.3606 53.8000 59.8175
1 59.817553.80000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 124.1000 125.36060.0000 
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rror = E(obs - E(pre) 

K(error) = K(obs - K(pre)
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4.6 Forecasting Rainfalls Using the ARMA Models 

 

To evaluate the performances of the MARIMA model, ARMA model was also 

o forecast the rainfalls data.  Since the ARMA model is a univariate Box-

Jenkins model, the data need to be analyzed individually.  Since this is a one-hour 

forecast process, we need to repeatedly estimate the parameters for the chosen 

 model every time we do the forecast.   

To produce forecasts using the ARMA model, the MINITAB 14 software was 

However, since this is a one-hour prediction with the purpose of comparing the 

results with the ones obtained from using the MARIMA model, the scatter plots were 

ed using the Microsoft Office Excel software.  

 

The data from station Empangan Genting Kelang, station Km.11 Gombak and 

 station Kampung Kuala Saleh were analyzed and forecasted separately.  The 

best ARMA model for those stations were ARMA(1,1) model.  The results are shown 

res 4.54., 4.55, 4.56, 4.57, 4.58 and 4

 

Figures 4.54, 4.56 and 4.58 show the hyetographs of observed rainfall 

tie ing forecasts of one-hour ahead.  Figure 4.54 shows that 

most of t lues were almost  the forecasted values is 

ve sume as zero or ere was no rain.  Figure 

4.56 show that the forecasted values much y its last observed value 

 its ive forecast valu mpung Kuala Saleh, it 

d i t the forecast va ely equal.  Therefore we 

sum st values for this  like the average value of 

n tw past data.  

 

Fi d forecasted cumulative 
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dif re caused by the negative 
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Figure 4.54: The hyetographs of observed rainfall intensity and ARMA(1,1) one-hour 

ahead forecast for station Empangan Genting Kelang. 
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Figure 4.55: The observed and ARMA(1,1) one-hour ahead forecast cumulative 

rainfall intensity for station Empangan Genting Kelang. 
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Station Km. 11 Gombak
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Figure 4.56: The hyetographs of observed rainfall intensity and ARMA(1,1) one-hour 

ahead forecast for station Km.11 Gombak. 
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Figure 4.57: The observed and ARMA(1,1) one-hour ahead forecast cumulative 

rainfall intensity for station Km.11 Gombak. 

 



 246

Station Kampung Kuala Saleh
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Figure 4.58: The hyetographs of observed rainfall intensity and ARMA(1,1) one-hour 

ahead forecast for station Kampung Kuala Saleh. 
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Figure 4.59: The observed and ARMA(1,1) one-hour ahead forecast cumulative 

rainfall intensity for station Kampung Kuala Saleh. 

 

In Tables 4.22, 4.23 and 4.24, the numerical results for the prediction of the 

rainfalls for all the three stations using ARMA(1,1) are presented.  In these tables, the 
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observed values (obs), forecasted values (pre), the error between the observed values 

and the forecasted values (error), the squared error between the observed values and 

the forecasted values (error2), the cumulative observed values (cum) and the 

cumulative forecasted values (pre.cum) are tabulated. 

  

Table 4.22: Results for ARMA(1,1) model forecast of rainfalls intensity for station 

Empangan Genting Kelang. 

days E(obs) E(pre) E(error) E(error2) E(cum) E(pre.cum) 
29 0.0000 0.102 0.1020 0.0104 0.0000 0.1020 
29 0.0000 0.1019 0.1019 0.0104 0.0000 0.2039 
29 0.0000 0.1017 0.1017 0.0103 0.0000 0.3056 
29 0.0000 0.1016 0.1016 0.0103 0.0000 0.4072 
29 0.0000 0.1014 0.1014 0.0103 0.0000 0.5086 
29 5.2000 0.1013 -5.0987 25.9967 5.2000 0.6099 
29 66.0000 2.3138 -63.6862 4055.9321 71.2000 2.9237 
29 7.9000 77.2511 69.3511 4809.5751 79.1000 80.1748 
29 0.0000 -6.4969 -6.4969 42.2097 79.1000 73.6779 
29 3.8000 0.4148 -3.3852 11.4596 82.9000 74.0927 
29 11.6000 0.8561 -10.7439 115.4314 94.5000 74.9488 
29 7.0000 2.6457 -4.3543 18.9599 101.5000 77.5945 
29 2.7000 1.3537 -1.3463 1.8125 104.2000 78.9482 
29 5.2000 0.6486 -4.5514 20.7152 109.4000 79.5968 
29 4.7000 1.3865 -3.3135 10.9793 114.1000 80.9833 
29 1.0000 1.1585 0.1585 0.0251 115.1000 82.1418 
29 0.0000 0.3228 0.3228 0.1042 115.1000 82.4646 
30 0.5000 0.233 -0.2670 0.0713 115.6000 82.6976 
30 0.0000 0.3679 0.3679 0.1354 115.6000 83.0655 
30 0.0000 0.2247 0.2247 0.0505 115.6000 83.2902 
30 0.0000 0.2498 0.2498 0.0624 115.6000 83.5400 
30 0.0000 0.2449 0.2449 0.0600 115.6000 83.7849 
30 0.0000 0.2453 0.2453 0.0602 115.6000 84.0302 
30 0.0000 0.2448 0.2448 0.0599 115.6000 84.2750 
30 0.0000 0.2445 0.2445 0.0598 115.6000 84.5195 
30 0.0000 0.2442 0.2442 0.0596 115.6000 84.7637 
30 0.0000 0.2438 0.2438 0.0594 115.6000 85.0075 
30 0.0000 0.2434 0.2434 0.0592 115.6000 85.2509 
30 0.0000 0.2431 0.2431 0.0591 115.6000 85.4940 
30 0.0000 0.2428 0.2428 0.0590 115.6000 85.7368 
30 0.0000 0.2424 0.2424 0.0588 115.6000 85.9792 
30 0.0000 0.2421 0.2421 0.0586 115.6000 86.2213 
30 0.8000 0.2417 -0.5583 0.3117 116.4000 86.4630 
30 4.2000 0.4325 -3.7675 14.1941 120.6000 86.8955 
30 0.0000 1.2312 1.2312 1.5159 120.6000 88.1267 
30 0.5000 0.0742 -0.4258 0.1813 121.1000 88.2009 
30 0.0000 0.3956 0.3956 0.1565 121.1000 88.5965 

days E(obs) E(pre) E(error) E(error2) E(cum) E(pre.cum) 
30 0.0000 0.22 0.2200 0.0484 121.1000 88.8165 
30 0.0000 0.2506 0.2506 0.0628 121.1000 89.0671 
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30 0.0000 0.2448 0.2448 0.0599 121.1000 89.3119 
30 0.0000 0.2454 0.2454 0.0602 121.1000 89.5573 

1 0.0000 0.2449 0.2449 0.0600 121.1000 89.8022 
1 0.0000 0.2446 0.2446 0.0598 121.1000 90.0468 
1 0.0000 0.2442 0.2442 0.0596 121.1000 90.2910 
1 0.0000 0.2439 0.2439 0.0595 121.1000 90.5349 
1 0.0000 0.2435 0.2435 0.0593 121.1000 90.7784 
1 0.0000 0.2432 0.2432 0.0591 121.1000 91.0216 
1 0.5000 0.2429 -0.2571 0.0661 121.6000 91.2645 
1 2.0000 0.3617 -1.6383 2.6840 123.6000 91.6262 
1 0.5000 0.6986 0.1986 0.0394 124.1000 92.3248 
1 0.0000 0.2835 10.2835 0.0804 24.1000 92.6083 
1 0.0000 0 12 9.2381 0.2381 0.0567 4.1000 2.8464 
1 0.0000 0.2457 0.2457 0.0604 12 94.1000 3.0921 
1 0.0000 0.2439 0.2439 0.0595 12 94.1000 3.3360 
1 0.0000 0.2439 0.2439 0.0595 12 94.1000 3.5799 
1 0.0000 0.2435 0.2435 0.0593 12 94.1000 3.8234 
1 0.0000 0.2431 0.2431 0.0591 12 94.1000 4.0665 
1 0.0000 0.2428 0.2428 0.0590 1 924.1000 4.3093 
1 0.0000 0.2425 0.2425 0.0588 124.1000 94.5518 
1 0.0000 0.2421 0.2421 0.0586 124.1000 94.7939 

 

Ta 4. lts od t ls in r station 

Km  Go

da G G G G G(pr

ble 23: Resu for ARMA(1,1) m el forecas  of rainfal tensity fo

.11 mbak. 

ys (obs) (pre) (error) (error2) G(cum) e.cum) 
29 0.0000 0.0656 0.0656 0.0043 0.0000 0.0656 
29 0.0000 0.0655 0.0655 0.0043 0.0000 0.1311 
29 0.0000 0 0.0654 0.0654 .0043 0.0000 0.1965 
29 0.0000 0.0653 0.0653 0.0043 0.0000 0.2618 
29 0.0000 0.0652 0.0652 0.0043 0.0000 0.3270 
29 1 -1 3147.8000 0.0651 7.7349 .5267 17.8000 0.3921 
29 2 1 - 91 11.7000 2.1489 9.5511 .2235 39.5000 2.5410 
29 3.2000 1 1 125 24.4196 1.2196 .8794 42.7000 6.9606 
29 4.8000 - - 52 22.4233 7.2233 .1761 47.5000 4.5373 
29 4.8000 4.6985 - 0 20.1015 .0103 52.3000 9.2358 
29 4.8000 1.6676 - 9 33.1324 .8119 57.1000 0.9034 
29 4.8000 2.9809 - 3 31.8191 .3091 61.9000 3.8843 
29 4.8000 2.5472 - 5 32.2528 .0751 66.7000 6.4315 
29 4.8000 2.7708 - 4 32.0292 .1177 71.5000 9.2023 
29 4.8000 2.7262 - 4 42.0738 .3006 76.3000 1.9285 
29 1.2000 2.7819 1.5819 2 4.5024 77.5000 4.7104 
29 0.0000 - - 0 40.0198 0.0198 .0004 77.5000 4.6906 
30 0.0000 0.1669 0.1669 0 4.0279 77.5000 4.8575 
30 0.0000 0.0924 0.0924 0.0085 77.5000 44.9499 
30 0.0000 0.1218 0.1218 0 4.0148 77.5000 5.0717 
30 0.0000 0.1098 0.1098 0 4.0121 77.5000 5.1815 

da G G G G(e G(prys (obs) (pre) (error) rror ) 2 G(cum) e.cum) 
30 0.0000 0.1143 70.1143 0.0131 7.5000 45.2958 
30 0.0000 0.1123 0.1123 0.0126 77.5000 45.4081 
30 0.0000 0.1129 0.1129 0 4.0127 77.5000 5.5210 
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30 0.0000 0.1124 0.1124 0 4.0126 77.5000 5.6334 
30 0.0000 0.1124 0.1124 0 4.0126 77.5000 5.7458 
3 0 40 0.0000 0.1122 0.1122 .0126 77.5000 5.8580 
3 0 40 0.0000 0.1120 0.1120 .0125 77.5000 5.9700 
3 0 40 0.0000 0.1118 0.1118 .0125 77.5000 6.0818 
3 0 40 0.0000 0.1117 0.1117 .0125 77.5000 6.1935 
3 0 40 0.0000 0.1115 0.1115 .0124 77.5000 6.3050 
3 0 40 0.0000 0.1114 0.1114 .0124 77.5000 6.4164 
3 0 40 0.0000 0.1112 0.1112 .0124 77.5000 6.5276 
3 0 40 1.0000 0.1110 -0.8890 .7903 78.5000 6.6386 
3 0 40 0.3000 0.8821 0.5821 .3388 78.8000 7.5207 
30 1.2000 0.0359 - 1 41.1641 .3551 80.0000 7.5566 
3 1 40 0.0000 1.0648 1.0648 .1338 80.0000 8.6214 
30 - - 0 40.0000 0.2632 0.2632 .0693 80.0000 8.3582 
3 0 40 0.0000 0.2596 0.2596 .0674 80.0000 8.6178 
3 0 40 0.0000 0.0538 0.0538 .0029 80.0000 8.6716 
3 0 40 0.0000 0.1345 0.1345 .0181 80.0000 8.8061 

1 0.0000 0.1025 0.1025 0 4.0105 80.0000 8.9086 
1 0.0000 0.1149 0.1149 0 4.0132 80.0000 9.0235 
1 0.0000 0.1098 0.1098 0 4.0121 80.0000 9.1333 
1 0.0000 0.1115 0.1115 0 4.0124 80.0000 9.2448 
1 0.0000 0.1106 0.1106 0.0122 80.0000 49.3554 
1 0.0000 0.1108 0.1108 0.0123 80.0000 49.4662 
1 1.1000 0.1105 -0.9895 0.9791 81.1000 49.5767 
1 1.4000 0.9552 -0.4448 0.1978 82.5000 50.5319 
1 0.0000 0.8538 0.8538 0.7290 82.5000 51.3857 
1 0.0000 -0.1810 -0.1810 0.0328 82.5000 51.2047 
1 0.0000 0.2272 0.2272 0.0516 8 52.5000 1.4319 
1 0.0000 0.0659 0.0659 0.0043 8 52.5000 1.4978 
1 0.0000 0.1293 0.1293 0.0167 8 52.5000 1.6271 
1 0.0000 0.1040 0.1040 0.0108 8 52.5000 1.7311 
1 0.0000 0.1138 0.1138 0.0130 8 52.5000 1.8449 
1 0.0000 0.1097 0.1097 0.0120 82.5000 51.9546 
1 0.0000 0.1111 0.1111 0.0123 82.5000 52.0657 
1 0.0000 0.1103 0.1103 0.0122 82.5000 52.1760 
1 0.0000 0.1104 0.1104 0.0122 82.5000 52.2864 

 

Ta 4.2 lts A ode st lls in r station 

Ka ng al

da K K K K( K(p

ble 4: Resu for ARM (1,1) m l foreca  of rainfa tensity fo

mpu  Kuala S eh. 

ys (obs) (pre) (error) error2) K(cum) re.cum) 
29 0.0000 0.1998 0.1998 0.0399 0.0000 0.1998 
29 0.0000 0.1995 0.1995 0.0398 0.0000 0.3993 
29 0.0000 0.1992 0.1992 0.0397 0.0000 0.5985 
29 0.0000 0.1989 0.1989 0.0396 0.0000 0.7974 
29 0.0000 0.1986 0.1986 0.0394 0.0000 0.9960 

da K K K K( K(pys (obs) (pre) (error) error2) K(cum) re.cum) 
29 0.0000 0.1983 0.1983 0.0393 0.0000 1.1943 
29 2 -2 584.3000 0.1980 4.1020 0.9064 24.3000 1.3923 
29 1.2000 6.6212 5.4212 29.3894 25.5000 8.0135 
29 0.0000 - -0.5657 0.5657 0.3200 25.5000 7.4478 
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29 2.3000 0.3595 -1.9405 3.7655 27.8000 7.8073 
29 6.2000 0.6753 - 35.5247 0.5223 34.0000 8.4826 
29 0.5000 1.4638 0.9638 0.9289 34.5000 9.9464 
29 3.5000 0.1182 - 13.3818 1.4366 38.0000 10.0646 
29 4.0000 0.9898 -3.0102 9.0613 42.0000 11.0544 
29 3.3000 0.9685 -2.3315 5.4359 45.3000 12.0229 
29 0.0000 0.8475 0.8475 0.7183 45.3000 12.8704 
29 0.0000 0.1626 0.1626 0.0264 45.3000 13.0330 
30 0.0000 0.2719 0.2719 0.0739 45.3000 13.3049 
30 0.0000 0.2537 0.2537 0.0644 45.3000 13.5586 
30 0.0000 0.2562 0.2562 0.0656 45.3000 13.8148 
30 0.0000 0.2553 0.2553 0.0652 45.3000 14.0701 
30 0.0000 0.2550 0.2550 0.0650 45.3000 14.3251 
30 0.0000 0.2547 0.2547 0.0649 45.3000 14.5798 
30 0.0000 0.2543 0.2543 0.0647 45.3000 14.8341 
30 0.0000 0.2539 0.2539 0.0645 45.3000 15.0880 
30 0.0000 0.2535 0.2535 0.0643 45.3000 15.3415 
30 0.0000 0.2532 0.2532 0.0641 45.3000 15.5947 
30 0.0000 0.2528 0.2528 0.0639 45.3000 15.8475 
30 0.0000 0.2524 0.2524 0.0637 45.3000 16.0999 
30 0.0000 0.2521 0.2521 0.0636 45.3000 16.3520 
30 0.0000 0.2517 0.2517 0.0634 45.3000 16.6037 
30 0.0000 0.2513 0.2513 0.0632 45.3000 16.8550 
30 1.9000 0.2510 -1.6490 2.7192 47.2000 17.1060 
3 10 4.6000 0.6584 -3.9416 5.5362 51.8000 17.7644 
30 0.0000 1.1846 1.1846 1.4033 51.8000 18.9490 
30 0.0000 0.1052 0.1052 0.0111 51.8000 19.0542 
30 0.0000 0.2826 0.2826 0.0799 51.8000 19.3368 
30 0.0000 0.2525 0.2525 0.0638 51.8000 19.5893 
30 0.0000 0.2571 0.2571 0.0661 51.8000 19.8464 
30 0.0000 0.2559 0.2559 0.0655 51.8000 20.1023 
30 0.0000 0.2556 0.2556 0.0653 51.8000 20.3579 

1 0.0000 0.2553 0.2553 0.0652 51.8000 20.6132 
1 0.0000 0.2549 0.2549 0.0650 51.8000 20.8681 
1 0.0000 0.2545 0.2545 0.0648 51.8000 21.1226 
1 0.0000 0.2542 0.2542 0.0646 51.8000 21.3768 
1 0.5000 0.2538 -0.2462 0.0606 52.3000 21.6306 
1 0.0000 0.3613 0.3613 0.1305 52.3000 21.9919 
1 0.0000 0.2360 0.2360 0.0557 52.3000 22.2279 
1 1.5000 0.2563 -1.2437 1.5468 53.8000 22.4842 
1 0.0000 0.5757 0.5757 0.3314 53.8000 23.0599 
1 0.0000 0.2013 0.2013 0.0405 53.8000 23.2612 
1 0.0000 0.2630 0.2630 0.0692 5 23.8000 3.5242 
1 0.0000 0.2523 0.2523 0.0637 5 23.8000 3.7765 
1 0.0000 0.2536 0.2536 0.0643 5 23.8000 4.0301 
1 0.0000 0.2530 0.2530 0.0640 5 23.8000 4.2831 
1 0.0000 0.2527 0.2527 0.0639 5 23.8000 4.5358 

days K(obs) K(pre) K(error) K(error2) K(cum) K(pre.cum) 
1 0.0000 0.2523 0.2523 0.0637 5 23.8000 4.7881 
1 0.0000 0.2520 0.2520 0.0635 53.8000 25.0401 
1 0.0000 0.2516 0.2516 0.0633 53.8000 25.2917 
1 0.0000 0.2513 0.2513 0.0632 53.8000 25.5430 
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 d rs form e cumul ive obse d value ere cau y the neg

e f cast for e ARMA ,1) mo  
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ables 4 , 4.26 a  4.27.  T le 4.24 lists the values for station Em

tin elang ere E(M ) are t orecast values usin

h s ion Km  Gomb , E(MK re the recast va  using th

odel ith stat  Kamp g Kuala aleh), and E(ARMA) are the for

lative r nfall val re denot

es 26 and 7  are  station m.11 G bak and tion Kam

h w re G(M nd K(M re the f ast valu  using th
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and K(A) are the forecast values using the ARMA(1,1) model and their cumulative 

 

rainfall values are denoted by (cum). 
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Figure 4.60: The hyetographs of observed rainfall intensity, MARIMA and 

ARMA(1,1) one-hour ahead forecast for station Empangan Genting Kelang (with 

station Km.11 Gombak). 
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Figure 4.61: The observed, MARIMA and ARMA(1,1) one-hour ahead forecast 

cumulative rainfall intensity for station Empangan Genting Kelang (with station 

Km.11 Gombak). 
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Station Empangan Genting Kelang (with Station Kampung Kuala Saleh)
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Figure 4.62: The hyetographs of observed rainfall intensity, MARIMA and 

ARIMA(1,1) one-hour ahead forecast for station Empangan Genting Kelang (with 

station Kampung Kuala Saleh). 
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Figure 4.63: The observed, MARIMA and ARIMA(1,1) one-hour ahead forecast 

cumulative rainfall intensity for station Empangan Genting Kelang (with station 

Kampung Kuala Saleh). 
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Station Km.11 Gombak

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60

time from the beginning of the event

ra
in

fa
ll 

in
te

ns
ity

 (m
m

/h
)

observed
MARIMA
ARMA

 
Figure 4.64: The hyetographs of observed rainfall intensity, MARIMA and 

ARMA(1,1) one-hour ahead forecast for station Km.11 Gombak. 
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Figure 4.65: The observed, MARIMA and ARMA(1,1) one-hour ahead forecast 

cumulative rainfall intensity for station Km.11 Gombak. 
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Station Kampung Kuala Saleh
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Figure 4.66: The hyetographs of observed rainfall intensity, MARIMA and 

ARMA(1,1) one-hour ahead forecast for station Kampung Kuala Saleh. 
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Figure 4.67: The observed, MARIMA and ARMA(1,1) one-hour ahead forecast 

 
 
 
 
 
 
 
 

cumulative rainfall intensity for station Kampung Kuala Saleh. 
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Table 4.25: Comparison of rainfalls intensity forecast value from MARIMA model 

and ARMA(1,1) model for station Empangan Genting Kelang. 

days E(obs) E(MG) E(MK) E(ARMA) E(cum) E(MGcum) E(MKcum) E(Acum)
29 0.0000 0.0000 0.0000 0.102 0.0000 0 0 0.102
29 0.0000 0.0000 0.0000 0.1019 0.0000 0 0 0.2039
29 0.0000 0.0000 0.0000 0.1017 0.0000 0 0 0.3056
29 0.0000 0.0000 0.0000 0.1016 0.0000 0 0 0.4072
29 0.0000 0.0000 0.0000 0.1014 0.0000 0 0 0.5086
29 5.2000 0.0000 0.0000 0.1013 5.2000 0 0 0.6099
29 66.0000 0.0000 0.0000 2.3138 71.2000 0 0 2.9237
29 7.9000 6.2725 6.6008 77.2511 79.1000 6.2725 6.6008 80.1748
29 0.0000 68.7757 72.3596 -6.4969 79.1000 75.0482 78.9604 73.6779
29 3.8000 0.0000 0.0000 0.4148 82.9000 75.0482 78.9604 74.0927
29 11.6000 0.0000 0.0000 0.8561 94.5000 75.0482 78.9604 74.9488
29 7.0000 4.3131 4.6056 2.6457 101.5000 79.3613 83.566 77.5945
29 82 2.7000 12.6704 13.2479 1.3537 104.2000 92.0317 96.8139 78.94
29 68 5.2000 6.3066 5.8543 0.6486 109.4000 98.3383 102.6682 79.59
29 04.5524 80.9833 4.7000 2.0401 1.8842 1.3865 114.1000 100.3784 1
29 1.0000 5.5846 5.7478 1.1585 115.1000 105.963 110.3002 82.1418
29 0.0000 4.6217 4.5688 0.3228 115.1000 110.5847 114.869 82.4646
30 0.5000 0.0000 0.0895 0.233 115.6000 110.5847 114.9585 82.6976
30 0.0000 0.0000 0.0000 0.3679 115.6000 110.5847 114.9585 83.0655
30 0.0000 0.5875 0.6081 0.2247 115.6000 111.1722 115.5666 83.2902
30 0.0000 0.0000 0.0000 0.2498 115.6000 111.1722 115.5666 83.54
30 0.0000 0.0000 0.0000 0.2449 115.6000 111.1722 115.5666 83.7849
30 0.0000 0.0000 0.0000 0.2453 115.6000 111.1722 115.5666 84.0302
30 0.0000 0.0000 0.0000 0.2448 115.6000 111.1722 115.5666 84.275
30 0.0000 0.0000 0.0000 0.2445 115.6000 111.1722 115.5666 84.5195
30 0.0000 0.0000 0.0000 0.2442 115.6000 111.1722 115.5666 84.7637
30 0.0000 0.0000 0.0000 0.2438 115.6000 111.1722 115.5666 85.0075
30 0.0000 0.0000 0.0000 0.2434 115.6000 111.1722 115.5666 85.2509

days E(obs) E(MG) E(MK) E(ARMA) E(cum) E(MGcum) E(MKcum) E(Acum)
30 0.0000 0.0000 0.0000 0.2431 115.6000 111.1722 115.5666 85.494
30 0.0000 0.0000 0.0000 0.2428 115.6000 111.1722 115.5666 85.7368
30 0.0000 0.0000 0.0000 0.2424 115.6000 111.1722 115.5666 85.9792
30 0.0000 0.0000 0.0000 0.2421 115.6000 111.1722 115.5666 86.2213
30 0.8000 0.0000 0.0000 0.2417 116.4000 111.1722 115.5666 86.463
30 55 4.2000 0.0000 0.0000 0.4325 120.6000 111.1722 115.5666 86.89
30 70.0000 0.9257 1.0368 1.2312 120.6000 112.0979 116.6034 88.126
30 267 121.6282 88.2009 0.5000 4.9288 5.0248 0.0742 121.1000 117.0
30 0.0000 0.0000 0.0000 0.3956 121.1000 117.0267 121.6282 88.5965
30 0.0000 0.7529 0.6078 0.2200 121.1000 117.7796 122.236 88.8165
30 0.0000 0.0000 0.0000 0.2506 121.1000 117.7796 122.236 89.0671
30 0.0000 0.0000 0.0000 0.2448 121.1000 117.7796 122.236 89.3119
30 0.0000 0.0000 0.0000 0.2454 121.1000 117.7796 122.236 89.5573

1 0.0000 0.0000 0.0000 0.2449 121.1000 117.7796 122.236 89.8022
1 0.0000 0.0000 0.0000 0.2446 121.1000 117.7796 122.236 90.0468
1 0.0000 0.0000 0.0000 0.2442 121.1000 117.7796 122.236 90.291
1 0.0000 0.0000 0.0000 0.2439 121.1000 117.7796 122.236 90.5349
1 0.0000 0.0000 0.0000 0.2435 121.1000 117.7796 122.236 90.7784
1 0.0000 0.0000 0.0000 0.2432 121.1000 117.7796 122.236 91.0216
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1 1.2645 0.5000 0.0000 0.0168 0.2429 121.6000 117.7796 122.2528 9
1 796 122.2528 91.6262 2.0000 0.0000 0.0000 0.3617 123.6000 117.7
1 712 122.8607 92.3248 0.5000 0.7916 0.6079 0.6986 124.1000 118.5
1 0.0000   12.2938 2.3737 0.2835 24.1000 120.865 125.2344 92.6083
1 0.0000 0.0000 0.1262 0 12 120.86 125.360 92.2381 4.1000 5 6 .8464
1 0.0000 0.0000 0.0000 0.2457 12 120.86 125.360 94.1000 5 6 3.0921
1 0.0000 0.0000 0.0000 0.2439 12 120.86 125.3604.1000 5 6 93.336
1 0.0000 0.0000 0.0000 0.2439 12 120.86 125.360 94.1000 5 6 3.5799
1 0.0000 0.0000 0.0000 0.2435 12 120.86 125.360 94.1000 5 6 3.8234
1 0.0000 0.0000 0.0000 0.2431 12 120.86 125.360 94.1000 5 6 4.0665

da E(MG) E(MK) E(ARMA) E(MGcum E(MKcum) E(ys E(obs) E(cum) ) Acum)
1 0.0000 0.0000 0.0000 0.2428 1 1 1224.1000 20.865 5.3606 94.3093
1 0.0000 0.0000 0.0000 0.2425 1 124.1000 120.865 25.3606 94.5518
1 0.0000 0.0000 0.0000 0.2421 1 124.1000 120.865 25.3606 94.7939
 
E(ob pangan Genting Kelang 

(M  d r st enti g u

A o  st m.11 a

(M  F d v r st ent g u

A o  st ampu a

(A  F d v r st ent g u

RM el 

(cu  C ve observed va  pa tin

(M  C ve forecasted values for station Emp nt  

sin AR od  stat .1

(M  C ve forecasted values for station Emp nt  

si A od  s  K eh

(A  C ve forecasted values for station Emp nti  

sin M l 

s) = Observed values for station Em

E G) = Forecaste  values fo ation Empangan G ng Kelan sing the 

M RIMA m del (with ation K  Gomb k) 

E K) = orecaste alues fo ation Empangan G ing Kelan sing the 

M RIMA m del (with ation K ng Ku la Saleh) 

E RMA) = orecaste alues fo ation Empangan G ing Kelan sing the 

A A mod

E m) = umulati lues for station Em ngan Gen g Kelang 

E Gcum)= umulati angan Ge ing Kelang

u g the M IMA m el (with ion Km 1 Gombak) 

E Kcum)= umulati angan Ge ing Kelang

u ng the M RIMA m el (with tation Kg. uala Sal ) 

E cum) = umulati angan Ge ng Kelang

u g the AR A mode
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.2 ar ainf n ast m  m  

(1 l f n K o

G(o G(M G (cum cum m

Table 4 6: Comp ison of r alls inte sity forec value fro MARIMA odel and

ARMA ,1) mode or statio m.11 G mbak. 

days bs) ) (A) G ) G(M ) G(Acu )
29 0. 0.0 0 0.00 .00 50000 000 .0656 00 0 00 0.06 6
29 0. 0.0 0 0.00 .00 10000 000 .0655 00 0 00 0.13 1
29 0 0. 0 .0.0000 0.0000 0654 .0000 0 000 0.1965
29 0. 0.0 0 0.00 .00 10000 000 .0653 00 0 00 0.26 8
29 0. 0.0 0 0.00 .00 70000 000 .0652 00 0 00 0.32 0
29 17. 0.0 0 7.80 .00 28000 000 .0651 1 00 0 00 0.39 1
29 21.7000 0.0000 12.1489 39.5000 0.0000 12.5410
29 3.2000 24.6598 14.4196 42.7000 24.6598 26.9606
29 4.8000 23.6321 -2.4233 47.5000 48.2919 24.5373
29 4.8000 0.0000 4.6985 52.3000 48.2919 29.2358
29 4.8000 4.9856 1.6676 57.1000 53.2775 30.9034
29 4.8000 4.9137 2.9809 61.9000 58.1912 33.8843
29 4.8000 5.0290 2.5472 66.7000 63.2202 36.4315
29 4.8000 4.6485 2.7708 71.5000 67.8687 39.2023
29 4.8000 4.6420 2.7262 76.3000 72.5107 41.9285
29 1.2000 4.8904 2.7819 77.5000 77.4011 44.7104
29 0.0000 4.7813 -0.0198 77.5000 82.1824 44.6906
30 0.0000 0.0000 0.1669 77.5000 82.1824 44.8575
30 0.0000 0.0000 0.0924 77.5000 82.1824 44.9499
30 0.0000 0.0188 0.1218 77.5000 82.2012 45.0717
30 0.0000 0.0000 0.1098 77.5000 82.2012 45.1815
30 0.0000 0.0000 0.1143 77.5000 82.2012 45.2958
30 0.0000 0.0000 0.1123 77.5000 82.2012 45.4081
30 0.0000 0.0000 0.1129 77.5000 82.2012 45.5210
30 0.0000 0.0000 0.1124 77.5000 82.2012 45.6334
30 0.0000 0.0000 0.1124 77.5000 82.2012 45.7458
30 0.0000 0.0000 0.1122 77.5000 82.2012 45.8580
30 0.0000 0.0000 0.1120 77.5000 82.2012 45.9700
30 0.0000 0.0000 0.1118 77.5000 82.2012 46.0818
30 0.0000 0.0000 0.1117 77.5000 82.2012 46.1935
30 0.0000 0.0000 0.1115 77.5000 82.2012 46.3050
30 0.0000 0.0000 0.1114 77.5000 82.2012 46.4164
30 0.0000 0.0000 0.1112 77.5000 82.2012 46.5276
30 1.0000 0.0000 0.1110 78.5000 82.2012 46.6386
30 0.3000 0.0302 0.8821 78.8000 82.2314 47.5207
30 1.2000 1.4296 0.0359 80.0000 83.6610 47.5566
30 0.0000 0.0000 1.0648 80.0000 83.6610 48.6214
30 0.0000 1.4901 -0.2632 80.0000 85.1511 48.3582
30 0.0000 0.0000 0.2596 80.0000 85.1511 48.6178
30 0.0000 0.0000 0.0538 80.0000 85.1511 48.6716
30 0.0000 0.0000 0.1345 80.0000 85.1511 48.8061

1 0.0000 0.0000 0.1025 80.0000 85.1511 48.9086
1 0.0000 0.0000 0.1149 80.0000 85.1511 49.0235
1 0.0000 0.0000 0.1098 80.0000 85.1511 49.1333
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1 0.0000 0.0000 0.1115 80.0000 85.1511 49.2448
1 0.0000 0.0000 0.1106 80.0000 85.1511 49.3554
1 0.0000 0.0000 0.1108 80.0000 85.1511 49.4662
1 1.1000 0.0000 0.1105 81.1000 85.1511 49.5767

da G G G( G(ys (obs) G(M) G(A) (cum) Mcum) Acum)
1 1.4000 0.0000 0.9552 8 8 52.5000 5.1511 0.5319
1 0.0000 1.4504 0.8538 8 8 52.5000 6.6015 1.3857
1 0.0000 1.5466 -0.1810 8 8 52.5000 8.1481 1.2047
1 0.0000 0.0000 0.2272 8 8 52.5000 8.1481 1.4319
1 0.0000 0.0000 0.0659 82.5000 8 58.1481 1.4978
1 0.0000 0.0000 0.1293 82.5000 88.1481 51.6271
1 0.0000 0.0000 0.1040 82.5000 88.1481 51.7311
1 0.0000 0.0000 0.1138 82.5000 88.1481 51.8449
1 0.0000 0.0000 0.1097 82.5000 88.1481 51.9546
1 0.0000 0.0000 0.1111 82.5000 88.1481 52.0657
1 0.0000 0.0000 0.1103 82.5000 88.1481 52.1760
1 0.0000 0.0000 0.1104 82.5000 88.1481 52.2864

 

Table 4.27: Comp f r int or ue R

ARMA(1,1 de tio un  S

da K K K

arison o ainfalls ensity f ecast val from MA IMA model and 

) mo l for sta n Kamp g Kuala aleh. 

ys (obs) K(M) K(A) K(cum) (Mcum) (Acum)
29 0.0000 0.0000 0.1998 0.0000 0.0000 0.1998
29 0.0000 0.0000 0.1995 0.0000 0.0000 0.3993
29 0.0000 0.0000 0.1992 0.0000 0.0000 0.5985
29 0.0000 0.0000 0.1989 0.0000 0.0000 0.7974
29 0.0000 0.0000 0.1986 0.0000 0.0000 0.9960
29 0.0000 0.0000 0.1983 0.0000 0.0000 1.1943
29 24.3000 0.0000 0.1980 24.3000 0.0000 1.3923
29 1.2000 0.0990 6.6212 25.5000 0.0990 8.0135
29 0.0000 28.6702 -0.5657 25.5000 28.7692 7.4478
29 2.3000 0.0000 0.3595 27.8000 28.7692 7.8073
29 6.2000 0.0000 0.6753 34.0000 28.7692 8.4826
29 0.5000 2.7657 1.4638 34.5000 31.5349 9.9464
29 3.5000 7.0210 0.1182 38.0000 38.5559 10.0646
29 4.0000 0.0000 0.9898 42.0000 38.5559 11.0544
29 3.3000 4.0555 0.9685 45.3000 42.6114 12.0229
29 0.0000 4.1267 0.8475 45.3000 46.7381 12.8704
29 0.0000 3.1509 0.1626 45.3000 49.8890 13.0330
30 0.0000 0.0000 0.2719 45.3000 49.8890 13.3049
30 0.0000 0.0000 0.2537 45.3000 49.8890 13.5586
30 0.0000 0.0052 0.2562 45.3000 49.8942 13.8148
30 0.0000 0.0000 0.2553 45.3000 49.8942 14.0701
30 0.0000 0.0000 0.2550 45.3000 49.8942 14.3251
30 0.0000 0.0000 0.2547 45.3000 49.8942 14.5798
30 0.0000 0.0000 0.2543 45.3000 49.8942 14.8341

day K K Ks (obs) K(M) K(A) K(cum) (Mcum) (Acum)
30 0.0000 0.0000 0.2539 45.3000 49.8942 15.0880
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30 0.0000 0.0000 0.2535 45.3000 49.8942 15.3415
30 0.0000 0.0000 0.2532 45.3000 49.8942 15.5947
30 0.0000 0.0000 0.2528 45.3000 49.8942 15.8475
30 0.0000 0.0000 0.2524 45.3000 49.8942 16.0999
30 0.0000 10.0000 0.252 45.3000 49.8942 16.3520
30 0.0000 0.0000 0.2517 45.3000 49.8942 16.6037
30 0.0000 0.0000 0.2513 45.3000 49.8942 16.8550
30 1.9000 0.0000 0.2510 47.2000 49.8942 17.1060
30 4.6000 0.0000 0.6584 51.8000 49.8942 17.7644
30 0.0000 2.2990 1.1846 51.8000 52.1932 18.9490
30 0.0000 5.1891 0.1052 51.8000 57.3823 19.0542
30 0.0000 0.0000 0.2826 51.8000 57.3823 19.3368
30 0.0000 0.0049 0.2525 51.8000 57.3872 19.5893
30 0.0000 0.0000 0.2571 51.8000 57.3872 19.8464
30 0.0000 0.0000 0.2559 51.8000 57.3872 20.1023
30 0.0000 0.0000 0.2556 51.8000 57.3872 20.3579

1 0.0000 0.0000 0.2553 51.8000 57.3872 20.6132
1 0.0000 0.0000 0.2549 51.8000 57.3872 20.8681
1 0.0000 0.0000 0.2545 51.8000 57.3872 21.1226
1 0.0000 0.0000 0.2542 51.8000 57.3872 21.3768
1 0.5000 0.0000 0.2538 52.3000 57.3872 21.6306
1 0.0000 0.0000 0.3613 52.3000 57.3872 21.9919
1 0.0000 0.6028 0.2360 52.3000 57.9900 22.2279
1 1.5000 0.0000 0.2563 5 5 23.8000 7.9900 2.4842
1 0.0000 0.0049 0.5757 5 5 23.8000 7.9949 3.0599
1 0.0000 1.8226 0.2013 5 5 23.8000 9.8175 3.2612
1 0.0000 0.0000 0.2630 5 5 23.8000 9.8175 3.5242
1 0.0000 0.0000 0.2523 5 5 23.8000 9.8175 3.7765
1 0.0000 0.0000 0.2536 53.8000 5 29.8175 4.0301
1 0.0000 0.0000 0.2530 53.8000 5 29.8175 4.2831
1 0.0000 0.0000 0.2527 53.8000 5 29.8175 4.5358
1 0.0000 0.0000 0.2523 53.8000 59.8175 24.7881
1 0.0000 0.0000 0.2520 53.8000 59.8175 25.0401
1 0.0000 0.0000 0.2516 53.8000 59.8175 25.2917
1 0.0000 0.0000 0.2513 53.8000 59.8175 25.5430

 
 

An o rall io e fo pe ce th IMA and 

ARMA mo  ar ar Ta 8 on an g Kelang 

with station Km.1 ak atio pu a S b and 4.30 

tabulate the rec or for  K om  ampung 

Kuala Saleh pec

 

 

ve  evaluat n of th recast rforman  of both e MAR

dels e summ ized in ble 4.2 for stati  Empang  Gentin

1 Gomb  and st n Kam ng Kual aleh.  Ta les 4.29 

 fo ast perf mance  station m.11 G bak and station K

 res tively. 
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Table 4.28: for easure of the forecast n n  Kelang. 

I

 Per mance m for statio Empanga  Genting

MAR MA Statistic 
th  Km

k 
W on g

a 

MA 
,1) Wi  station .11 

Gomba
ith stati  Kampun  (1

Kual Saleh 

AR

 (mm)  87 5783 3.3319 3.3 78 3.174,
tε

μ

( )RMSE tε ,(mm 2 12.902 8675 ) 12.564 865 12.33

 

 

Table 4.29: for e  th st n o

Statist M A  (1

 Per mance m asure of e foreca  for statio Km.11 G mbak. 

ic ARIM ARMA ,1) 
,

tε
μ  (m 56m) 1.7068 1.1587 7 

( )tε ,(mm) 195.2814 3.2122 5 RMSE
 

Table 4.30: P for easure of the forecast n  K leh. 

Statist M A A(

er mance m  for statio Kampung uala Sa

ic ARIM   ARM 1,1) 

,
tε

μ  (m  17 94m) 1.64699 1.126 67 

( )tε ,RMSE (mm 31 68) 5.13426 3.407 01 

 

 From ab , be

outperformed by the ARMA (1,1) models for station Empangan Genting Kelang.  The 

average value of the residuals (error) of hourly forecasts, 

 T le 4.28 it can  concluded that the MARIMA models was 

,
tε

μ  for the data from this 

station are sl htly by he (1 els d ARIMA 

models in both study areas (with stati 11 k n ng Kuala 

Sleh) where the di s a oxi equal to one.  The root mean square error 

MSE) for the ARMA models were also slightly smaller compared to the MARIMA 

model.

 goes the same too for station Km.11 Gombak and station Kampung Kuala 

aleh, where from Tables 4.29 and 4.30 it can be concluded that the ARMA models 

ig  better  using t ARMA ,1) mod  compare  to the M

on Km.  Gomba and statio  Kampu

fference re appr mately 

(R

  However, if we compared the both study areas that using the MARIMA model, 

we can see that study area one, that is the jointly modeled with station Km.11 Gombak, 

were better than the other one.  From this, its can conclude that the higher correlated 

stations produced a better forecast results compared to the lower correlated stations. 

 

It

S
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performed better than the MARIMA models.  However, the root mean square error were 

much m  much more less in bo a by using the ARMA dels 

compared to the MARI

 

 

.9 Forecast Error Normality Check 

ions which 

are station Empangan Genting Kelang, station K k and station Kampung 

Kuala Saleh had been analyze to check whether those errors were normally distributed or 

t n distribute  checking we e whether the MARIMA 

odels were suitable or not to be used to forecast the rainfalls intensity. 

g the Minit are, those rs had been analyzed 

separately for each study areas and for each station.  Figures 4.68, 4.69, 4.70 and 4.71 

sh  no bability  the stations based on the Anderson-Darling test 

f normality.   

orm

ore better or th study are (1,1) mo

MA models.   

4

 

Finally, the forecast error for both study area that consists of three stat

m.11 Gomba

does no ormally d.  This re to ensur

m

 

By usin ab 14 softw  forecast erro

ow the rmal pro  plot for all

o

 

By the Anderson-Darling test of normality, we just need to check whether the P-

Value is more than 0.05 that ensure the forecast error is n ally distributed or not.  

From the results of the normality check, we could see that the P-Value for all the stations 

from Figures 4.68, 4.69, 4.70 and 4.71 were less than 0.05.  Therefore it suggests that the 

MARIMA models were not suitable to be used to forecast the rainfall intensity. 
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Figure 4.68: Normal probability plot of the forecast errors for station Empangan 

Genting Kelang (with station Km.11 Gombak) using the MARIMA models. 
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Figure 4.69: Normal probability plot of the forecast errors for station Empangan 

Genting Kelang (with station Kapung Kuala Saleh) using the MARIMA models. 

ti
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Figure 4.70: Normal probability plot of the forecast errors for station Km.11 Gombak 

using the MARIMA models. 

 

forecast error

Pe
rc

en
t

3020100-10-20-30

99.9

99

95
90

80
70
60
50
40
30
20

10

5

1

0.1

Mean

<0.005

0.1003
StDev 5.177
N 6
AD 12.226
P-Value

Station Kampung Kuala Saleh
Normal 

0

 
Figure 4.71: Normal probability plot of the forecast errors for station Kampung Kuala 

Saleh using the MARIMA mode 
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Figure 4.72: Flowchart of the methodology 
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Do the one hour ahead 
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Analyze the results 
using the performance 
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CHAPTER 5 

 
 

CONCLUSIONS AND RECOMMEND

.1 Conclusions 

. Characteristics of Convective Rain Based on Short Rainfall Duration Data 

The diurnal and m infall (greater than 5mm) in 2004 at 

tation 3117070 was discussed i  IV.  The results show that the bulk of the 

ins fall in the afternoon, between 13:00 and 19:00 which makes up about 75 % of the 

tal rainfall.  This type of storm can be classified as convectional storms.  Convective 

orms are predominant an nt of the tropical weather system.  A 

inimum Interevent Time (MIT) of 3 hours was used to separate storm events.  

onvective rain occurred most frequently in November and the highest frequency of 

convective storm happ de up about 44% was 

of the storms.  This is due to light variable winds and an unstable atmosphere which 

vor strong convective activity. This results in thunderstorms and heavy rains especially 

 the late afternoons and early evenings. Over five years, the highest intensity was 384 

m/hr occurred in 2003.  These characteristics were discussed in Chapter IV where a 

reat variety of storm shape is evident and the patterns show that most of the convective 

vents occurred over short durations, ranging from 15 to 90 minutes. 
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2. Classification of Convective Events 

 

A classification of episodes based on β parameter was discussed in Chapter IV.  

This classification is according to the er convective character (Llasat, 

2001).  The classification of the convective storm into slightly, moderately and strongly 

convective indicates that the highest proporti n is for the moderately convective class, 

which makes up 63.8% of the total convectiv ents.  It seems that a 35 mm/hr 

threshold intensity nvective storms 

r local conditions.  However, this analysis needs to be replicated to cover more rainfall 

ations. 

. Comparison of Spatial Distribution of Convective Rainfall between Radar and 

 

ir greater or less

o

e ev

 is appropriate for separating convection from non co

fo

st

 

 

3

Ground Rainfall 

 

Comparison of spatial distribution between radar and surface rainfall were 

examined in terms of intensity, areal coverage, storm movements and depth-area 

relationship.  The intensity values between raingauge and radar show large differences.  

The main difficully in determining the Z-R (with Z in mm6/m3 and R in mm/hr) 

relationship arises from the fact that radar measures precipitation in the atmosphere 

while gages measure it at the ground.  In addition, precipitation may evaporate before 

reaching the ground, especially in the tropics.  Winds may also carry precipitation away 

from beneath the producing cloud. 

 

As for the storm intensity, out of four storms, only one showed reasonably good 

match in the contour patterns between radar and raingauge.  This might be due to 

inadequate number of raingauge and missing data which limit the ability of Kriging 

methods.  
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The aerial rainfall for each interval of isohyets between radar and surface rainfall 

ground rainfall data produced remarkably 

ifferent areal rainfall for various intervals of isohyets.  Overall, the areas derived from 

raingau

 

 

 catchment area.  The ARF curve was compared with the ARFs from other 

areas.  The present study introduced quite similar ARF values obtained by Yan and Lin, 

986).  The ARF values derived from smaller areas were different from this study.  

resoluti urements are similar.  However, the agreement between the 

lationships derived for convective storms cells in Klang Valley and the entire 

Peninsu

ounts. 

 

5. 

more accurately the statistical and physical properties of the underlying 

observed hourly rainfall series as compared to the traditional NSRP model using the 

exponential for rain cell intensity distribution 

was compared using GIS software.  The 

d

ge are bigger than those derived from radar. 

 

Each storm is unique in term of the movement of the storm cell.  Some have long

paths while others are circling within a limited path. 

 

Depth-area relationships of six storms were examined.  Each storm display quite

different areal reduction curve.  However, in general rainfall the depth decreases with 

increasing

(1

Therefore, the shapes of such curves can only be compared if the temporal and spatial 

ons of the meas

re

lar Malaysia (Yan and Lin, 1986) can be explained in term of similarity in the 

climatic condition. 

 

4. From four candidate distribution functions for hourly rainfall amount 

(exponential, gamma, Weibull, and mixed-exponential), the mixed-exponential was 

found to be the best model based on the numerical (goodness-of-fit tests) and graphical 

comparisons. This distribution function is expected to explain well both the small and 

large amounts of hourly rainfall am

The present study has proposed a new NSRP model that used the mixed-

exponential distribution for describing the rain cell intensities.  Results of the calibration 

and validation of the proposed model have indicated its superior performance in 

preserving 
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the observed rainfall properties.  In 

particular, the modified NSRP model (MEXPTRAN) with mixed-exponential 

distribu

 terms of its accuracy in preserving 

the statistical and physical properties of the observed rainfall series.  

 

y and daily rainfall occurrence processes. 

0. The MCME hourly model was found to be able to describe adequately the 

6. In the calibration of NSRP models, it has been shown that the use of the 

transition probabilities of rainfall occurrences rather than the autocorrelations of rainfall 

amounts can provide more accurate description of 

tion to describe the rain cell intensities and using transition probabilities in the 

fitting procedures was found to be the best model in

7. In consideration of rainfall characteristics over different timescales, it was found 

that the NSRP (MEXPTRAN) model can describe very well many rainfall statistical and 

physical properties for both one-hour  and 24-hour scales.  In addition, the model was  

able to preserve accurately some relevant rainfall physical properties such as the 

probability of dry days and the daily transition probabilities of rainfall occurrences for 

the whole year.  

 

8. The first-order two-state Markov Chain (MC) model was found to describe 

accurately the hourl

 

9. The Fourier series was found to be able to describe accurately the seasonality of 

the MCME model parameters for hourly and daily rainfall series, especially the 

transition probabilities. It was also found that the Fourier series fit for the hourly 

parameters are better than the daily parameters.  

 

1

statistical and physical properties of the rainfall process at the hourly scale. However, 

when the hourly rainfall series were lumped to daily (24-hour) or monthly series the 

hourly MCME model produced larger errors than those given by the daily MCME 

model.  
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11. The MCME daily model was also found to be able to describe adequately the 

odel has shown that 

oth models have comparable performance in preserving the properties of the observed 

nd daily scales. The MCME models, on the other hand, could only 

reserve the properties of the observed when their parameters were estimated using data 

3. In general, both NSRP and MCME models were found to have the same 

dict

in describing the daily rainfall process.  

he hourly MCME model is better than the NSRP in preserving the hourly rainfall series 

                (5.1) 

where 

statistical and physical properties of  the underlying daily rainfall process.  However, 

when the generated daily series were lumped to monthly series, the daily model could 

only preserve the monthly rainfall mean, but could not describe well other rainfall 

properties. Nevertheless, the daily MCME model produced smaller errors than the 

hourly model in preserving the rainfall properties at the monthly scale. 

 

12. The comparison between the NSRP and the hourly MCME m

b

at the hourly scale. But when the generated series were lumped to daily (24-hour) 

sequences, the NSRP was found to perform better than the MCME in describing the 

daily rainfall properties.  However, the MCME daily model was found to produce 

smaller errors than the NSRP in describing the rainfall properties at the daily scale. 

Therefore, the NSRP model has the ability to describe the underlying rainfall processes 

at both hourly a

p

at the same scale as the observed data.  

 

1

pre ive ability. While the models did not perform as well as in the calibration period, 

both were able to preserve the seasonal trend of the observed rainfall properties. The 

predictive ability of the MCME daily model was found to be better than the predictive 

ability of the NSRP and MCME hourly model 

T

but when lumped to daily equivalent, the NSRP was better than the MCME in preserving 

the properties at the daily scale. 

 

14. By using MARIMA (1,1,0), the model can be written as 

 

ttt εαYY += −1   



 271
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tt
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Therefore, 

 

( )
  ( ) tttt εαXXαIX +−+=

ttttt εXXαXX − +=− −−− 211              (5.2) 
−− 21

 

where tε  is assumed to be a white noise. In this study, Lembah Kelang was selected as 

the study area. We specifically forecasted rainfall intensity data for two study cases 

which were station Empangan Genting Kelang with station Km.11 Gombak and 

Empangan Genting Kelang with station Kampung Kuala Sleh.   

 

For comparison purposes, the univariate ARMA model was also employed to 

forecast rainfall intensity in the above study area.  The Box-Jenkins model, ARMA (1,1) 

model used can be written as 

 

  tttt XX εθεφ +−= −− 11               (5.3) 

 

For these study areas, the root mean square deviation (RMSD), which is a 

measure of the difference between values predicted by a model and the observed value, 

and the average value of the residuals (error) of hourly forecasts, ,
tε

μ were calculated. 

Based on these values, it was concluded that for all the selected stations, the MARIMA 

model have been outperformed by the ARMA (1,1) models where for station Empangan 

enting Kelang, the differences only small compared to station Km.11 Gombak and 

station p were small, the 

ARIMA models forecasts could be considered as good as the ARMA models.   

G

Kam ung Kuala Saleh.  However, since the differences 

M
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From the value of the performance measure for station Empangan Genting 

Kelang that have been jointly modeled with station Km.11 Gombak and with Kampung 

Kuala Saleh, it proved that a m re highly correlated stations could gave a better forecast 

results when it is been jointly modeled by using the MARIMA models. 

5. Looking at the data set, it was possible that the forecasts using the MARIMA 

orer than the ARMA models maybe due to the 7th data, which was at 

2.00 pm, on 29th April 2002, where the rainfall intensity was not normal.  The value of 

e data was very much different from the other stations where the value was 66 mm/h 

nologies in Malaysian 

eteorological Department in providing radar maps for the storm movements also 

contrib

MA model is a potential method for forecasting hourly 

infall intensity.  Instead of using many variables such as the humidity, temperature and 

 the wind in the model, seve l rain ll data series rom s ns 

an be used.  This simplifies the process of forecasting rainfalls.  Since rain can be 

forecasted,

 

mpare 

spatial variations between radar and surface rainfall data has not been tested in the 

tropics.  In order to improve future studies, the following research areas are suggested: 

o

 

1

models were po

th

for station Empangan Genting Kelang which can be considered as an outlier.  This may 

caused some interruptions because in using MARIMA, the two stations were jointly 

modeled.  Since the other two stations were lowly correlated, these two stations could 

not be modeled together.  Furthermore, the lack of tech

M

uted to this poor forecast results. 

 

16. In general, the MARI

ra

the direction of ra fa  f everal statio

c

 the results of the current study can help the relevant authorities in manning 

and preventing possible hazards caused by rains. 

 

5.2 Recommendations for Future Works 

 

1. The first part of the research focused on two major aspects: 1) characterization of 

convective rain and 2) spatial variation of convective rainfall derived from radar data 

and surface data.  Prior to this study, the approach used to characterize and co
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a) This study used one station to characterize convective rain.  Future studies shall 

use more rainfall stations to examine the spatial consistently of the 

characteristics. 

 

 

 a programming to interpret the coding output 

from radar software or execute a projection using GIS method after get the z 

e convective rain.  Future studies can 

use more rainfall stations to examine weather convective rainfalls do vary 

spatially. 

b The number of rainfall stations need to be increased to give a better interpolation 

b) The number of rainfall stations need to be increased to give a better interpolation 

in Kriging Method.  This is because kriging works best when the input point is 

large and vice versa when the number of point is small. 

 

c) The influence of wind direction and wind velocity need to be checked in 

evaluating the storm movement. 

 

d) The difficulties to interpret radar rainfall intensity from JPEG file need to be 

checked to prevent overestimate or underestimate of rainfall intensity values.  

This is might be solved by doing

coordinate value. 

 

2. Meanwhile, several recommendations may be suggested for improving the 

modelling of the NSRP and the MCME, such as: 

 

a) This study used one station to characteriz

 

) 

in Kriging Method.  This is because kriging works best when the input point is 

large and vice versa when the number of point is small. 

 

c) The influence of wind direction and wind velocity need to be checked in 

evaluating the storm movement. 
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arameters with climate variable. 

 

f) The NSRP and MCME models could be modified to describe more accurately 

ions to represent the rainfall amounts in MCME 

model or the rain cell intensities in NSRP model. 

ecommendations may be suggested for 

producing better forecast results, such as: 

f parameters estimation.  It is suggested that this problem is overcome 

so that more than two stations can be jointly modeled in future studies.  It is also 

b) This study may be applicable in a wide range of situations.  It is therefore 

d) The NSRP and the MCME models could be used in the study of the impacts of 

climate change on rainfall processes if it is feasible to develop some linkages to 

link the model p

e) The NSRP and the MCME models could be generalized for stochastic simulation 

of rainfall processes for many sites simultaneously.  

 

the extreme rainfall characteristics at any given location. This would require the 

use of other heavy-tailed distribut

 

g) In estimating parameters for the NSRP with mixed-exponential distribution, there 

were seven parameters to be estimated for each month independently. This task 

may be tedious.  Hence, the Fourier series may be used to reduce the number of 

estimated parameters.  

 

3. For the the third part, which involves the development of the short-term 

foreasting technique of convective rains, several r

 

a) Only two stations can be jointly modeled in this MARIMA model because of the 

problem o

suggested that future studies use different variables such as the humidity, 

temperature and altitude in the MARIMA model to forecast the rainfalls.   

 

suggested that this study should be replicated in other types of forecasts and in 
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other types of industries so as to determine the potential of the MARIMA models 

(i) Different types of forecasts as the subject of the investigation such as 

chemical industry, textile product industry and wood industry.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in those situations and industries. As examples: 

 

demand for materials, cash flow and inventory levels. 

(ii) Different types of industries as the subject of investigation such as 

 

c) Analyzing multivariate data is a very tedious work.  The potential use of 

statistical software such as SAS, S-PLUS and MINITAB in analyzing the time 

series multivariate data should be investigated. 

d) In this study, only a one-hour ahead prediction was produced.  A longer term 

prediction can give better information to predict a flash flood.  Thus it is 

suggested that a longer term prediction be made in future study 
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APPENDIX A 

 

 

 

PROCESS OF DIGITIZE RADAR IMAGE 

 
 
 
 

 

Radar image 

Klang Valley map

 
Figure A1 : Radar image is rectified with Klang Valley map 
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Figure A2 : Digitizing of radar image for intensity 80 – 100 mm/hr (red layer) 
 
 
 

 
 

Figure A3 : Digitizing of radar image for intensity 35 – 80 mm/hr (orange layer) 
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Figure A4 : Digitizing of radar image for intensity 8 – 35 mm/hr (yellow layer) 
 
 
 

 
 

Figure A5 : Digitizing of radar image for intensity 3 – 8 mm/hr (green layer) 



 294

 
 

F ) igure A6 : Digitizing of radar image for intensity 0.9 – 3 mm/hr (dark green layer
 
 
 

 
 

Fig er) ure A7 : Digitizing of radar image for intensity 0.5 – 0.9 mm/hr (dark blue lay
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Figure A8 : Digitizing of radar image for intensity 0.3 – 0.5 mm/hr (blue layer) 
 
 
 

 
 

Figure A9 : Union process (merged all layers) 
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Figure A10 : Digitized image 
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APPENDIX B 

 

 

 

STEPS TO MAKE RAINFALL CONTOURS DERIVED BY KRIGING METHOD 

USING GEOSTATISTICAL ANALYST 

 

 

 
Figure B1 : Choose input data and method 
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Figure B2 : Geostatistical method selection 

 

 
Figure B3 : Semivariogram / Covariance modeling 
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Figure B4 : Searching neighborhood 

 

 
Figure B5 : Cross validation 



 300

 
Figure B6 : Output layer information 

 

 
Figure B7  Kriging  : Rainfall contour derived from
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APPENDIX C 

 

 

 

CALCULATION TO PRODUCE AREAL REDUCTION CURVE 

 

 

Event on January 6, 2006 
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Percentage reduction (%) of storm depth (event on January 6, 2006) 
 

1 Average between isohyet (36  +  40 ) / 2=  38  
  Total Areas between isohyet 6.32+  0 = 6.32  

  
  

Mean Area Precipitation, 
( MAP) = (average between 
isohyet x area between isohyet) / 
total areas between all pairs of 
neighbouring isohyets 

(38  x 6.32)/6.32 =   38  

2 Average between isohyet (32 +  36)/2 =  34  
  Total Areas between isohyet 6.32 +  6.55 = 12.87  
  Mean Area Precipitation, (MAP) [(38 x 6.32) + (34 x 12.87)] / 12.87  =   36 
      
3 Average between isohyet (28  +  32) /2  =   30  
  Total Areas between isohyet 6.32  +  6.55  +  7.14  =  20.01  
  Mean Area Precipitation, (MAP) [(38 x 6.32) + (34 x 12.87) + (30 x 20.01)] / 20.01  =   33.8 
     
4 Average between isohyet (24  +  28 ) /2 =  26  
  Total Areas between isohyet 6.32  +  6.55  +  7.14  +  13.81  =  33.82  
  Mean Area Precipitation, (MAP) [(38 x 6.32) + ( 30.6  34 x 12.87) + (30 x 20.01) + (26x33.82)] / 33.82  =  
     
5 Average between isohyet (20  +  24) /2 =  22  
  Total Areas between isohyet 6.32  +  6.55  +  7.14  +  13.81  +  21.7  =  55.52  
  Mean Area Precipitation, (MAP) [(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52)] / 55.52  =  27.3  
     
6 Average between isohyet (16  +  20 )/2 =  18  
  Total Areas between isohyet 6.32  +  6.55  +  7.14  +  13.81  +  1.7  +  26.22  =  81.74  

  Mean Area Precipitation, (MAP) [(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74)] / 
81.74  =  24.3  
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7 Average between isohyet (12  +  16 )/2 =  14   
  Total Areas between isohyet 110.37  6.32  +  6.55  +  7.14  +  13.81  +  21.7  +  26.22  +  28.63  =  
  
  

Mean Area Precipitation, (MAP) 2.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14 
   21.6    

[(38 x 6.32) + (34 x 1
37  =x 110.37)] / 110.

8 Average between isohyet (8  +  12 ) /2=  10 
  6.32 +  6.55  +  7.14  +  13.81  +  21.7  +  26.22  +  28.63 +  31.6  =  141.97  Total Areas between isohyet 
  7) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14 

19.0    
Mean Area Precipitation, (MAP) 
  

[(38 x 6.32) + (34 x 12.8
x 110.37) + (10 x 141.97)] / 141.97  =  

9 Average between isohyet (4  +  8) /2 =  6 
  Total Areas between isohyet 4  +  13.81  +  21.7  +  26.22  +  28.63  +  31.6  +  34.38  =  176.35  6.32  +  6.55  +  7.1

   

Mean Area Precipitation, (MAP) 2.87) + (30 x 20.01) + (26x33.82) + (22x 55.52) + (18 x 81.74) + (14 
176.35  =  16.5  

[(38 x 6.32) + (34 x 1
x 110.37) + (10 x 141.97) + (6 x 176.35)] / 

10 Average between isohyet (0  +  4 ) /2=  2  

  Total Areas between isohyet 6.32  +  6.55  +  7.14  +  13.81  +  21.7  +  26.22  +  28.63  +  31.6  +  34.38  +  64.99  =  
241.34 

  
 

2x 55.52) + (18 x 81.74) + (14 
 110.37) + (10 x 141.97) + (6 x 176.35) + (2 x 241.34)] / 241.34  =  12.6  

Mean Area Precipitation, (MAP) 
  

[(38 x 6.32) + (34 x 12.87) + (30 x 20.01) + (26x33.82) + (2
x

 
 

r epPe centage reduction (%) of storm d th          =  (Mean Area Precipitation, (MAP) / storm maximum)* 100 
stor  maximum (reference gauge)                       =  39.5 mm m   

 
 

ed
8 / 39.5 * 100     =  96.2 % 6 24.3 / 39.5 * 100  =  61.5% 

21.6 / 39.5 * 100  =  54.7 % 

 / 39.5 * 100  =  31.9 % 
 

No. Percentage r uction (%) of storm depth 
1 3
2 36 / 39.5 * 100     =  91 % 7 
3 33.8 / 39.5 * 100  =  85.7 % 8 19.0 / 39.5 * 100  =  48.2 % 
4 
5 

30.6 / 39.5 * 100  =  77.6 % 
27.3 / 39.5 * 100  =  69 % 

9 16.5 / 39.5 * 100  =  41.8 % 
10 12.6
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vent on A 6, 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E pril 
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Percentage reduction (%
 

1 Average between isohyet (32.4  +  36) /2 =  34.2  

) of storm depth (event on April 6, 2006 

  Total Areas between isohyet 0.02  +  0 =  0.02 

  
  

Mean Area Precipitation, 
( MAP) = (average between 
isohyet x area between isohyet) / 
total areas between all pairs of 
neighbouring isohyets 

(34.2  x 0.02)/0.02 =   34.2  

2 Average between isohyet (28.8  +  32.4) / 2  =  30.6  
  Total Areas between isohyet 0.02  +  1.50  = 1.52  
  Mean Area Precipitation, (MAP) [(34.2  x 0.02) + (30.6 x 1.52)] / 1.52  =   30.6 
      
3 Average between isohyet (25.2  +  28.8 ) / 2 =   27  
  Total Areas between isohyet 0.02  +  1.50  +  13.7  =  15.22  
  Mean Area Precipitation, (MAP) [(34.2  x 0.02) + (30.6 x 1.52+ (27 x 15.22)] / 15.22  =  27.4  
     
4 Average between isohyet (21.6  +  25.2) / 2  =  23.4  
  Total Areas between isohyet 0.02  +  1.50  +  13.7   +  35.8  =  51.02  
  Mean Area Precipitation, (MAP) [(34.2  x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02)] / 51.02  =  24.6  
     
5 Average between isohyet (18  +  21.6) /2  =  19.8  
  Total Areas between isohyet 0.02  +  1.50  +  13.7   +  35.8  +  39.79  =  90.81  
  
  

Mean Area Precipitation, (MAP) 
  

[(34.2  x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)] / 90.81  =  
22.5  

6 Average between isohyet (14.4  +  18) / 2  =  16.2  
  Total Areas between isohyet 0.02  +  1.50  +  13.7   +  35.8  +  39.79  +  73.48  =  164.29 

  Mean Area Precipitation, (MAP) [(34.2  x 0.02) + (30.6 x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x 
164.29)] / 164.29  =  19.7  
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7 Average between isohyet (10.8  +  14.4 )/2 =  12.6   
  Total Areas between isohyet 221.67 0.02  +  1.50  +  13.7   +  35.8  +  39.79  +  73.48  +  57.38  =  
  
  

Mean Area Precipitation, (MAP) 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x 
)]/ 221.67  =   17.8    

[(34.2  x 0.02) + (30.6 x 
221.67164.29) + (12.6 x 

8 Average between isohyet (7.2  +  10.8 ) /2 =  9 
  0.02  +  1.50  +  13.7   +  35.8  +  39.79  +  73.48  +  57.38 +  18.47  =  240.14 Total Areas between isohyet 
  + (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x 

17.2    
Mean Area Precipitation, (MAP) 
  

[(34.2  x 0.02) + (30.6 x 1.52
164.29) + (12.6 x 221.67) + (9 x 240.14)] / 240.14  =  

9 Average between isohyet (3.6  +  7.2) /2  =  5.4 
  Total Areas between isohyet .8  +  39.79  +  73.48  +  57.38 +  18.47  +  1.19  =  241.33  0.02  +  1.50  +  13.7   +  35

   

Mean Area Precipitation, (MAP)  x 1.52+ (27 x 15.22) + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x 
 x 241.33)] / 241.33  =  17.1  

[(34.2  x 0.02) + (30.6
164.29) + (12.6 x 221.67) + (9 x 240.14) + (5.4

10 Average between isohyet (0  +  3.6) /2  =  1.8  
  Total Areas between isohyet 0.02  +  1.50  +  13.7   +  35.8  +  39.79  +  73.48  +  57.38 +  18.47  +  1.19  +  0  =  241.33 
  

 
 + (23.4 x 51.02) + (19.8 x 90.81)+ (16.2 x 

.8 x 241.34)] / 241.33  =  17.1 
Mean Area Precipitation, (MAP) 
  

[(34.2  x 0.02) + (30.6 x 1.52) + (27 x 15.22)
164.29) + (12.6 x 221.67) + (9 x 240.14) + (5.4 x 241.33) + (1

 
 

r m dep P) / storm maximum)* 100 Pe centage reduction (%) of stor th          =  (Mean Area Precipitation, (MA
stor     m maximum (reference gauge)                     =  35.5 mm 

 
 

age re

0.6 / 35.5 * 100     =  86.3 % 7 17.8 / 35.5 * 100  =  50.3 % 
.1 % 17.2 / 35.5 * 100  =  48.3 % 

% 

 
 

No. Percent duction (%) of storm depth 
1 34.2 / 35.5 * 100     =  96.3 % 6 19.7 / 35.5 * 100  =  55.4% 
2 3
3 27.4 / 35.5 * 100     =  77 8 
4 24.6 / 35.5 * 100     =  69.2 9 17.1 / 35.5 * 100  =  48.2 % 
5 22.5 / 35.5 * 100     =  63.3 % 10 17.1 / 35.5 * 100  =  48.2 % 
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Event M 0, 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 on ay 1

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 308

Percentage reduction (%) of storm depth (event on May 10, 2006) 
 

1 Average between isohyet (72.9  +  81 )/2 =  76.95 
  Total Areas between isohyet 19.22  +  0 =  19.22 

  
  

Mean Area Precipitation, 
( MAP) = (average between 
isohyet x area between isohyet) / 
total areas between all pairs of 
neighbouring isohyets 

(76.95  x 19.22)/ 19.22 =   76.95  

2 Average between isohyet (64.8  +  72.9)/2  =  68.85  
  Total Areas between isohyet 19.22  +  15.06  = 34.28  
  Mean Area Precipitation, (MAP) [(76.95  x 19.22) + (68.85 x 34.28)] / 34.28  =   73.4 
      
3 Average between isohyet (56.7  +  64.8) /2 =   60.75  
  Total Areas between isohyet 19.22  +  15.06+  43.62  =  77.9  
  Mean Area Precipitation, (MAP) [(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9)] / 77.9  =  66.3  
     
4 Average between isohyet (48.6  +  56.7 )/2 =  52.65  
  Total Areas between isohyet 19.22  +  15.06+  43.62  +  35.09  =  112.99  
  Mean Area Precipitation, (MAP) [(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99)] / 112.99  =  62.1 
     
5 Average between isohyet (40.5  +  48.6)/2  =  44.55  
  Total Areas between isohyet 19.22  +  15.06+  43.62  +  35.09    +  25.71  =  138.7  
  
  

Mean Area Precipitation, (MAP) 
  

[(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7)] / 
138.7  =  58.8  

6 Average between isohyet (32.4  +  40.5)/2  =  36.45  
  Total Areas between isohyet 19.22  +  15.06+  43.62  +  35.09    +  25.71  +  25.06  =  163.76 
  Mean Area Precipitation, (MAP) 
    

[(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+ 
(36.45 x 163.76)] / 163.76 =  55.4  

7 Average between isohyet (24.3  +  32.4)/2  =  28.35   
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  Total Areas between isohye 1  =  188.37 t 19.22  +  15.06+  43.62  +  35.09    +  25.71  +  25.06+  24.6
  Mean Area Precipitation,

5 x 188.37)]/ 188.37  =   51.9    
 (MAP) [(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+ 

  (36.45 x 163.76)  + (28.3
8 Average between isohyet (16.2  +  24.3 )/2 =  20.25 
  Total Areas between isohyet 19.22  +  15.06+  43.62  +  35.09    +  25.71  +  25.06+  24.61   +  15.1  =  203.47 
  
  

AP) [(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+ 
7) + (20.25 x 203.47)] / 203.47  =  49.5  

Mean Area Precipitation, (M
  (36.45 x 163.76)  + (28.35 x 188.3

9 Average between isohyet (8.1  +  16.2 )/2 =  12.15 
  Total Areas between isohyet 19.22  +  15.06+  43.62  +  35.09    +  25.71  +  25.06+  24.61   +  15.1  +  11.37  =  214.84  

   

Mean Area Precipitation, (MAP)  34.28) + (60.75 x 77.9) + (52.65 x 112.99) + (44.55 x 138.7))+ 
 188.37) + (20.25 x 203.47) + (12.15 x 214.84)] / 214.84 = 

[(76.95  x 19.22) + (68.85 x
5 x(36.45 x 163.76)  + (28.3

47.5  
10 Average between isohyet (0  +  8.1)/2  =  8.1  

  Total Areas between isohyet 5.09    +  25.71  +  25.06+  24.61   +  15.1  +  11.37  +  26.51  =  19.22  +  15.06+  43.62  +  3
241.35 

  
  

Mean Area Precipitation, (MAP) 
  

[(76.95  x 19.22) + (68.85 x 34.28) + (60.75 x 77.9) + (52.65 x 112.9
36.45 x 163.76)  + (28.35 x 188.37) + (20.25 x 203.47) + (12.15 x 2

9) + (44.55 x 138.7))+ 
14.84+ (8.1 x 241.35)] (

/ 241.35  =  42.8 
 
 

) of storm depth          =  Percentage reduction (% (Mean Area Precipitation, (MAP) / storm maximum)* 100 
stor ge)           m maximum (reference gau               =  81.0 mm 

 
 

re
5.0 % 00  =  68.4% 

% 

.6 % 2.8 % 

No. Percentage duction (%) of storm depth 
1 76.95 / 81.0 * 100     =  9 6 55.4 / 81.0 * 1
2 73.4  / 81.0 * 100     =  90.6 7 51.9 / 81.0 * 100  =  64.0 % 
3 66.3 / 81.0 * 100     =  81.9 % 

62.1 / 81.0 * 100     =  76.6 % 
8 49.5 / 81.0 * 100  =  61.1 % 
9 47.5 / 81.0 * 100  =  58.7 % 

00  =  5
4 
5 58.8 / 81.0 * 100     =  72 10 42.8 / 81.0 * 1



 310

Percentage reduction (%) of storm depth (event on June 10, 2003) 
 

1 Average between isohyet (117  +  130)/2  =  123.5 
  Total Areas between isohyet 0.02 

  
  

Mean Area Precipitation, 
MAP) = (average between ( 

isohyet x area between isohyet) / 
f total areas between all pairs o

neighbouring isohyets 

(123.5 x 0.02) / 0.02  =   123.5  

2 Average between isohyet (104  +  117)/2  =  110.5  
  Total Areas between isohyet 0.02 + 0  = 0.02  
  Mean Area Precipitation, (MAP) [(123.5 x 0.02) + (110.5 x 0.02)] / 0.02  =   123.5 
      
3 Average between isohyet (91  +  106)/2 =   98.5  
  Total Areas between isohyet 0.02 + 0  +  1.25  =  1.27  
  Mean Area Precipitation, (MAP) 0.5 x 0.02) + (98.5 x 1.27)] / 1.27  =  98.9  [(123.5 x 0.02) + (11
     
4 Average between isohyet (78  +  91 ) /2 =  84.5  
  Total Areas between isohyet 0.02 + 0  +  1.25+  24.35  =  25.62  
  Mean Area Precipitation, (MAP) [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62)] / 25.62  =  85.2 
     
5 Average between isohyet 71.5  (65  +  78 ) /2 =  
  Total Areas between isohyet 0.02 + 0  +  1.25+  24.35  +  77.35  =  102.97  
  Mean Area Precipitation, (MAP) [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.
    =  74.9  

5 x 102.97)] / 102.97  

6 Average between isohyet (52  +  65 )/2 =  58.5  
  Total Areas between isohyet 0.02 + 0  +  1.25+  24.35  +  77.35 +  80.59  =  183.56 
  Mean Area Precipitation, (MAP) 
    

2) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x [(123.5 x 0.02) + (110.5 x 0.0
183.56)  18] / 3.56 =  67.7  

7 Average between isohyet (39  +  /252)   =  45.5   



 311

  Total Areas between isohye .9 t 0.02 + 0  +  1.25+  24.35  +  77.35 +  80.59  +  36.34  =  219
  Mean Area Precipitation,  + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 

/ 219.9  =   64.0    
 (MAP) [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27)

  183.56)  + (219.9 x 45.5)]
8 Average between isohyet (26  +  39)/2  =  32.5 
  Total Areas between isohyet 0.02 + 0  +  1.25+  24.35  +  77.35 +  80.59  +  36.34  +  19.41  =  239.31 
  
  

AP) [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 
 x 239.31)] / 239.31  =  61.5  

Mean Area Precipitation, (M
  183.56)  + (219.9 x 45.5)+ (32.5

9 Average between isohyet (13  +  26) /2  =  19.5 
  Total Areas between isohyet 0.02 + 0  +  1.25+  24.35  +  77.35 +  80.59  +  36.34  +  19.41  +  2.06  =  241.37  

   

Mean Area Precipitation, (MAP) 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 
x 45.5)+ (32.5 x 239.31) + (19.5x 241.37)] / 241.37= 61.1  

[(123.5 x 0.02) + (110.5 x 
183.56)  + (219.9 

10 Average between isohyet (0  +  13)/2  =  6.5  
  Total Areas between isohyet 02 + 0  +  1.25+  24.35  +  77.35 +  80.59  +  36.34  +  19.41  +  2.06  +  0  =  241.37 0.

  
 

AP)  x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 
 (32.5 x 239.31) + (19.5x 241.37) + (6.5 x 241.37)] / 241.37  =  

 

Mean Area Precipitation, (M
  

[(123.5 x 0.02) + (110.5
183.56)  + (219.9 x 45.5)+
61.1 

 
rc storm dep  Precipitation, (MAP) / storm maximum)* 100 Pe entage reduction (%) of th          =  (Mean Area

stor            m maximum (reference gauge)               =  129.5 mm 
 

Percentage re ction (%) of storm depth 
95.4 % 67.7 / 129.5 * 100  =  52.3 % 

4 % 

5.2 / 129.5 * 100     =  65.8 % 61.1 / 129.5 * 100  =  47.2 % 
7.8 % 61.1 / 129.5 * 100  =  47.2 % 

 
 
 
 

No. du
1 123.5 / 129.5 * 100     =  6 
2 123.5  / 129.5 * 100     =  95. 7 64.0 / 129.5 * 100  =  49.4 % 
3 98.9 / 129.5 * 100     =  76.4 % 8 61.5 / 129.5 * 100  =  47.5 % 

9 4 8
5 74.9 / 129.5 * 100     =  5 10 
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Percentag
 

e reduction (%) of storm depth (event on February, 26 2006) 

1 Average between isohyet (67.5  +  75)/2  =  71.25 
  Total Areas between isohyet 19.7 

  
  

Mean Area Precipitation, 
( MAP) = (average between 

ohyet x area between isohyet) / is
total areas between all pairs of 
neighbouring isohyets 

(71.25 x 19.7) / 19.7  =   71.25  

2 Average between isohyet (60  +  67.5)/2  =  110.5  
  Total Areas between isohyet 19.7 + 36.49  = 56.19  
  Mean Area Precipitation, (MAP) [(71.25 x 19.7)) + (110.5 x 56.19)] / 56.19 = 66.4   
      
3 Average between isohyet (52.5  +  60)/2 =   56.25  
  Total Areas between isohyet 19.7 + 36.49   +  24.86  =  81.05  
  Mean Area Precipitation, (MAP) [(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05)] / 81.05  =  63.3  
     
4 Average between isohyet (45  +  52.5 ) /2 =  48.75  
  Total Areas between isohyet 19.7 + 36.49   +  24.86  +  20.92  =  101.97  
  Mean Area Precipitation, (MAP) [(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05) + (48.75 x 101.97)] / 101.97  =  60.3 
     
5 Average between isohyet (37.5  +  45 ) /2 =  41.25  
  Total Areas between isohyet 19.7 + 36.49   +  24.86  +  20.92  +  31.82  =  133.79  
  
  

Mean Area Precipitation, (MAP) 
  

[(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05) + (48.75 x 101.97)+ (41.25 x 133.79)] / 
133.79  =  55.8  

6 Average between isohyet (30  +  5 37. )/2 =  33.75  
  Total Areas between isohyet 19.7 + 36.49   +  24.86  +  20.92  +  31.82  +  40.39  =  174.18 
  Mean Area Precipitation, (MAP) 
    

[(71.25 x 19.7)) + (110.5 x 56.19)+ (56.25 x 81.05) + (48.75 x 101.97)+ (41.25 x 133.79)+ 
(33.75 x 174.18)] / 174.18 =  50.7  

7 Average between isohyet (22.5  +  30)/2  =  26.25   
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  Total Areas between isoh  =  218.03 yet 19.7 + 36.49   +  24.86  +  20.92  +  31.82  +  40.39    +  43.85 
  Mean Area Precipitation,  + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 

]/ 219.9  =   64.0    
 (MAP) [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27)

  183.56)  + (219.9 x 45.5)
8 Average between isohyet (15  +  22.5)/2  =  18.75 
  Total Areas between isohyet 19.7 + 36.49   +  24.86  +  20.92  +  31.82  +  40.39    +  43.85  +  20.6  =  238.63 
  
  

AP) [(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 
5 x 238.63)] / 238.63  =  43.4  

Mean Area Precipitation, (M
  183.56)  + (219.9 x 45.5)+ (18.7

9 Average between isohyet (7.5  +  15) /2  =  11.25 
  Total Areas between isohyet 19.7 + 36.49   +  24.86  +  20.92  +  31.82  +  40.39    +  43.85  +  20.6  +  2.43  =  241.06  

   

Mean Area Precipitation, (MAP)  0.02) + (98.5 x 1.27) + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 
5)+ (18.75 x 238.63)+ (11.25x 241.06)] / 241.06  =  43.1  

[(123.5 x 0.02) + (110.5 x
183.56)  + (219.9 x 45.

10 Average between isohyet (0  +  7.5) / 2  =  3.75  

  Total Areas between isohyet 9.7 + 36.49   +  24.86  +  20.92  +  31.82  +  40.39    +  43.85  +  20.6  +  2.43  +  0.28  =  1
241.34 

  
 

 + (84.5 x 25.62) + (71.5 x 102.97)+ (58.5 x 
x 241.34)] / 241.34  =  

43.0  

Mean Area Precipitation, (MAP) 
  

[(123.5 x 0.02) + (110.5 x 0.02) + (98.5 x 1.27)
183.56)  + (219.9 x 45.5)+ (18.75 x 238.63)+ (11.25x 241.06)+ (3.75 

 
rc m dep ) / storm maximum)* 100 Pe entage reduction (%) of stor th          =  (Mean Area Precipitation, (MAP

stor     m maximum (reference gauge)                     =  72.5 mm 
 

entage re  

3.3 / 72.5 * 100     =  87.3 %  / 72.5 * 100  =  59.9 % 
.2 % 43.1 / 72.5 * 100  =  59.4 % 

 
 
 

No. Perc duction (%) of storm depth
1 71.25 / 72.5 * 100     =  98.3 % 6 50.7 / 72.5 * 100  =  69.9 % 
2 66.4  / 72.5 * 100     =  91.6 % 7 45.8 / 72.5 * 100  =  63.1 % 

8 43.43 6
4 60.3 / 72.5 * 100     =  83 9 
5 55.8 / 72.5 * 100     =  76.9 % 10 43 / 72.5 * 100  =  59.4 % 
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Percentag
 

e reduction (%) of storm depth (event on November 5, 2004) 

1 Average between isohyet (85.5  +  95)/2  =  90.25 
  Total Areas between isohyet 0.02 

  
  

Mean Area Precipitation, 
( MAP) = (average between 

ohyet x area between isohyet) / is
total areas between all pairs of 
neighbouring isohyets 

(85.5 x 0.02) / 0.02  =   90.25  

2 Average between isohyet (76  +  85.5)/2  =  80.75  
  Total Areas between isohyet 0.02 + 11.01  = 11.03  
  Mean Area Precipitation, (MAP) [(85.5 x 0.02) + (80.75 x 11.03)] / 11.03 = 80.8   
      
3 Average between isohyet (66.5  +  76)/2 =   71.25  
  Total Areas between isohyet 0.02 + 11.01  +  13.78  =  24.81  
  Mean Area Precipitation, (MAP) [(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81)] / 24.81  =  75.5 
     
4 Average between isohyet   66.5 ) /2 =  61.75  (57  +
  Total Areas between isohyet 0.02 + 11.01  +  13.78  +  21.63  =  46.44  
  Mean Area Precipitation, (MAP) [(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)] / 46.44  =  69.1 
     
5 Average between isohyet (47.5  +  57 ) /2 =  52.25  
  Total Areas between 63   +  41.58  =  88.02   isohyet 0.02 + 11.01  +  13.78  +  21.
  
  

Mean Area Precipitation, (MAP) 
  

[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)] / 
88.02  1.=  6 1  

6 Average between isohyet (38  +  5 47. )/2 =  42.75  
  Total Areas between isohyet 0.02 + 11.01  +  13.78  +  21.63   +  41.58   +  36.41  =  124.23 
  Mean Area Precipitation, (MAP) 
    

x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+ 
(22.75 x 124.23)] / 124.23 =  55.8  
[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 

7 Average between isohyet (28.5  +  38)/2  =  33.25   
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  Total Areas between isoh =  156.27 yet 0.02 + 11.01  +  13.78  +  21.63   +  41.58   +  36.41 +  32.04  
  Mean Area Precipitation, x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+ 

5 x 156.27)]/ 156.27  =   51.2    
 (MAP) [(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 

  (22.75 x 124.23)  + (33.2
8 Average between isohyet (19  +  28.5)/2  =  23.75 
  Total Areas between isohyet 0.02 + 11.01  +  13.78  +  21.63   +  41.58   +  36.41 +  32.04  +  34.84  =  191.11 
  
  

AP) [(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+ 
6.27)+ (23.75 x 191.11)] / 191.11  =  46.2  

Mean Area Precipitation, (M
  (22.75 x 124.23)  + (33.25 x 15

9 Average between isohyet (9.5  +  19) /2  =  12.25 
  Total Areas between isohyet 0.02 + 11.01  +  13.78  +  21.63   +  41.58   +  36.41 +  32.04  +  34.84  +  45.75  =  236.86  

   

Mean Area Precipitation, (MAP) 11.03)+ (71.25 x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+ 
.25 x 156.27)+ (23.75 x 191.11)+ (12.25x 236.86)] / 236.86  =  40.0  

[(85.5 x 0.02) + (80.75 x 
(22.75 x 124.23)  + (33

10 Average between isohyet (0  +  9.5) / 2  =  4.75  

  Total Areas between isohyet 02 + 11.01  +  13.78  +  21.63   +  41.58   +  36.41 +  32.04  +  34.84  +  45.75    +  4.5  =  0.
241.36 

  
 

x 24.81) + (61.75 x 46.44)+ (52.25x 88.02)+ 
36.86)+ (4.75 x 241.36)] 

/ 241.36  =  39.3  

Mean Area Precipitation, (MAP) 
  

[(85.5 x 0.02) + (80.75 x 11.03)+ (71.25 
(22.75 x 124.23)  + (33.25 x 156.27)+ (23.75 x 191.11)+ (12.25x 2

 
rc m dep P) / storm maximum)* 100 Pe entage reduction (%) of stor th          =  (Mean Area Precipitation, (MA

stor     m maximum (reference gauge)                     =  92 mm 
 

entage re  

5.5 / 92* 100     =  82.0 % .2 / 92* 100  =  50.2 % 
40.0 / 92* 100  =  43.5 % 

 
 

No. Perc duction (%) of storm depth
1 90.25 / 92* 100     =  98.1 % 6 55.8 / 92* 100  =  60.6 % 
2 80.8  /  92* 100     =  87.8 % 7 51.2 / 92* 100  =  55.6 % 

8 463 7
4 69.1 / 92* 100     =  75.1 % 9 
5 61.1 / 92* 100     =  66.4 % 10 39.3 / 92* 100  =  42.8 % 
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NDIX D 

 

 

 

SAMPLE MOMENTS 
 
 
 

1. sa e u ocor tions in the estimation of 
m e s

M hr
ea

APPE

sed aut
. 

The 
para

hs 1-
m
ˆ

mp
ete

-
n 
)

le mom
rs proc

nts 
dure

rela

1-h
ˆ

r-auto 
,1)

ont

(1μ  

1-hr-v
ˆ(1)

ar 
γ  (1ρ  

6-hr-var 6-hr-auto 24-hr-var 
ˆ(24)γ  

24-hr-
auto 

Dry-
Prob 

ˆ (24,1)ρ  ˆ(24)φ  
ˆ(6)γ ˆ (6,1)ρ   

Jan 0 34 0.0322 11.19 0.0038 47.68 0.0105 0.71 .099 1.0  
Feb 0 44 0.3336 42.46 0.0936 209.02 0.2485 0.61 .261 4.1  

March 0 42 0.3478 40.77 0.0039 149.42 0.0212 0.50 .279 3.8  
April 0 32 0.3637 41.34 0.0067 180.16 0.0850 0.48 .277 3.5  
May 0 12 0.4125 48.76 0.161 0.1326 0.41 .380 4.3  6 265.50 

June 0 85 0.4211 23.58 0.101 0.1354 0.67 .156 2.0  2 110.04 
July 0 45 0.5101 39.44 0.071 0.0178 0.55 .240 3.0  8 185.87 

August 0 74 0.3173 36.82 0.067 0.0033 0.61 .240 3.8  9 189.67 
Sept 0 96 0.3582 51.49 0. 0.0348 0.38 .394 4.9  0652 214.54 
Oct 0 96 0.3143 44.19 0. 0.0320 0.40 .356 4.7  0560 191.81  
Nov 0.416 4.130 0.4061 48.90 0. 0.0510 0.31 1192 241.48 
Dec 0.170 1.662 0.4104 18.80 0. 0.1132 0.58 1771 118.59 

 
 
2. The

Month
 tr

s 
ans

p0
φ̂

ition p
0-hourl

(1)DD  

ro
y 

babil  th g cedures 
ai

ities used
p11-hourly 
ˆ (1)WWφ  

e f
p00
ittin

-d
ˆ (2DDφ

 pro
ly 
4)  

p11-daily 
ˆ (24)WWφ  

Jan 0.9811 0.5485 8 0.4615  0.779
Feb 0.97498 0.6141 9 0.5872  0.739

March 0.96639 0.50943 2 0.5779 0.574
April 0.9671 0.6454 0.5833  0.5556 
May 0.9612 0.71445 3  0.4762 0.639

J 0.4946 2 une 0.97962  0.7376 0.459
July 0.97214 0.5924 7  0.614 0.521

Aug 0.58987 0. 7 ust 0.977  709 0.541
S 0.73833 0.4 7 ept 0.9552  087 0.62
Oct 0.95274 0.593023 0.5 2 203 0.688
Nov 0.948515 0.682 0.4 6 574 0.747
Dec 0.96903 0.62032 0.6 6 927 0.584
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P T C

1. our scri  Sta  for 10-year period (1981-1990) 

Months Jan y un 

APPENDIX E 

 

DESCRI TIVE S ATISTI S 

 

 

 

H ly De ptive tistics

Feb Mac Apr Ma J
C 40 7440 7200 7ount 74 6768 440 7200 
Sum 734.2 4.9 74.1 199 2827.6 1122.1 176  20  2.1 
M 87 608 2788 0.27 0.3801 0.1558 ean 0.09 0.2  0.  67 

Std 67 357 9601 1.87 2.0766 1.4439 Dev 1.01 2.0  1.  93 
Kurtosis 05 578 9259 0.07318.91 338.2  193.  21 79 180.3225 319.4403 

Skewness 87 453 0520 2.39 11.0559 15.4455 16.58 15.6  12.  1 97 
Maximum 26.4 58.2 47.7 53.1 58.1 47.8 
Minimum 0 0 0 0 0 0 

Correlation 0.3221 0.3331 0.3478 0.3630 0.4133 0.4205 
AutoC 0.3330 .3822 1.7788 0.8766 ovar 1 1.3361 1.2817 
AutoCorrel 0.3221 0.3336 0.3478 0.3630 0.4125 0.4205 

P(Dry) 0.9598  0.93 0.91500.9391 59  0.8800 0.9613 
Months July Aug Sept t Dec Oc Nov 

Count 7440  7200 7440 7200 7440 7440
Sum 1788.4 1783.3 2836.1 2648 994.6 8.3  2 128
Mean 0.2404  0.3 0.35590.2397 939  0.4159 0.1732 

StdDev 1.7450  2.23 2.18991.9684 52  2.0322 1.2895 
Kurtosis 4.8828  148.52 204.2800 .2652 68 18 289.6727 06 111 288.55

Skewne 2.2051 14.8370 10.5 12.1538 ss 1 626 9.1723 14.6195 
Maximum 41.6  56.5 44.3 41.7 54.7 52.1  
Minimum 0  0 0 0 0 0  

Correlation 0.5101  0.357 0.31430.3173 7  0.4055 0.4104 
AutoCovar 1.5532  1.7 1.50731.2292 869  1.6745 0.6823 
AutoCorrel 0.5101 0.3173 0.3577 0.3143 0.4055 0.4104 

P(Dry) 0.9360 0.9469 0.8721 0.8960 0.8607 0.9246 
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2. Daily Descriptive Statistics for 10-year period (1981-1990) 

Months Jan Feb Mac pr May Jun A
Count 310 282 310 300 310 300 
Sum 734.2 1764.9 2074.1 1992.1 2827.6 1122.1 
Mean 2.368 6.259 6.691 6.640 9.121 3.740 

StdDev 6.950 13.655 15.898 10.476 12.366 13.650 
Kurtosis 19.196 9.389 41 7.109 20.004 7.519 32.5

Skewness 4.123 2.956 2.640 4.607 2.561 4.106 
Maximum 54.6 74.5 65.5 138 91.4 79.3 
Minimum 0 0 0 0 0 0 

Q1 0 0 0 0 0 0 
Q3 0.5 5.225 8.475 8.55 10.35 1.2 

Correlation 0.0717 0.20 638 0.1252 35 -0.0443 -0.0095 0.1
AutoCovar 3.4526 38.8845 -6.6286 -1.7599 40.5327 13.6901 
AutoCorrel 0.0717 0.2093 -0.0435 -0.0095 0.1609 0.1252 

P(Dry) 0.6903 0.5887 0.4516 0.4533 0.3613 0.6633 
Months July Aug Sept ct Nov Dec O

Count 310 310 300 310 300 310 
Sum 8.3  1788.4 1783.3 2836.1 2648 2994.6 128
Mean 5.7690 5.7526 9.4537 8.5419 9.9820 4.1558 

StdDev 1371 800 .7976 13.0897 4.8121 13. 12.8 14  1 9.6160 
Kurtosis 18.9313 8.8279 8.5869 7 17.3644 5.501 3.7666 

Skewness 3.8906 2.9176 4 32.5594 2.230 1.9683 .7832 
M 1 aximum 100.2 72.2 101.5 72. 80.4 75.7 
Minimum 0 0 0 0 0 0 

Q1 0 0 0 0 0 0 
Q3 5.1 3.5 13.2 12.45 13.7 3.6 

Correlation 0.0024 0.0134 0.1793 8 0.1041 0.2609 0.098
AutoCovar 0.4183 2.2203 38.9845 16.7983 22.7350 24.0414 
AutoCorrel 0.0024 0.0134 0.1786 0.0984 00.1040 .2608 

P(Dry) 0.5161 0.6000 0.3167 0.3677 00.3167 .5355 
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3. Monthly Descriptive Statistics for 10-year period (1981-1990) 

 

Months Jan Ma Apr Ma Jun Feb c y 
Count 0 0 1 1 10 10 10 10 
Sum 734.2 4 1 1758. 2074.1 1992.1 2827.6 1122.
Mean 73.42 4 1 175.8 207.41 199.21 282.76 112.2

StdDev 33.4735 2 44.1827 65.6461 152.4618 2 99.597 78.257
Kurtosis -0.9501 1 -1.0531 -0.8662 0 -1.430 2.4504 3.936

Skewness -0.1810 0.0117 1.4666 0.3406 -0.0944 1.6950 
Maximum 129.9 310.3 266.2 293.7 636 303.3 
Minimum 2 9 28. 25. 133 92.5 139.8 24 

Q1 47.475 5 87.97 183.775 161.15 183.3 64 
Q3 95.075 5 5 262.1 247.725 248.35 330.7 132.6

Correlation 4 2 6 -0.405 0.080 -0.2302 -0.8013 0.7289 -0.369
A varutoCo  4 6 -398.4031 -3029.8946 8996.6520 -1956.1404 -389.537 310.777
AutoCorrel 3 8 - 9 -0.386  0.034  -0.2268 0.7812 0.4300 -0.354
Months July Aug Sept  Oct Nov Dec 

Count 0 0 1 1 10 10 10 10 
Sum 4 3 3 1788. 1783. 2836.1 2648 2994.6 1288.
Mean 178.84 3 3 178.3 283.61 264.8 299.46 128.8

StdDev 1 0 88.6362 1 6 62.559 65.360 106.8322 26.4881 59.928
Kurtosis -0.3534 6 9 -0.887 -0.8577 1.8503 1.0309 -1.657

Skewness 9 0 -0.7333 0 -0.406 -0.469 0.3758 0.4750 0.194
Maximum 5 3 400.4 8 257. 262. 467.8 548.7 216.
M uminim  1 6 140.9 73.6 85.4 2 62. 72. 54.

Q1 150.875 140.85 190.175 236.425 233.625 74 
Q3 235.975 5 321.975 6 234.12 341.475 355.15 179.

Correlation 6 0 5 -0.266 0.000 0.0762 -0.2798 0.3374 0.538
AutoCovar 2 0 -1966.6590 38-922.205 0.045 671.1214 94.6064 1608.3358 
AutoCorrel 8 0 -0.2781 6 -0.261 0.000 0.0653 0.2705 0.497
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4. Hourly Descriptive Statistics for 10-year period (1991-2000) 
 

M   r r y  onth Jan Feb Ma Ap Ma Jun
Co 7224 6695 7200 7248 6816 unt 7344
Sum  4   763.3 1249.7 2385. 2395.7 2288.5 2056.4 
Mea 0.1057 0.1867 8  n 0.324 0.3327 0.3157 0.3017 
Std  6  Dev 0.9399 1.4992 2.116 1.9631 2.1067 2.0099 
Ku 4  2 1 0 1 15  15rtosis 43.1636 95.3575 28.562 10.4368 1.0954 1.3543 
S 1  4 1  1kewness 7.6961 14.3928 10.204 9.2921 0.7962 0.6382 
M  5  aximum 33.7 49.2 4 36.8 46.5 46.1 
M  0inimum 0 0 0 0 0 
Corr   2 0.5051 0.5218 elation 0.4564 0.5569 0.473 0.5291
Auto ar  0 2.2440 2.1129 Cov 0.4034 1.2530 2.121 2.0385
A  5  utoCorrel 0.4568 0.5576 0.473 0.5290 0.5057 0.5231 
P  8  (Dry) 0.9592 0.9535 0.930 0.9226 0.9332 0.9382 
Month Jul Aug Sep Oct N Dec ov 
C 7416 7440 7200 7440 7200 7128 ount 
Su 1864.5 2323.4 2443.6 2506 2544.9 2093.8 m 
Mea  4 0.3368  n 0.2514 0.3123 0.339 0.3535 0.2937 
Std  4 1.9364  Dev 1.9336 2.1041 2.080 2.1569 1.5933 
Ku 2  6 1  10rtosis 99.4920 175.4460 325.291 51.2159 180.2724 4.5280 
Sk  9 1 1ewness 14.5308 11.4109 13.444 0.3552 1.6361 9.0187 
M  1  aximum 60.5 50 77. 46.2 51.9 31.8 
M  0inimum 0 0 0 0 0 
C  0.4956 0.4923 3 0.4644 0.5303 0.5619 orrelation 0.432
Auto ar  5  1.43Cov 1.8529 2.1791 1.870 1.7413 2.4667 01 
Auto  2  0Correl 0.4957 0.4923 0.432 0.4644 0.5303 .5634 
P  4  (Dry) 0.9448 0.9344 0.925 0.9073 0.9024 0.9046 
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5. Daily Descriptive Statistics for 10-year period (1991-2000) 

 
Mar A M Jun Month Jan Feb pr ay 

Count 1204 1 1 12 12 1136 115 224 00 08
Sum 763.3 1 2 23 22 205249.1 385.4 95.7 88.5 6.4 
Mean 0.6340 1 1 1. 1.8 1.8.1203 .9489 9964 945 102 
StdDev 3.0949 5 7 6. 7.5 7.4.6158 .2172 9531 369 904 
Kurtosis 75.4670 88.1790 33.2187 4 6 43.8413 4.9904 4 .3015 
Skewness 7.8223 8.4371 5.3790 5. 6 6.8574 .8706 1173 
Maximum 40.8 8 65. 77 113 82 3.9 9 .4 .9
Minimum 0 0 0 0 0 0 
Q1 0 0 0 0 0 0 
Q3 0 0 0 0 0 0 
Correlation 0.2176 0 0 0. 0.0 0.0.1058 .0715 0587 575 416 
AutoCovar 3 3 2. 3.3 2.52.0945 .3860 .7745 8339 584 039 
AutoCorrel 188 75 25 7 2 0.0447 0.2 0.10 0.07 0.058 0.059
P(Dry) 0. 0.8 0.7 0.76 0.80 0.8348729 574 933 92 71 5 
Month Ju Aug Sep Oct ec l Nov D
Count 1236 1240 1200 1240 1 1188 200
Sum 1864.5 2 2 25 209323.4 443.6 2506 44.9 3.8 
Mean 1.5085 1.8737 2.0363 2.0210 2.1208 1.7625 
StdDev 6.9227 7.2516 7.0031 6 8 6.1.6877 .2763 050 
Kurtosis 73.4 58.844 48.97 42.35 87.159 3.944585 7 46 70 0 4 7 
Skewness 7.6791 6.6143 5.9283 5.6477 8.0546 5.9323 
Maximum 95.1 99.5 90.7 83.6 129 65.9 
Minimum 0 0 0 0 0 0 
Q1 0 0 0 0 0 0 
Q3 0 0 0 0.5 0.5 0.5 
Correlation 0.0314 0.0522 0.0345 0.0304 0.0441 0.1776 
AutoCovar 1.5100 2.7446 1.6929 1.3570 3.0162 6.7517 
AutoCorrel 0.0315 0.0522 0.0345 0.0304 0.0441 0.1813 
P(Dry) 0.8406 0.7984 0.7933 0.7395 0.7250 0.7407 
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6. Daily Descriptive Statistics for 10-year period (1991-2000) 

 
Month Jan Feb Mar Apr May Jun 
Count 301 278 306 300 302 284 
Sum 763.3 1249.1 2385.4 2395.7 2288.5 2056.4 
Mean 2.5359 4.4932 7.7954 7.9857 7.5778 7.2408 
StdDev 7.2820 1 1 1 1 11.7783 5.3228 4.0790 5.6431 5.2831 
Kurtosis 26.2550 18.1157 6.3706 9.5604 17.6960 10.0186 
Skewness 4.6183 3.9893 2.5414 2.7763 3.5557 2.9483 
Maximum 62.9 84.9 76.1 95.8 126.8 103.4 
Minimum 0 0 0 0 0 0 
Q1 0 0 0 0 0 0 
Q3 1 2 7 11.27 7 6.1 5 .3 .5 
Correlation 0.0828 0.1344 0.0418 0.0304 0.0136 0.1453 
AutoCovar 4.4482 1 1 39.2440 0.5628 5.9968 4.7521 6.7981 
AutoCorrel 0.0842 0.1392 0.0451 0.0304 0.0195 0.1581 
P(Dry) 0.6578 0.6259 0.4869 0.3867 0.4834 0.5493 
Month Jul Aug Sep Oct Nov Dec 
Count 309 310 300 310 300 297 
Sum 1864.5 2323.4 2443.6 2506 2544.9 2093.8 
Mean 6.0340 7.4948 8.1453 8.0839 8.4830 7.0498 
StdDev 1 1 1 1 1 13.8981 4.9427 3.9312 4.0516 6.5787 3.7569 
Kurtosis 15.1119 12.3061 9.2290 9.1925 17.6850 16.3232 
Skewness 3.6093 3.1856 2.6073 2.7909 3.6971 3.5465 
Maximum 95.1 99.5 95.1 87 129 107.4 
Minimum 0 0 0 0 0 0 
Q1 0 0 0 0 0 0 
Q3 5 7 12.52.4 .4 5 9.6 8.5 7.5 
Correlation 0.0385 0.0033 0.0625 0.0936 0.0452 0.1946 
AutoCovar 7.1410 0.7330 1 1 1 32.0705 8.4056 2.3541 8.0475 
AutoCorrel 0.0371 0.0033 0.0624 0.0935 0.0451 0.2017 
P(Dry) 0.5534 0.4677 0.4733 0.3516 0.3367 0.4007 
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OT M AN SQ RE R (RMSE) 

 

 

 

Ca a  Period (1981-1990) 

NSR E

r Mea
e c M y 

 

APPEN IX F 

RO E UA  ERRO

1. libr tion

A. P MOD LS 

One-Hou n       
Months Jan F b Ma April ay June Jul
MEXP  8 E- 05 2 E- -07E-07 1 04 5E- 6E-05 E-05 4 05 8E  
EXP  1E- E-06 04 1E-06 3E-07 -06 05 2 6E- 8E-05 5E
EXPTRAN 5E-04 03 2E-03 3E-03 -04  6E-04 1E- 2E-04 7E
MEXPTRAN 1E-05 2E-04 8 05 1E-07 1E-09 3 -05 E- 3E-05 E
Months Aug ept t Dec SE S Oc Nov MSE RM
MEXP  8 E- 04 3 E- -03E-05 2 05 1E- 2E-05 E-05 5 05 7E  
EXP  2 E- 06 E -0E-05 2 04 2E- 6E-06 9E-07 8 -05 9E 3 
EXPTRAN 1 E- 03 E -02E-03 5 03 2E- 1E-03 9E-04 2 -03 4E  
MEXPTRAN 3 E- 04 4 E- -04E-04 7 05 5E- 2E-04 E-07 1 04 1E  

 

One-Hour Variance       
Months Jan Feb Mac April May June July 
MEXP  0.0012 0.0034 2.7114 8.2375 0.2155 0.1147 0.2854
EXP  0.0085 0.0970 8.5290 2.9339 0.1100 0.0158 0.0919
EXPTRAN 0.0131 0.5517 0.0025 0.0014 0.0380 0.0358 0.0720
MEXPTRAN 0.0005 0.0013 0.0533 0.0165 0.0773 0.0030 0.1053
Months Aug Sept Oct Nov Dec MSE RMSE 
MEXP  0.1010 0.0010 0.2575 0.0048 0.0000 0.9945 0.9972
EXP  0.5745 0.0912 0.0743 0.0043 0.0161 1.0455 1.0225
EXPTRAN 0.3132 0.1498 0.1990 0.0428 0.0485 0.1223 0.3497
MEXPTRAN 0.0358 0.1857 0.0739 0.1526 0.0315 0.0614 0.2478
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One-Hour Autocorrelation      
Months Jan Feb Mac April May June July 
MEXP  9.9E-05 8.7E-04 3.7E-02 4.3E-02 8.4E-04 3.7E-03 8.2E-04
EXP  5.6E-04 2.1E-04 4.3E-02 3.9E-02 5.5E-05 1.1E-03 1.2E-03
EXPTRAN 1.5E-02 8.5E-04 5.4E-03 8.4E-03 5.0E-04 2.0E-02 3.0E-04
MEXPTRAN 2.4E-03 1.1E-02 4.5 3.8E-04 8.1E-03 1.0E-03E-03 1.9E-04
Months Aug Sept Oct Nov Dec MSE RMSE 
MEXP  0.0324 0.0008 0.0000 .0003 0.0074 0.0106 0.10290
EXP  0.0136 0.0008 0.0002 .0000 0.0010 0.0084 0.09160
EXPTRAN 0.0005 0.0015 0.0007 0.0077 0.0052 0.07180.0004
MEXPTRAN 0.0087 0.0008 0.0125 .0010 0.0022 0.0044 0.06610

 
One-Hour Coefficien  
Months Jan Feb Mac May June July 

t of Skewness    
April 

MEXP  5.5188 0.0605 20.8724 7 0.3796 0.9768 0.489216.778
EXP  2.6004 6.1697 36.1402 7.0940 3.2045 0.5827 0.1084
EXPTRAN 11.1802 19.5990 2.2655 6 10.7896 2.2902 4.196210.223
MEXPTRAN 3.5994 9.1505 0.0032 0.4543 1.2209 3.5431 2.3760
Months Aug Sept Oct Nov Dec MSE RMSE 
MEXP  7.2817 0.2640 0.9907 0.0346 2.3593 4.6672 2.1604
EXP  0.1594 0.5105 0.1065 1.1720 7.9385 5.4822 2.3414
EXPTRAN 10.174 8.9439 15.847 8.9374 2.98952 7.6893 4.0490 9
MEXPTRAN 51 .83 9. 0 5 1.72860.6 9 0 43 6159 0.081 4.32 5 2.9880 

 
   

a A  July 
P00(1)      
Months Jan Feb M c pril May June
MEXP  3.1E-06 - .3 04 -05 3.2E-06 5.6E 05 7 E-06 2.4E-05 6.9E- 2.8E
EXP  1.2E-05 E- 6.4 5 -0 -06 2.7E-05 1.0 04 E-05 5.0E-0 4.1E 4 2.6E
EXPTRAN 7 - .2 05 -07 7.5E-063.1E-0  1.6E 05 6 E-06 6.5E-07 4.7E- 3.0E
MEXPTRAN 5 - .5 04 -05 4.5E-055.1E-0  2.8E 04 4 E-05 1.0E-04 1.9E- 6.1E
Months Aug Sept c N  RMSE O t ov Dec MSE
MEXP  0.0002 0 . 00 001 0.0115 0.0 02 0 0000 0.0003 0.00 0.0
EXP  0.0000 0.0000 0.0000 0.0003 0.0000 0.0001 0.0092
EXPTRAN 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0043
MEXPTRAN 0.0002 02 03 7 01 2 380.00 0.00 0.000 0.00 0.000 0.01

 
     

A M Ju Ju
P10(1)    
Months Jan Feb Mac pril ay ne ly 
MEXP  0.0119 0 00.0499 0.0455 0.1067 0.0366 .0015 .0019
EXP  0.0167 29 391 57 96 4 0.04 0.0 0.11 0.04 0.004 0.0034
EXPTRAN  0 00.0039 0.0001 0.0031 0.0001 0.0026 .0048 .0022
MEXPTRAN  0 00.0042 0.0011 0.0066 0.0008 0.0001 .0120 .0042
Months Aug Sept Oct N Dec MSE RMSE ov 
MEXP  0.0743 0 00.0692 0.0247 0.0254 0.0178 .0388 .1969
EXP  0.0573 0.0324 0.0183 0.0269 0.0163 0.0353 0.1878
EXPTRAN 0.0001 0.0043 0.0000 0.0001 0.0000 0.0018 0.0422
MEXPTRAN 0.0014 0.0002 0.0017 0.0007 0.0020 0.0029 0.0542
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Probabilty of dry hours       
b Mac April May June July Months Jan Fe

MEXP  0.0001 001 002 11 000 00 001 0.0 0.0 0.00 0.0 0.00  0.0
EXP  0.0002 0.0000 8 9 3 30.000 0.000 0.000 0.0000 0.000
EXPTRAN 0 2 0 0 00.0000 0.000 0.000 0.000 0.000 0.0001 0.000
MEXPTRAN 3 6 0 5 80.0005 0.002 0.000 0.001 0.001 0.0008 0.000
Months Aug Sept Oct Nov Dec MSE RMSE 
MEXP  4.6E-06 -03 E-04 -04 -05 -04 1.1E 6.2 1.9E 7.9E 3.0E  1.7E-02
EXP  1.0E-04 3 4 4 4  2.1E-021.6E-0 7.3E-0 2.2E-0 4.0E-0 4.6E-04
EXPTRAN  6 5 6 6  6.4E-031.4E-04 4.9E-0 1.3E-0 1.2E-0 2.0E-0 4.0E-05
MEXPTRAN  3 3 3 4  4.0E-021.8E-03 1.2E-0 2.5E-0 5.0E-0 9.3E-0 1.6E-03

 
Six-Hour Mean       

c April May June July Months Jan Feb Ma
MEXP  2.8E-05 5.6E-03 1 3 5 1. 3.2.7E-03 .1E-03 .9E-04 7E-03 E-05
EXP  5 1. 2 2 1.1 .5E 8E.0E-04 9E-05 .2E-02 .5E-04 E-05 2 -03 1. -04
EXPTRAN 1 2. 3 9.3 1.1 .4E 3E.9E-02 1E-02 .7E-02 E-02 E-01 7 -03 2. -02
MEXPTRAN 5 3. 4 9. .5E 8E5.3E-04 .2E-03 0E-03 .8E-05 0E-08 8 -04 9. -04
Months A Sept No Dec MSug Oct v MSE R E 
MEXP  0.0030 4 0.0011 0 00.0008 0.005 0.0014 .0020 .0451
EXP  0 0 0 0 0. 0.0 .0.0006 .0093 .0001 .0065 0000 035 0 588
EXPTRAN 0 0 0 0 0. 0.0 .2.0501 .1719 .0939 .0832 0335 617 0 484
MEXPTRAN 0 0 0 0 0.0 .00.0119 .0026 .0163 .0248 .0000 055 0 743

 
Six-Hour Variance       

 an F b Mac y June July Months J e April Ma
MEXP  0.1534 10.1201 6 1 14.8815  1 313.618 48.969 8.9813 5.249
EXP  0.6852 14 12 1.4988 3.4543 0.4206 5.3195 0.2249 3.5296
EXPTRAN 40.1477 .2925 7.2611 5.1217 2.3139 8.7492 1.3521
MEXPTRAN 13 1 1 31.0733 .2151 9.5160 3.8013 2.3815 1.2803 0.5698
Months Aug S O N D MSE RMSE ept ct ov ec 
MEXP  32.093 1.4543 03 9 1 1  61.51 3.443 4.342 7.9014 4.2310
EXP  4 18 8 2 2 22 4.4114 .7241 1.2255 .2079 .3810 .2569 .7177
EXPTRAN 0 7 0 0 3 1.1119 .9963 4.4055 .6754 .2768 .5587 .8864
MEXPTRAN 4 5 0 2 8 2.3609 .8018 8.4801 .0367 .7692 .6072 .9338

 
Six-Hour Autocorrelation      

 Jan Mac May June July Months Feb April 
MEXP  0.0008 21 007 0.0000 0.0000 0.00070.0002 0.00 0.0
EXP  0.0000 0 12 0 00 0.0007.0017 0.0017 0.00 0.0 00 0. 00 
EXPTRAN 0.0061 0 55 0 00 0.0048.0103 0.0158 0.01 0.0 07 0. 72 
MEXPTRAN 0.0049 0 99 0 00 0.0058.0069 0.0090 0.00 0.0 05 0. 05 
Months A S Oct  SE ug ept Nov Dec MSE RM
MEXP  0.0007 08 0001 0.0001 0.0007 0.02660.0023 0.00 0.
EXP  0.0002 0 17 0 00 0.0259.0000 0.0002 0.00 0.0 07 0. 07 
EXPTRAN 0.0105 0 00 0 00 0.0857.0041 0.0039 0.00 0.0 93 0. 74 
MEXPTRAN 0.0056 0 14 0 00 0.0648.0011 0.0047 0.00 0.0 01 0. 42 
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Six-Hour Coefficient of Skewness  
  y une July 

   
Months Jan Feb Mac April Ma J  
MEXP  0.2140 83 2 26 0.14103.4131 1.6857 0.01 1.1 47 1. 80 
EXP  0.4808 28 0 26 0.02100.0067 4.1136 0.45 0.9 24 0. 09 
EXPTRAN 3.7946 16 3 20 3.26311.1651 0.6527 6.19 0.4 60 2. 14 
MEXPTRAN 0.0713 32 8 39 0.02330.0091 0.0011 1.69 3.5 20 0. 92 
Months Aug  c SE MSE Sept Oct Nov De M  R
MEXP  1.6057 53 1 9 0.94900.1565 0.9831 0.18 0.0 30 0. 007 
EXP  0.7267 70 1 7 0.86750.2712 1.2734 0.00 0.5 31 0. 525 
EXPTRAN 0.3237 76 7 1 1.45143.4114 0.2011 1.06 2.5 00 2. 065 
MEXPTRAN 0.4457 76 7 1 1.05480.5699 3.4588 0.01 3.0 96 1. 126 

 
24-Hour Mean       

  ril May June July Months Jan Feb Mac Ap  
MEXP  0.0005 0.0885 7 .0 0.0093 0.0270 0.00050.02 4 0 509
EXP  0.0080 0.0004 5 .0 0.0002 0.0399 0.00300.34 3 0 039
EXPTRAN 0.2977 0.3358 9 .4 1.7127 0.1181 0.37580.59 7 1 901
MEXPTRAN 0.0086 0.0832 8 .0 0.0000 0.0136 0.01610.04 2 0 008
Months Aug t ov Dec MSE RMSE Sept Oc N
MEXP  0.0482 0.0123 5 .02 0.0176 0.0325 0.18030.08 9 0 19
EXP  0.0103 0.1480 1 .10 0.0005 0.0557 0.23600.00 4 0 76
EXPTRAN 0.8035 2.7433 5 .34 0.5390 0.9727 0.98631.31 8 1 10
MEXPTRAN 0.1878 0.0423 1 .39 0.0002 0.0880 0.29670.26 0 0 44

 
Months Jan Feb Mac April Ma  June July y
MEXP  2.69 87.5 2538. 42 55.767 1 124.9403 1 83 144 9.553 14.912
EXP  0.00 20 . 80 15.7151 146. 5 4488 102 1.184 .673 37.343
EXPTRAN 6 3 .6 0 32 37.8814.1 0 16. 54 760 93 10 9.116 4 .632 4.047
MEXPTRAN 35 958 .9 35 00 806.4933.1  97. 234 79 .467 5 .120 0.042
Months Aug Sept  ec RMSE Oct Nov D  MSE 
MEXP  3024.81 79.4 2301. 6 65 8 28.9799 5 59 351 0.428 7.836 39.790
EXP  593.877 40 .2 13 1 60 24.611 2. 7 1374 03 .664 5 4.816 5.682
EXPTRAN 7 01 .3 34 7 29 17.09659.8 0 252. 7 819 40 .689 6.530 2.277
MEXPTRAN 33 201.447 .2 25 01 22 15.143231.9 213 15 .991 4 .060 9.320

 
24-Hour 

     
 l  

Autocorrelation  
Months Jan Feb Mac Apri May June July 
MEXP  0.0107 0.0026 3 90.000 0.007 0.0000 0.0001 0.0002
EXP  0.0124 0.0059 1 50.000 0.007 0.0000 0.0004 0.0003
EXPTRAN 0.0067 0.0298 9 70.000 0.000 0.0137 0.0086 0.0001
MEXPTRAN 0.0078 0.0278 6 70.003 0.002 0.0113 0.0114 0.0000
Months Aug Sept Oct   Nov Dec MSE RMSE 
MEXP  0.0005 0.0002 2 20.001 0.000 0.0004 0.0020 0.0450
EXP  0.0000 0.0020 6 10.000 0.000 0.0000 0.0024 0.0495
EXPTRAN 0.0016 0.0001 3 50.005 0.000 0.0013 0.0058 0.0760
MEXPTRAN 0.0001 0.0000 8 00.005 0.000 0.0027 0.0061 0.0781
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24-Hour Coefficient of Skewness      
l  Months Jan Feb Mac Apri May June July 

MEXP  0.5301 1.3286 1.0666 60.072 0.2298 0.3846 0.2846
EXP  0.8604 0.5715 2.0747 10.012 0.0334 0.0833 0.5058
EXPTRAN 0.1018 0.0187 0.0015 00.773 0.3627 0.6629 0.1714
MEXPTRAN 0.3570 0.2140 0.1022 90.044 0.2419 0.0257 0.0546
Months Aug Sept Oct Nov  Dec MSE RMSE 
MEXP  0.3519 0.1199 0.4871 40.349 0.7379 0.4952 0.7037
EXP  0.6942 0.0167 0.9357 90.329 1.3368 0.6212 0.7882
EXPTRAN 0.0001 0.2716 0.0027 10.000 2.4251 0.3993 0.6319
MEXPTRAN 0.3629 0.0003 1.1490 60.121 0.0042 0.2232 0.4724

 
P00(24)        
Months Jan Feb Mac April May June July 
MEXP  0.0063 0.0006 0.0060 0.0093 0.0162 0.0001 0.0005
EXP  0.0033 0.0001 0.0008 0.0094 0.0135 0.0019 0.0000
EXPTRAN 0.0021 0.0002 0.0003 0.0010 0.0008 0.0060 0.0004
MEXPTRAN 0.0004 0.0005 0.0001 0.0000 0.0003 0.0001 0.0000
Months Aug Sept Oct Nov Dec MSE RMSE 
MEXP  0.0512 0.0000 0.0094 0.0072 0.0043 0.0093 0.0963
EXP  0.0231 0.0000 0.0098 0.0056 0.0045 0.0060 0.0775
EXPTRAN 0.0007 0.0018 0.0008 0.0004 0.0126 0.0023 0.0475
MEXPTRAN 0.0000 0.0005 0.0000 0.0003 0.0013 0.0003 0.0175

 
P10(24)        

 Jan e M April May JuMonths F b ac  June ly 
MEXP  0.0124 0.0 0 0 00.0083 0.0004 002 .0109 .0289 .0022
EXP  0.0169 0 0.0 0.0061 0.0178 0.0003 0.0092 112 .0068
EXPTRAN 0.0062 0 0 0.0.0100 0.0041 .0024 0.0022 019 0.0041
MEXPTRAN 1 3 00 02 2 6 0.000 0.000 0.00 0.00 0.000 0.000 0.0000
Months A Oc Nov De RMSE ug Sept t c MSE 
MEXP  0.0 0 00.0001 075 0.0010 .0000 0.0009 0.0061 .0779
EXP  0.0041 0 0 00.0000 0.0026 .0000 .0004 0.0063 .0793
EXPTRAN 0.0045 0.0004 0.0071 0 0.0107 0.0022 0.0046 .0681
MEXPTRAN 0.0004 0.0043 0.0002 0.0001 0.0001 0.0005 0.0233

 

ys  
 Jan Feb Mac Ap M June J

Probabilty 
of dry da       
Months ril ay uly 
MEXP  0 0 0 0 0 0 0.00032 .00229 .00067 .00111 .00038 .00422 .00004
EXP  0 0 0 0 0 0 0.00002 .00344 .00625 .00100 .00002 .00000 .00138
EXPTRAN 0 0 0 0 0 0 0.00000 .00363 .00163 .00188 .00126 .00811 .00235
MEXPTRAN 0.00038 10 0013 0007 000 0.00014 0.000020.001 0.0 0.0 0.00
Months Aug Sept Oct No Dec MSE RMSE v 
MEXP  0.0230 0.0034 0.0005 0.0003 0.0015 0.0031 0.0561
EXP  0.0053 0.0002 0.0002 0.0002 0.0038 0.0018 0.0425
EXPTRAN 0.0030 0.0001 0.0018 0.0047 0.0167 0.0038 0.0613
MEXPTRAN 0.0001 0.0012 0.0000 0.0000 0.0004 0.0003 0.0174
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One-Month Mean     
Jan Feb Mac A M

  
Months pril ay June July 
MEXP  0 9 2 4.437 1.930 6.381 5.688 8.939 24.289 0.453
EXP  7 33.661 0.093 1.704 3.507 0.184 35.874 2.782
EXPTRAN 28 4 57 134 16 1 36.24 2 7.812 6.187 1.828 42.030 06.060 60.973
MEXPTRAN 8 5 4.221 5.832 6.178 0.713 0.001 12.195 15.452
Months Au Sept Oct N Dec g ov MSE RMSE 
MEXP  46 1 8 2.512 1.105 2.670 0.562 16.901 31.322 5.597
EXP  9 3 9.838 1 3.308 1.281 3.926 0.512 51.722 7.192
EXPTRAN 7 4 126 119 5 871.9 2 80.48 3.345 9.354 17.499 99.475 29.991
MEXPTRAN 18 3 25 350.81 8.185 0.914 7.871 0.209 80.549 8.975

 
One-
Month  Standard De n    

 Jan Feb Mac April Ma June Ju
viatio   

Months    y ly 
MEXP  16 95 142 51 31 1 9.8496 .1850 1.490 .1451 61.214 3.8940 5.8173
EXP  30 96 164 46 25 1 5.5070 .8958 6.266 .3753 19.189 59.333 8.8315
EXPTRAN 15 61 869 87 43 3 10.791 9.915 .8444 .0374 69.891 93.680 8.2520
MEXPTRN 2 454.009 12 36 51 05 628.813 874.15 166.44 3998.6 428.1 118.95
Months Au Se Oct Nov De M RMSE g pt  c SE 
MEXP  33 38 49 197 5 6 2.3889 7.989 .5075 3.535 7.6954 13.143 4.7617
EXP  0 80 8 150 5 2.5521 1.914 .9778 9.809 6.3979 73.754 3.9532
EXPTRAN 14 32 130 165 7 29.320 9.439 .5474 7.382 3.7619 31.655 7.0491
MEXPTRN 160.614 868.439 289.7869 1063.720 5.0545 704.729 26.5467

 
One-Mon

m
th 
    

 Jan eb Mac April Ma June Ju
Maximu

s
   

Month F   y ly 
MEXP  4 18 81 34 36 1 359.26 33.08 93.02 52.59 129.12 224.19 878.04
EXP  26.02 4 31 11 38 6 153.99 97.01 36.81 941.72 379.22 027.94
EXPTRAN 1801.4 53.30 6312.43 4250.67 27591.63 5294.90 3158.34
MEXPTRN 112.64 616.06 4692.23 1394.79 39858.84 7313.95 2909.03
Months Aug Oct Nov Dec MSE RMSE Sept   
MEXP  34.74 12 135 531.68 11.49 88.32 5.50 836.75 76.40
EXP  1 37 2 101 5087.3 12.46 67.70 33.72 80.69 537.05 74.41
EXPTRAN 3 8 55 4031.2 14.98 24.89 99.24 783.74 893.06 69.95
MEXPTRAN 2516.9 4347.01 264.07 8061.17 549.40 6053.00 77.80

 
th M m     

 Fe Ma Ap M June J
One-Mon inimu   
Months Jan b c ril ay uly 
MEXP  41.19 7.79 936.97 43.71 7.35 75.65 892.46
EXP  11.60 419.72 2592.51 175.51 78.22 4.02 42.81
EXPTRAN 3.36 1 1942.08 1.51 450.92 5424.03 301.51 1522.14
MEXPTRAN 3 9 .55 .04 .31 68 922.3 1987.8 1234 238 534 280. 115.6
Months Aug Sept Oct Nov Dec MSE RMSE  
MEXP  58 101 181.13 16.00 10.94 98.16 95.35 517.23 38.95
EXP  2 6 38 85 184.62 01.89 33.59 93.09 5.79 386.95 37.24
EXPTRAN 2 38 135 165 322.18 60.15 29.71 50.55 62.06 739.18 61.15
MEXPTRAN 24.92 382.59 5915.76 12167.14 3.77 1908.97 43.69
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B. MCME MO ELS 
 

ur Scale    
HS an eb r M Jun Jul 

D

One-Ho      
MONT J F Ma Apr ay 
Mean 4. .2E E 06  5E-06 1 -05 7.5 -06 1.1E- 2.3E-05 3.1E-05 2.3E-06
Std.Deviation .8 .9E- E-05 04 1.9E-03 74 E-03 9 03 8.3 5.9E- 3.6E-04 .3E-04
Coeff.of Skew 5.1E+0 5.3E+0 6.4E 4.7E-0 1E-01 +0 2ness -01 2 1. 1.6E 2.7E-0
Maximumn 5.5 3.1E+ 8E+0 +0  3.8E+0 0 2. 2.2E 8.9E+0 6.6E+0 E+00
Autocorrelation . .1E-0 E-02 02 6.4E-02 1. 4 6E-02 3 2 4.3 5.0E- 8.2E-02 3E-01
dry hours 49 64 25 36  64 81 1
rainy hours 5 56 2 .25  6.25 .25 5 42 56.25 81 0.25
MONTHS Aug Sep Oct Nov Dec MSE RMSE 
Mean 1.2E-05 6.1E-06 9.8E-05 7.7E-05 1.3E-06 2.8E-05 5.3E-03
Std.Deviatio .4E-03 6.9E-03 1.6E-0 1.8E-04 3.3E-03 5.8E-02n 2.0E-03 4 3
Coeff.of Skewness 2.7E+00 3.0 1.5E .6E-0 E-02 1.8E+00 1.3E+00E-01 +00 2 1 6.8
Maximumn 3. .6 E+ +0  1E+0 3 E+0 7.2 0 1.6E 2.0E+0 4.3E+0 6.6E+00
Autocorrelati .0 .0 E-0 02  on 3 E-02 5 E-02 3.3 2 6.3E- 8.2E-02 7.0E-02 2.7E-01
Dry hours 49 361 22 9  5 9 97.3 9.8641
Rainy hours 38 0. 4  49 0.25 21 25 6.25 96.7 9.8336

 
24-Hour Scale 
M b  

       
ONTHS Jan Fe Mar Apr May Jun Jul 

M 7 2E E -02 03 2 3ean 2. E-05 2. -01 5.1 -04 1.4E 5.0E-  1.5E-0 3.5E-0
Std.Deviation 9 E E +00 00 0 07. E-01 8.1 +00 3.1 -01 2.6E 4.3E+  4.3E+0 7.5E+0
Coeff.of Skewness 2.7E-03 2.5E-03 1.6E-02 7.7E-01 7.8E-02 5.0E-01 1.2E+00
M 5.9E+01 7.6E-01 3.2E+01 1.0E+03 5.3E+0  4.2E+0 1.2E+03aximum 1 2
A 1.0 4.1 7.6E 3.3E- 1.1E-0 7E-0utocorr. E-02 E-02 -04 03 2 1. 2 2.5E-04
R 4 8 E + 0 2ainy 8. E+02 6. E+02 5.3 +02 2.9E 02 2.6E+ 2 7.8E+02 4.8E+0
D 8E 3E+ E+ +0 02 2 2ry 7. +02 5. 02 5.3 02 3.2E 2 2.0E+  4.8E+0 3.2E+0
M g p    ONTHS Au Se Oct Nov Dec MSE RMSE
M 0. 0.0 0.0 00 07 9 2ean 320 03 00 0. 0 0.0  0.04 0.22
S n 0 1 4 8 9td.Deviatio 5.723 .604 .209 4. 50 8.0 3 3.995 1.99
C kewn 0 0 0 9 3oeff.of S ess 0.009 .025 .016 0. 05 1.6 4 0.363 0.60
Maximum 4 7.55 5.3 064 84 302.908 41 .669 31 2 2 01 302. 149.0 17.40
A 0 0.00 0.0 001 15 9 2utocorr. .000 1 02 0. 0.0  0.00 0.09
R 9 6.00 0.0 000 00 649.000 5ainy 52 .000 57 0 90 00 324. 1600.0 25.47
Dry 225 5.00 6.0 000 00 593.833 9.000 62 0 129 00 289. 1521.0 24.36
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Monthly Scale 
(MCME Hourly)       

Feb Mar Apr May Jun ul MONTHS Jan  J
Mean 1.716 5.1 6.3 14 3  032  08 00 .516 1.810 13. 8.762
Std.Dev. 0.274 1313.1 .0 4 635 190 89 .016 61 5.677 985.785 0.607
Maximum 5.29 5 4. 376 95 81 225 50 10.49 13924 702.25
Minimum 7.29 02 0. 3 63475.1 5 9 25 9.69 86.44 404.01 1288.81
MONTHS Aug   c SSep Oct Nov De  M E RMSE 
Mean 9.797 9 .2 010. 56 1 10 .002 2.789 8.833 2.972
Std.Dev. 2.074 1023.499 1 1.314 1 1073.9 32.771417.23 257 213.41 26 
Maximum 265.69 4316.49 6.01 42.2 233 8490 140 5 196 7202.0 .8647
Minimum 57.76 2. 3 1125 1 2 106 76 790 .21 7.21 36.89 2 00.7852 46.9125

 
(Daily 

 
 p M

Monthly scale 
MCME) 

Jan 
    

J
 

MONTHS Feb Mar A r ay un Jul 
Mean 28.62 . 66 42 4.20 11.42 2.16 1.96 35.05
Std.Dev. 44.44 . 32 408 04 4.47 23.06 2985.53 370.68 112.42
Maximum 49.00 1024.0 48 650.25 372 8010 1 9.96 49.00 0.25 1772.41
Minimum 144.00 .0 60 100.00 2894 1 0.25 10.89 0.70 240.25
MONTHS Aug Sep Oct No Dec MSE RMSE v 
Mean 8.07 1.17 4.88 10.24 0.90 14.59 3.82
Std.Dev. 25 0 15.52 85 .31 24.79 326.42 8.26 561.16 23.69
Maximum 4678.5 2 20 26 421 .01 1.64 1 521.61 600.25 6038.25 77.71
Minimum 1.2 0 54 61 51 .76 6 4.81 822.76 84.64 1331.19 36.49

 
Daily 
Scale   

HS Jan ar p a Jul 
     

MONT Feb M  A r M y Jun 
Mean 0.00 . 084 0 0035 .0025 0.0008 0.0681 0.0537 0.0262
Std.Dev, 0.00 0. 0.0006 2 20 2426 0.4521 0.011 0.0016 1.0681
Coeff.of 

0.2338 .23 0.02 0.4 0.1230 0.1 0.2Skewness 0 01 70 971 358 654
Maximum 9 30. 7.40 26.7 3 239 25 19 25 5 025 324 8.44 1.04
Autocorr. 0.0042 . 0.0 0 0 0 0248 024 .0020 0.0126 0.0112 .0007
Rainy 1 0 4 1 4 0 0.25
Dry 1 0 4 1 4 0 0.25
MONTHS Aug o RMSep Oct N v Dec MSE SE 
Mean 0.00085 0.00859 0.00064 0.06502 0.00669 0.02041 0.14287
Std.Dev. 0.14267 0.00001 0.56336 0.02576 0.25999 0.23084 0.48046
Coeff.of 
Skewness 0.29316 0.00032 0.23256 0.24945 0.00286 0.19088 0.43690
Maximum 635.0400 81.9025 336.7225 484.0000 7.0225 316.794 17.7987
Autocorr 0.0035 0.0008 0.0047 0.0006 0.0071 0.0062 0.0788
Rainy 0 16 0 4 4 2.8542 1.6894
Dry 0 16 0 4 4 2.8542 1.6894
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2. Validation Period (1991-2000) 
 

NSRP Mod EXPT ) 
 

Scal  
Jan F ac pril ay e 

A. el (M RAN

One-Hour e      
Months  eb M  A M  Jun July 
Mean 8.5E-05 4.3E-03 6.4 6 4E-04 8.7E-03 4. E-03 1.9E-02 1.3E-0
Variance 4.7E-03 2.6E+00 3.4E-02 .1 .1 01 E+00 6 E-02 3.7E+00 6.5E- 1
Skewness 4. 4 .3 2E- +01E-02 .8E-01 1 E+01 9.5E+00 1. 01 5.2E 1 2.8E-01
Maximum 1. 7 .4 .0 6E+ + 13E+00 .0E+01 6 E+02 6 E+01 3. 01 7.2E 00 4.1E+0
Autocorr. 6 8. .0 . 4.5E-02 9E-02 4 E-02 3 0E-02 1.2E-02 2.7E-02 2.0E-0
Prob.Dry 1. 3. . . 6E-0 38E-04 4E-03 4 6E-04 1 0E-03 8. 3 2.7E-06 1.2E-0
Std.Dev. 1.3E-03 2.2E-01 1.8E-03 7.2E-02 3.6E-03 3.1E-01 4.9E-02
Months Aug Sept Oct Nov Dec MSE RMSE 
Mean 6.6E-03 2 2 1.9E-07 3.3E 1.3E- .1E-03 4E-0.5E-0 -03 02 7  8. 2
Variance 5.9E-01 8.1E+00 2.1E-01 + - 01.3E 00 8.7E 01 1.6E+00 1.3E+ 0
Skewness 2.1E .6E .4E+0 +00 +01 1 3.9E+00+01 2 +00 1 1 3.9E 7.0E 1.6E+0
Maximum 1.7E .9 .6E+ +01 +0 2 01+02 1 E+03 1 02 4.2E 1.0E 2 2.7E+0  1.7E+
Autocorr. 6. 2.6 .7E- E-02 -0 2 013E-02 E-02 5 02 1.6 1.9E 2 3.7E-0  1.9E-
Prob.Dry 5.8E-04 1 3.9E-03 - 3 0.2E-04 1.2E-02 1.6E 04 2.7E-0  5.2E- 2
Std.Dev. 3.6E-02 7 .3E-02 E -0.1E-01 1 6.9 -02 1.1E 1 1.3E-01 3.6E-01

 
 

ale   
Mac y July

24-Hour Sc
Months Jan 

 
Feb 

 
April 

  
Ma June  

Mean 0.05 2.46 0.37 0.15 2.62 10.94 0.07
Var. 109.00 720.92 3212.66 5010.08 51.79 17543.08 1.623 2
Skew 0.15 .22 2 7 3 .720 0.6 0.0 0.3 2 0.10
Max 8 20 121 344.08 9.83 4.93 3.10 1.09 166.33 527.92
Autocor 0.00 0.01 0.00 0.01 0.00 0.00 0.00
Prob.Dry 0.00 0.00 0.00 0.00 0.02 0.01 0.00
Std.Dev. 0.55 5.20 3.64 6.19 0.25 24.49 0.00
Months Aug ept c o ec SE RMSE S O t N v D M  
Mean 3 13 0 3 7.600 .825 .325 .000 .948 3.780 1.944

Var. 
2189.1

04 0757.531 506.531 80 91 5654.78 752 5969.5 8585.4 2 .198
Skew 0.216 40 0 6 6 00.1 0.08 1.14 1.17 0.58 0.762
Max 7.907 132 11 59 441.436 4.178 5.173 7.334 419.442 20.480
Autocor 0.000 0.004 0.023 0.000 0.012 0.005 0.070
Prob.Dry 0.024 0.001 0.000 0.001 0.025 0.007 0.086
Std.Dev. 2.650 4 10.663 0.707 5.584 5.482 8.783 2.964
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B. MCME Models 

      
J  il ay une July 

 
 
1-Hour Scale  
Month an Feb Mac Apr M J  
Mean 4 3 -0 E- E .50E-05.46E-05 4.59E-03 2.96E-0 7.26E 3 4.03 03 2.11 -02 5
Std.Dev 6 2 -0 E E .11E-02.58E-03 1.93E-01 4.91E-0 2.52E 2 2.73 -06 2.89 -01 4
Skew 4 1 +0 E E 35E+00.68E-01 1.52E+00 9.32E-0 7.22E 0 1.82 -01 1.94 +01 7.
Max 3.97E-01 7.08E+00 2.60E-01 +0 E 70E+029.14E 1 1.93E+00 2.69 +01 2.
Autocor 1 1 -0 E- E .15E-01.24E-01 1.67E-01 1.13E-0 1.73E 1 1.17 01 1.53 -01 1
Prob.Dry 4 5 -0 E- E .48E-05.05E-07 1.65E-04 2.47E-0 1.44E 6 3.02 03 5.09 -04 6
Month A  SE ug Sept Oct Nov Dec MSE RM
Mean 5.55E-03 2.65E-03 5E-04 -0 .50E 5.37 24.1 7.78E 4 1 -02 E-03 7.33E-0
Std.Dev 5 2 -0 E- E .68E-01.11E-02 1.09E-02 4.82E-0 6.10E 2 8.66 02 7.18 -02 2
Skew 2 1 +0 E 77E+00.85E+00 1.28E+01 1.19E-0 2.93E 0 3.63E+01 7.67 +00 2.
Max 7.40E-01 8.40E+02 7.40E+00 +0 E 04E+012.84E 1 3.34E+01 1.09 +02 1.
Autocor 1.12E-01 9.47E-02 1.16E-01 -0 E .64E-011.13E 1 1.95 -01 1.33E-01 3
Prob.Dry 1 4 -0 E- E .66E-02.54E-04 2.76E-03 1.58E-0 1.26E 3 3.96 04 7.09 -04 2

 
 

4-Hour  Scale       
Month Jan Feb Mac April May ne  

 
2

Ju July
M 259 5948 7 55 201 441 13ean 0.0 2. 1.706 2.01 2.3 12.1 0.03
Std.Dev 2  0.0 18.38 11.5 1.8458 49 10..0274 170 08 406 .6250 5633
S  0 0.kew 0.5660 1.1179 .0001 0.0052 1.6479 0.2169 8843
M 331  33.9 11.69 375.9 1437.1 1840.4 676.ax .2400 889 64 721 681 100 0000
A  0 0.0 0.0079 uto 0.0067 0.0003 .0011 061 0.0005 0.0023
P 0  0.0 0.00 0.0 0.0267 0.0016 0.rob.Dry .0049 154 65 001 0070
M Aug Sept Oct Nov Dec MSE RMSE onth 
M 3  1.8 0.23 1.6 8.6367 3.0303 1.ean .1964 324 92 205 7408
S 38 0.2263 23 77 403 259 td.Dev 10.61 0.01 22.11 35.3 13.5 3.6778
S  0.1 2. 0.3511 0.6574 0kew 0.0456 0.1547 504 7492 .8108
Max 2  89.4916 7.6729 2424.5776 2893.3641 868.4348 29.469299.6361
A 0.0  0uto 003 0.0029 .0284 0.0002 0.0252 0.0068 0.0826
Prob.Dry  0 0.0 0. 0.0007 0.0105 00.0065 .0374 120 0069 .1024
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Daily Scale       
Month Jan Feb Mac April May June July 
Mean 0.344 6.963 2.300 1.529 0.609 9.144 0.551
Std.Dev  0.629 0.351 .160 20.507 .1450.619 1 1 12 0.944 1
Skew 0.071 330.7 0.205 0.024 0.215 1.515 0.003
Max 51.840 4 14 34 16 7 324.360 2.325 2.250 6.410 1 0.303 1.697
Auto 0.000 0.002 0.000 0.006 0.001 0.004 0.000
Prob.Dry 0.007 0.006 0.001 0.002 0.006 0.005 0.000
Month A c o eug Sept O t N v D c SSE RMSE 
Mean 0.9155 0.6572 0 0 5 2.4495 1.5778 .3758 .4281 .5651
Std.Dev 1.3874 0.7298 1 1 4 5.5157 2.3482 .9125 .4554 .3486
Skew 0.0001 4 5 0.3487 00.002 0.098 0.9045 0.4128 .5905
Max 2 10 70 23 3 25.5025 0.0900 .3041 4 .8900 1 .2100 16 .2651 1 .7775
Auto 0.0000 0.0028 0 0 0 0.0048 0.0225 .0003 .0177 .0695
Prob.Dry 0 0.0046 00.0097 0.0064 .0019 0.0002 0.0100 .0682
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EN

 

 

 

S  O

 

1. NSRP SIMULATION 

 NSRP simulation program 

  

 input variable: 

 storm   - Total number of storm to run NSRP simulation 

  

 Parameter: 

 lambda  - average waiting time between subsequent storm origins (/hour) 

 beta    - average waiting time of the raincells after the storm origin (/hour) 

 n       - average cell durations(/hour) 

 v       - average number of cells per storm (cell/storm) 

 epsilon - average cell intensity (mm/hour) 

 theta   - intensities :mix-exponential 

 alfa    - intensities: weighT 

 Variables: 

 ta  - inter-arrival time of storms 

 C   - number of rain cells 

 

APP DIX G 

AMPLE F COMPUTER PROGRAMS 

 

 

 

%

%

%

%

%

%

%

%

%

%

%

%

%

 

%

%

%
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% b   - waiting times from storm origin to ra  cells 

% L   - duration of rain cell 

% x   - intensities 

 

% C = [x x x x] --> storm sequence 

% b or l or epsilon = [ x x x    | --> cell sequence (C) 

                       x x x    |  

                       x x x ] storm sequence 

%  

 

 To start simulation, please type NSRP in Matlab command window. 

  

 Please make sure the files had copy into your ...\Matlab6p1\work before start running 

un simulation. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       

epsilon = 4.35301;      

7907; 

ts calculation per hour 

in

%

%

%

%

%

%  

%

simulation. 

% 

% 

% Note: This file require another function mixexprnd.m to r

%  

%%%%%%%

% Clear all memory 

clear all 

% EXAMPLE  

% Parameter value 

%lambda  = 1/0.0499995;   

%n       = 1/1.82966;      

%v       = 2.02527;       

%

%alfa    = 0.95

%theta   = 37.7444;      

% Time resolution: total poin
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sampling_rate = 1000 % /hour 

% Set the tmax 

clc 

fprintf('\n------------------------ NSRP Rainfall Simulation ------------------------\n\n'); 

number of storms you want to run NSRP 

 key in the total times in hour you want to run NSRP 

ger 

Part 1: Generate random waiting time between storm origins (exponential 

 = exprnd(lambda,1,storm); 

= []; 

1) < total_hours 

a_rnd = exprnd(lambda); 

a1(i) = ta_rnd; 

; 

(1,storm); 

m); 

ndom number of rain cells per storm (Poisson Distribution) 

ndom waiting times from storm origin to rain cells 

%storm = input    ('Please key in the 

simulation: '); 

total_hours = input('Please

simulation: '); %total_hours must be inte

 

% 

function) 

%ta

ta1 

i=1; 

while sum(ta

    t

    t

    i=i+1; 

end 

 

storm = length(ta1)-1

ta = zeros

ta(:) = ta1(1:stor

 

clear ta_rnd ta1; 

 

% Part 2: Generate ra

C = poissrnd(v,1,storm); 

 

% Part 3: Generate ra

(exponential distribution) 
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cmax = max(C)   ;        % largest C 

max);    % define mxn maxtrix b 

storm,1:cmax) = -1; 

iting_time = exprnd(beta,1,C(i)); 

nd 

ell_waiting_time; 

: Generate random duration for each rain cell (exponential distribution) 

nes(storm,cmax);    % define mxn maxtrix L 

    % generate durations 

ll_duration = exprnd(n,1,C(i)); 

i,1:C(i)) = rain_cell_duration(1:C(i)); 

  i=i+1; 

on; 

ate random intensities for each rain cell (exponential distribution) 

 = ones(storm,cmax);    % define mxn maxtrix x 

hile i <= storm        % generate intensity 

xprnd(alfa,epsilon,theta,C(i)); 

b = ones(storm,c

b(1:

i = 1; 

while i <= storm        % generate waiting times 

    rain_cell_wa

    b(i,1:C(i)) = rain_cell_waiting_time(1:C(i)); 

    i=i+1; 

e

 

clear rain_c

 

% Part 4

L = o

L(1:storm,1:cmax) = -1; 

i = 1; 

while i <= storm    

    rain_ce

    L(

  

end 

  

clear rain_cell_durati

 

% Part 5: Gener

x

x(1:storm,1:cmax) = -1; 

i = 1; 

w

    %rain_cell_intensity = exprnd(epsilon,1,C(i)); 

    rain_cell_intensity = mixe
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    x(i,1:C(i)) = rain_cell_intensity(1:C(i)); 

%%%%%%%%%%%%%%%%%% 

ition = zeros(1,storm); 

; 

 = 0; 

ine the storm's time position (hour)  

  to = to + ta(i); 

 

 i <= storm 

 rain_cell_position_m(i,1:C(i)) = storm_position(i)+b(i,1:C(i)) ; 

nd 

i <= storm 

er) = rain_cell_position_m(i,1:C(i)); 

    i=i+1; 

end 

 

clear rain_cell_intensity; 

%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate storm_position 

storm_pos

i = 1

to

while i <= storm        % determ

  

    storm_position(i) = to; 

    i=i+1; 

end 

 

clear to; 

% Calculate rain_cell_position 

rain_cell_position_m = zeros(storm,cmax);

i = 1; 

while

   

    i=i+1; 

e

rain_cell_position = zeros(1,sum(C)); 

i =1; 

counter = 0; 

while 

    rain_cell_position(counter+1:C(i)+count

    counter = counter + C(i); 

    i=i+1; 
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end 

 

clear rain_cell_positon_m 

i <= storm 

ion(counter+1:C(i)+counter) = L(i,1:C(i)); 

sity = zeros(1,sum(C)); 

=1; 

 0; 

C(i)); 

ter = counter + C(i); 

 counter; 

%%%% clear %%%%%%%%% 

; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Calculate Total_intensities 

duration = zeros(1,sum(C)); 

i =1; 

counter = 0; 

while 

    durat

    counter = counter + C(i); 

    i=i+1; 

end 

 

inten

i 

counter =

while i <= storm 

    intensity(counter+1:C(i)+counter) = x(i,1:

    coun

    i=i+1; 

end 

 

clear

 

%%%

clear ta x b L

%%%%%%%%%

% Calculate Total_intensities  % 

%%%%%%%%%%%%%%

t=0; 
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i=0; 

clear storm_position; 

pling_rate+1; 

otal_intensities = zeros(1,length_t); 

ain_cell_position(j)*sampling_rate+1; 

(tstart); 

pling_rate+1; 

if tstop > length_t 

         tstop = length_t;        % limit the tstop to the longest simulation time  

tensities(tstart:tstop)= Total_intensities(tstart:tstop)+intensity(j); 

 rain_cell_position intensity duration 

tensities per hour 

tensities_per_hour = []; 

_intensities(i); 

length_t = total_hours*sam

T

    j=1; 

    while j <= sum(C) 

         

        tstart = r

        tstart = round

        tstop = (rain_cell_position(j)+duration(j))*sam

        tstop = round(tstop); 

         

        

  

        end 

         

        Total_in

        j=j+1; 

         

    end     

 

clear

 

% Calculate in

in

sub_Total_intensities = []; 

i=1; 

while i <= sampling_rate+1 

    sub_Total_intensities(i) = Total

    i=i+1; 

end 
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intensities_per_hour(1)= 1/sampling_rate*sum(sub_Total_intensities); 

ounter = 2; 

 hour_counter <= total_hours 

te 

ub_Total_intensities(i) = Total_intensities(sampling_rate*(hour_counter-1)+i+1); 

ensities_per_hour(hour_counter)= 1/sampling_rate*sum(sub_Total_intensities); 

Simulation Result Display 

 Result ----------------------------\n\n'); 

rintf('Rainfall amount hourly (mm)\n\n'); 

% open txt file to save data 

hours 

sities_per_hour(hour_counter)~=0 

 

if total_hours > 1 

  hour_c

  

  while

      sub_Total_intensities = []; 

      i=1; 

       

      while i <= sampling_ra

        s

        i=i+1; 

      end 

 

      int

      hour_counter=hour_counter+1; 

       

  end 

end 

%

fprintf('\n--------------------------- Simulation

fp

hour_counter=1; 

 

fid = fopen('data.txt','w');    

 

while hour_counter <= total_

     

    if inten
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    fprintf(fid,'%d hour: %2.8g\n',hour_counter, intensities_per_hour(hour_counter));  % 

  fprintf('%g hour: %g\n',hour_counter, intensities_per_hour(hour_counter)) 

 hour_counter=hour_counter+1; 

); 

tf('\nNote 1: The number of hour not shown is 0mm\n\n'); 

een saved to data.txt - Please open it using Wordpad\n\n'); 

MCME Hourly Simulation 

tation period. 

ialize 

 Load data file 

o1 = 1; 

%  

save data to file 

  

    end 

     

   

end 

 

fclose(fid

fprin

fprintf('Note 2: The data had b

%%%%%%%%%%%%%%%%%%%% Program End %%%%%%%%%%%%%% 

 

2. 
 

%% Compares parameters for every month estimated through SCE with 

%% parameters of generated precipi

 

% Init

 

clear 

S = rand('state'); 

 

load pre17.dat; %

 

%%-- Separate to two sets of 15 years --%% 

 

% j = length(pre15); 

% n

% no2 = 1; 
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% for k = 1:j 

%     if pre15(k,1)<16 

 no1 = no1+1; 

  else 

     no2 = no2+1; 

     end 

%-- Mixed Exponential Parameters for 1st 15 years --%% 

esult_obs]=stat_descriptive_monthly(pre17); 

  [para(i,:)] = para_SCE(pre_month(:,:,i), [0.2 4 12]); % SCE Optimization 

ij(i,2)] = para_transprob(pre_month(:,:,i)); 

  

para(:,1:3)]; 

arameters]= para_FOURIER(parameters); 

es Matrix --%% 

eriod_synth = time_sim(10,4,1,1,1); 

%-- Run 100 Simulations and Calculate Parameters for All Runs --%% 

0 

,sum(100*clock))   

 Use newton-raphson to approximate rainfall with random number generation 

%         first15(no1,:) = pre15(k,:); 

%        

%   

%         last15(no2,:) = pre15(k,:); 

%    

%

% end 

%  

% clear j k no1 no2 

%%-- Estimate Monthly Transitional Probabilities and  

%

pre_month = arrange_monthly(pre17); 

[r

for i=1:12 

     

  

    [pij(i,1), p

  

end 

parameters = [pij 

[p

%%-- Create Synthetic Time Seri

p

prev_state = 1; 

%

result_ans=[]; 

for run = 1:5

  rand('state'

    %
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    precip_synth(:,:,run) = precipsim_newton(period_synth, parameters, prev_state); 

,run) = precip_sim(period_synth, parameters, prev_state);  

y(precip_synth(:,:,run)); 

ans;result]; 

nth(:,:,run)); 

onth = arrange_monthly(precip_synth(1:j,:,run)); 

i=1:12 

  [para(i,:)] = para_SCE(synth_month(:,1:5,i), [0.2 1 12]); % SCE Optimization 

] = para_transprob(synth_month(:,1:5,i));     

:,1:3)]; 

p_synth); 

PlotStatDes(result_ans,result_obs); 

:) = parameters_synth(:,3,:); 

:) = parameters_synth(:,4,:); 

); 

:,5,run)]; 

        %precip_synth(:,:

    [result]=stat_descriptive_monthl

    result_ans =[result_

     

    % Compare new parameters 

    j = length(precip_sy

    synth_m

      for 

      

        [pij(i,1), pij(i,2)

    end 

   

    parameters_synth(:,:,run) = [pij para(

    %result_synth(:,:,run)= stat_descriptive(preci

end 

Box

p00(:,:) = parameters_synth(:,1,:); 

p10(:,:) = parameters_synth(:,2,:); 

p(:,

u1(:,

u2(:,:) = parameters_synth(:,5,:

p00 = p00'; 

p10 = p10'; 

p = p'; 

u1 = u1'; 

u2 = u2'; 

sim50 = []; 

for run = 1:50 

    sim50 = [sim50 precip_synth(

end 
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 boxplot_comp % compare simulated data to observed 

 obs = pre17(:,5); 

 sim = sim50; 

save sim50 sim obs 

start leap period pre_month synth_month prev_state 

 

clear pij para paraML period_synth 

i j run 
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APPENDIX H 
 

 

C++ PROGRAM TO CALCULATE THE 
FORECAST OF THE RAINFALLS USING THE MARIMA MODEL 

 

rogram.h

 

CODING FOR MICROSOFT VISUAL 

 

 

P  

include <afxwin.h> 
include <afxcmn.h> 

 
include <math.h> 

define IDC_BUTTON 500 
define m 680 //number of data used 
define n 10 
define v 2 
define w 1 

lass program : public CFrameWnd 

rotected: 
idc,flag,p; 

double h,*a,*b,*c; 
double cov[v+1][v+1], covlag[v+1][v+1], invcov[v+1][v+1], 

racovlag[v+1][v+1], phi[v+1][v+1], er[v+1], 
[v+1],d[v+1],e[v+1],obs[v+1],r[v+1]; 

CListCtrl table,table2; 
CPoint px,pg,home1,home2,end1,end2,hBox1,hBox2; 
CEdit eBox1,eBox2; 
CStatic sBox1,sBox2,sBox3,sBox4,fileBox; 

strFile; 
CButton bnDraw; 

BoxSize; 
typedef struct 
{ 
 double x,y; 
} PT; 
PT *pt,max,min,left,right; 

public: 

 
#
#
#include <afxdlgs.h> 
#
#include "resource.h" 
#
#
#
#
#
 
 
c
{ 
p
 int 
 
 
t
x
 
 
 
 
 CString 
 
 CSize 
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 program(); 

void ShowTable(); 
afx_msg void OnPaint(); 
afx_msg void OnPolynomial(); 
afx_msg void OnFileOpen(); 
afx_msg void OnExit(); 

 afx_msg void OnForecast
 DECLARE_MESSAGE_MAP() 
}; 
 
class CMyWinApp : public CWinApp 
{ 
public: 

}; 
Progra

 ~program(); 
 
 
 
 
 

(); 

 virtual BOOL InitInstance(); 

m.cpp 
 
include "program.h" 

MyWinApp  MyApplication; 

App::InitInstance() 

 new program; 
me;
(S SHOW); 
ow(); 

MAP(program,CFrameWnd) 
AINT() 
AND(ID_FILEOPEN,OnFileOpen) 

ON_COMMAND(ID_EXIT,OnExit) 
lynomial) 

DOW, 

#
 
C
 
OOL CMyWinB
{ 
    program* pFrame =
    m_pMainWnd = pFra  
    pFrame->ShowWindow W_
    pFrame->UpdateWind
    return TRUE; 
} 
 
BEGIN_MESSAGE_
 ON_WM_P
 ON_COMM
 
    ON_BN_CLICKED(IDC_BUTTON,OnPo
END_MESSAGE_MAP() 
 
program::program() 
{ 
 Create(NULL,"Code25D: Menus and file I/O",WS_OVERLAPPEDWIN
  CRect(0,0,800,600),NULL,MAKEINTRESOURCE(IDR_MENU1)); 
 pt=new PT [m+1]; 
 idc=400; flag=0; p=m-1; 
 home1=CPoint(5,50); end1=CPoint(900,250); 
 home2=CPoint(5,300); end2=CPoint(900,500); 
 hBox1=CPoint(100,550); hBox2=CPoint(200,550); 
 BoxSize=CSize(1,1); 
 a=new double [p+1]; 
 b=new double [p+1]; 
 c=new double [p+1]; 
 er[1]=0; 
 er[2]=0; 
} 
 
program::~program() 
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{ 
 delete pt; 
} 
 
void program::OnPaint() 
{ 
 CPaintDC dc(this); 
 CString str; 
 CRect Box; 
 CFont fontTimes; 

ted and the forecast 
if (flag==1 || flag==2 ) 

 fontTimes.CreatePointFont(90,"Arial"); 
c.SelectObject(fontTimes); 

 str.Format("Model Parameters"); 
(home1.x+10,home1.y-30,str); 
("%lf  %lf",phi[1][1],phi[1][2]); 

1.x+10,home1.y,str); 
  %lf",phi[2][1],phi[2][2]); 

0,home1.y+20,str); 
]); 

; 

r); 

d program::OnPolynomial() 

,meanx1m; 

(RGB(255,255,255)); 

 1 

+) 
]; 
+1); 

m3=0; 
<=p;i++) 

  sum3+=((a[i]-meanxm)*(a[i]-meanxm)); 
=sum3/(p+1); 
m4=0; 

 
 // show the parameter estima
 
 { 
 
 
  d
 
  dc.TextOut

 str.Format 
  dc.TextOut(home

 str.Format("%lf 
  dc.TextOut(home1.x+1

 str.Format("%lf",x[1 
  sBox3.SetWindowText(str)

lf",x[2]);   str.Format("%
  sBox4.SetWindowText(st
 } 
} 
 
oiv
{ 

  CClientDC dc(this);
 CRect rc; 
 CString str; 
 int i,j,k; 

1],x2[v+1];  double x1[v+
double meanxm 

 
CBrush bkBrush 

 rc=CRect(home1.x,home1.y-50,end2.x,end2.y+10); 
 dc.FillRect(&rc,&bkBrush); 
 
 //covariance and covariance lag
  double sum1=0; 
  for(i=0;i<=p;i++) 
   sum1+=a[i]; 
  meanxm=sum1/(p+1); 

   double sum2=0;
  for(i=0;i<=p;i+
   sum2+=b[i

sum2/(p  meanx1m=
  double su

 for(i=0;i 
 
  cov[1][1]
  double su
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  for(i=0;i<=p;i++) 
=((a[i]-meanxm)*(b[i]-meanx1m)); 

 cov[1][2]=sum4/(p+1); 
 cov[2][1]=cov[1][2]; 

; 
 for(i=0;i<=p;i++) 

meanx1m)*(b[i]-meanx1m)); 
1); 

 
+1); 

 for(i=0;i<=p-1;i++) 
 

[i+1]-meanx1m)); 

vcov[1][1]=cov[2][2]/(cov[1][1]*cov[2][2]-
[2][1]); 

 invcov[1][2]=-cov[1][2]/(cov[1][1]*cov[2][2]-

[2][1]/(cov[1][1]*cov[2][2]-

2]=cov[1][1]/(cov[1][1]*cov[2][2]-

i 

   phi[i][j]=0; 
) 

= covlag[i][k]*invcov[k][j]; 

 the MARIMA model   

tr); obs[1]=atof(str); 

   sum4+
 
 
  double sum5=0
 
   sum5+=((b[i]-

5/(p+  cov[2][2]=sum
 
  double sum6=0; 
  for(i=0;i<=p-1;i++) 
   sum6+=((a[i]-meanxm)*(a[i+1]-meanxm));
  covlag[1][1]=sum6/(p

uble sum7=0;   do
 
   sum7+=((b[i]-meanx1m)*(a[i+1]-meanxm));
  covlag[1][2]=sum7/(p+1); 
  double sum8=0; 
  for(i=0;i<=p-1;i++) 
   sum8+=((a[i]-meanxm)*(b[i+1]-meanx1m)); 
  covlag[2][1]=sum8/(p+1); 
  double sum9=0; 
  for(i=0;i<=p-1;i++) 
   sum9+=((b[i]-meanx1m)*(b
  covlag[2][2]=sum9/(p+1); 
 
  //inverse covariance 
  in

[1][2]*covcov
 
cov[1][2]*cov[2][1]); 

 invcov[2][1]=-cov 
cov[1][2]*cov[2][1]); 
  invcov[2][
cov[1][2]*cov[2][1]); 
 
 
  //estimate parameter ph
  for (i=1; i<=v; i++) 
  { 
   for (j=1;j<=v;j++) 
   { 
 
    for (k=1;k<=v;k++
        phi[i][j] +
   } 
  } 
   
 
 //calculate the forecast using
 if(p>m) 
 { 
  eBox1.GetWindowText(s
  eBox2.GetWindowText(str); obs[2]=atof(str); 
 
  x1[1]=a[p]; 
  x1[2]=b[p]; 
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  x2[1]=a[p-1]; 
  x2[2]=b[p-1]; 
  for (i=1; i<=v; i++) 
  { 
   d[i]=0; 
   e[i]=0; 
   er[i]=obs[i]-x[i]; 
   r[i]=x[i]; 
   for (j=1;j<=v;j++) 

w.DestroyWindow(); fileBox.DestroyWindow(); 
ow(); 

dow(); 
| 

_CENTER | SS_SIMPLE,  
    CRect(hBox1.x,hBox1.y-

  

x.y=b[i]; 

ateRect(rc); 
 ShowTable(); 

==3) 

 CBrush whiteBrush(RGB(255,255,255)); 
hiteBrush); 

   { 
      d[i] += phi[i][j]*x1[j]; 
     e[i] += phi[i][j]*x2[j]; 
   } 

-e[i];    x[i]=x1[i]+d[i]
   if(x[i]<0) 
   { 
    x[i]=0; 
   } 
  } 
  a[p+1]=obs[1]; 
  b[p+1]=obs[2]; 
 } 
 p=p+1; 
 
 
 
 if (flag<=3) 
 { 
  if (flag==2 || flag==3 ) 
  { 
   bnDra
   eBox1.DestroyWindow(); eBox2.DestroyWind
   sBox1.DestroyWindow(); sBox2.DestroyWindow(); 
   sBox3.DestroyWindow(); sBox4.DestroyWin
   fileBox.Create(strFile,WS_CHILD | WS_VISIBLE 
SS
 
30,hBox1.x+120,hBox1.y-10),this,idc++); 
  } 
  max.y=0;
  for (i=0;i<=m;i++) 
  { 
   if (max.y<a[i]) 
    max.y=a[i]; 
   if x.y<b[i]) (ma
    ma
  } 
  Invalid
 
 
 } 
 if (flag
 { 
  GetClientRect(&rc); 
 
  dc.FillRect(&rc,&w
 } 
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} 
 
//show the table 
void program::ShowTable() 

_DLGFRAME | LVS_REPORT 
,rcTable,this,idc++); 

; 
,"station2",LVCFMT_CENTER,80); 

;i++) 

",c[i]); 
 

str.Format("%lf",a[i]); 

t("%lf",b[i]); 
ext(i,2,str); 

 

if(p==m) 
{ 

t(10,100,600,500); 
estroyWindow(); 

D | WS_DLGFRAME | LVS_REPORT 
HEADER,rcTable2,this,idc++); 

(5,"station1(er)",LVCFMT_CENTER,90); 
TER,90); 

; table2.SetItemText(p-m-

 table2.SetItemText(p-m-

r.Format("%lf",r[1]); table2.SetItemText(p-m-

lf",r[2]); table2.SetItemText(p-m-
4,str); 

rmat("%lf",er[1]); table2.SetItemText(p-m-

str.Format("%lf",er[2]); table2.SetItemText(p-m-

{ 
 CString str; 
 CRect rcTable=CRect(620,20,840,540); 
 table.DestroyWindow(); 
    table.Create(WS_VISIBLE | WS_CHILD | WS
        | LVS_NOSORTHEADER
 ta Inse Co (0,"day",LVCFMT_CENTER,30)ble. rt lumn ; 
 table.InsertColumn(1,"station1",LVCFMT_CENTER,80)
 table.InsertColumn(2
 
   for (int i=0;i<=m
   { 
    str.Format("%d
table.InsertItem(i,str,0);
    
table.SetItemText(i,1,str); 
    str.Forma
table.SetItemT
   }
 
 
 
 CRect rcTable2=CRec
 table2.D
  ta e2.C  bl reate(WS_VISIBLE | WS_CHIL

        | LVS_NOSORT
 table2.InsertColumn(0,"day",LVCFMT_CENTER,40); 
 table2.InsertColumn(1,"station1",LVCFMT_CENTER,90); 
 table2.InsertColumn(2,"station2",LVCFMT_CENTER,90); 
 table2.InsertColumn(3,"station1(p)",LVCFMT_CENTER,90); 
 table2.InsertColumn(4,"station2(p)",LVCFMT_CENTER,90); 
 table2.InsertColumn
 table2.InsertColumn(6,"station2(er)",LVCFMT_CEN
 } 
 if(p>m+1) 
 {  
 
   str.Format("obs"); table2.InsertItem(p-m-2,str,0); 
   str.Format("%lf",a[p])
2,1,str); 
   str.Format("%lf",b[p]);
2,2,str); 
   st
2,3,str); 
   str.Format("%
2,
   str.Fo
2,5,str); 
   
2,6,str); 
 } 
} 
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void program::OnForecast() 

ow(); fileBox.DestroyWindow(); 
(); eBox2.DestroyWindow(); 

); 
(); 

 | 

n2",WS_CHILD | WS_VISIBLE | SS_SUNKEN | 

ox2.y-30,hBox2.x+60,hBox2.y-

EN | SS_CENTER,  

0,hBox1.x+60,hBox1.y+70),this,idc++); 
LD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,  

Box2.y+50,hBox2.x+60,hBox2.y+70),this,idc++); 
S_CHILD | WS_VISIBLE | WS_BORDER, 

,idc++); 
IBLE | WS_BORDER, 

dal()==IDOK) 

e=FileDlg.GetFileName(); 

 fscanf(ifp,"%d %lf %lf",&c[i],&a[i],&b[i]); 

flag=2; 

x[2]=b[m]; 

OnForecast(); 

OnExit() 

OnExit(); 

{  
 bnDraw.DestroyWind
 eBox1.DestroyWindow
 sBox1.DestroyWindow(); sBox2.DestroyWindow(

DestroyWindow sBox3.DestroyWindow(); sBox4.
 bnDraw.Create("Forecast",WS_CHILD | WS_VISIBLE | 
BS_DEFPUSHBUTTON, 
        CRect(300,550,440,580),this,IDC_BUTTON); 
 sBox1.Create("station1",WS_CHILD | WS_VISIBLE | SS_SUNKEN
SS_CENTER,  

 CRect(hBox1.x,hBox1.y-30,hBox1.x+60,hBox1.y- 
10),this,idc++); 
 sBox2.Create("statio
SS_CENTER,  
  CRect(hBox2.x,hB
10),this,idc++); 
 sBox3.Create("",WS_CHILD | WS_VISIBLE | SS_SUNK
 
 CRect(hBox1.x,hBox1.y+5

HI sBox4.Create("",WS_C
 
 CRect(hBox2.x,h

eate(W eBox1.Cr
  CRect(CPoint(hBox1),CSize(70,25)),this
 eBox2.Create(WS_CHILD | WS_VIS
  CRect(CPoint(hBox2),CSize(70,25)),this,idc++); 
 flag=1; 
} 
 
void program::OnFileOpen() 
{ 
 CString strFilter="|*.*|"; 
 CFileDialog FileDlg(TRUE,"",NULL,0,strFilter); 
 FILE *ifp; 
 
 if (FileDlg.DoMo
 { 

 strFil 
  ifp=fopen(strFile,"r"); 
  for (int i=0;i<=m;i++) 
  
  fclose(ifp); 
  
  obs[1]=a[m]; 
  obs[2]=b[m]; 
  x[1]=a[m]; 
  
  OnPolynomial(); 
  
 } 
} 
void program::
{ 
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APPENDIX I 
 

 

 

USER INTERFACE FOR THE MICROSOFT VISUAL C++ PR
C

OGRAM TO 
IMA 

 Star

CAL ULATE THE FORECAST OF THE RAINFALLS USING THE MAR
MODE 

 

l 
 

1. ting windows for the program 
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2. Open menu 

 

Open menu

 
3. Open the data 

 

the data file 
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4. Starting of the forecast process  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Parameters estimated

Table of data 
used in the 
forecast 

Table of 
forecast results 

Key in the 
observed value 

After key in the observed 
value, push this button to get 
the next forecast value 

Forecasted 
value 
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5. Results 

 

Newly estimated parameters

Table of 
sults forecast re

Key in the 
lue observed va

Forecasted 
value 

6. Exit menu 

 

Exit menu 
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APPENDIX J 
 
 
 

HOURLY RAINFALLS INTENSITY DATA USED TO FORECAST THE 
RAINFALLS INTENSITY 

 
 
 

Study Case 1: Station Empangan Genting Kelang (3217002) and station Km.11  
Gombak (3217003) (from 0100 hour, 1st April 2002 to 0800 hour,      
29th April 2007) 

 
Days 3 217003 Days 3217002 3217003 Days 3217002 3217003 217002 3

1 0 3 0 0 5 1.3 1.1 2.5 
1 0.5 0 3 0 0 5 1.4 2 
1 0 0 3 0 0 5 1.3 0.3 
1 0 0 3 0 0 5 0 0 
1 0.5 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 3 0 0 5 0 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 1.2 
1 0 0 3 0 0 5 2 0.4 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0 0 
1 0 0 3 0 0 5 0.5 0.5 
1 0 0 3 0 0 5 0.5 0.5 
1 0 0 3 0 0 5 1.5 0.5 
1 0 0 3 0 0 5 0 1 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 1 0 
2 0 0 4 0 0 6 1 0.5 
2 0 0 4 0 0 6 0.5 0.4 
2 0 0 4 0 0 6 0.5 8 
2 0 0 4 0 0 6 0 2.8 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0.5 
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2 0 0 4 0 0 6 1 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 1 6 0 0 
2 0 0 4 6 0 0 0 0 
2 0 0 4 0 6 0 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0.5 1.5 6 0 0 

 
Days 3217002 3217003 Da 3217002 3217003 ys 3217002 3217003 Days 

7 0 0 9 0 0 12 0 0 
7 0 0 9 7.3 0 12 0 0 
7 0 0 9 10.3 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 0 12 0 0 0 9 
7 0 0 0 0 12 0 0 9 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 1  2 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0 10 0 1 12 0 0 
7 0 0 10 2.9 0.5 12 0 0 
7 0 0 10 6.4 0 12 0 0 
7 0 0.1 10 0.7 0 12 0 0 
7 7 2.9 10 0.5 0 12 0 0 
7 0 0.5 10 0 0 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0.5 0 10 0 0 13 0 0 
7 1 1.5 10 0 0 13 0 0 
7 0 0 10 0 0 13 0 0 
7 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
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8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 14 0 0 
8 0 0 11 0 0 14 0 0 
8 0 0 11 0 0 14 0 0 
8 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 12 0 0 14 6.4 0.9 
9 0 0 12 0 0 14 6 1.1 
9 0 0 12 0 0 14 0.6 0 
9 0 0 12 0 0 14 0 0 

 
D  321 02 321 03 D  321 02 321 03 D  321 02 321 03 ays 70 70 ays 70 70 ays 70 70

14 0 0 17 0 0 19 0 0 
14 0 0 17 0 0 19 0 0 
14 0 0 17 0 0 20 0 0 
14 0 0 17 0 0 20 0 0 
14 0 0 17 0 0 20 0 0 
14 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0.5 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 17 0 0 20 0 0 
15 0 0 18 0 0 20 0 0 
15 0 0 18 0 0 20 0 0 
15 0 0 18 0 0 20 0 0 
15 0.5 0 18 0 0 20 0 0 
15 0 0 18 0 0 20 0 0 
15 0 0 18 0 0 20 0 0 
15 0 0 18 0 0 20 0 0 
15 0 0 18 0 0 20 0 0.2 
15 0 0 18 0 0 20 0 0.3 
15 0 0 18 0 0 20 0 0 
15 0 0 18 0 0 21 0 1 
15 0 0 18 0 0 21 0 0.5 
15 0 2  .8 18 0 0 21 0 0 
15 2 2  .2 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
16 0 0 18 0 0 21 0 0 
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16 0 0 18 0 0 21 0 0 
16 0 0 19 0 0 21 0 0 
16 0 0 19 0 0 21 0 0 
16 0 0  .5 19 0 0 21 0 0 
16 0 0 19 0 0 21 0 0 
16 0 0 19 0 0 21 0 0 
16 5 1 19 0 0 21 0 1 
16 0.5 0 19 0 0 21 0 0 
16 0 0 19 0 0 21 0 0 
16 0 0 19 0 0 21 0 0 
16 0.5 0  .5 19 0 0 21 0 0 
16 0 0 19 0 0 22 0 0 
16 0 0 19 0 0 22 0 0 
16 0 0 19 0 0 22 0 0 
16 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 

 
D  321 02 321 03 D  321 02 321 03 D  321 02 321 03 ays 70 70 ays 70 70 ays 70 70

22 2 0 25 0 0 27 0 0 
22 6.2 1  1.9 25 0 0 27 0 0 
22 1.8 0.3 14 25 0 0 27 0 
22 0 1  1.5 1.2 1.8 25 0 0 27 
22 0 0 25 0 0 27 0 0 
22 1 0 25 0 0 27 0 0 
22 1 0  .1 25 0 0 27 0 0 
22 0 1  .2 25 0 0 27 0 0 
22 0 1 25 0 0 28 0 0 
22 0 0 25 0 0 28 0 0 
22 0 0 25 0 0 28 0 0.5 
22 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 29 0 0 
23 0 0 26 0 0 29 0 0 
23 0 0 26 0 0 29 0 0 
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23 0 0 26 0 0 29 0 0 
24 0 0 26 0.5 0 29 0 0 
24 0 0 26 0 0 29 0 0 
24 0 0 26 0 0 29 0 0 
24 0 0 26 3 0.5 29 0 0 
24 0 0 26 0 0    
24 0 0 26 0 0    
24 0 0 26 0 0    
24 0 0 26 0 0    
24 0 0 26 0 0    
24 0 0 26 0.3 2.9    
24 0 0 27 5.2 7.2    
24 0 0 27 0.6 0    
24 0 0 27 0 0    
24 0 0 27 0.5 0    
24 0 0 27 0 0    
24 0 0 27 0 0    
24 0 0 27 0 0    
24 0 0 27 0 0.5    
24 0 0 27 0 0    
24 0 0 27 0 0    
24 0 0 27 0 0    
24 0 0 27 0.5 0    
24 0 0 27 0 1.2    
24 0 0 27 0 3.8    
25 0 0 27 0 0    
25 0 0 27 0 0    

 
 
 
Study Case 2: Station Emp an G ting K ng (3 002) d statio  

Kampung Kuala Saleh (3217004) (from 0100 hour, 1st April 2002 to 
0800 ur, 2 pril 07) 

 
 
 
D  321 02 32 04 s 32 02 3 04 3 02 3217004

ang en ela 217 an n 

ho 9th A  20

ays 70 170 Day 170 2170 Days 2170
1 2    .3 .5 3.4 3 0 0 5 1 0.5 
1 0.5   .4 1 0 3 0 0 5 1
1 0 0.5   .3 1 3 0 0 5 1
1 0 0 3 0 0   0 5 0
1 0.5   0 0 3 0 0 5 0 
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   5 0 0.5 
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 2
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0   0 5 0
1 0 0 3 0 0  .5 0 5 0
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1 0 0 3 0 0  .5 0 5 0
1 0 0 3 0 0  .5 0 5 1
1 0 0 3 0 0   0 5 0
2 0 0 4 0 0   0 6 0
2 0 0 4 0 0 6  0 0
2 0 0 4 0 0 6 1 0 
2 0 0 4 0 0 6 1 0.2 
2 0 0 4 0 0 6 .5 6.8 0
2 0 0 4 0 0 6 .5 0.6 0
2 0 0 4 0 0 6 0 0.5 
2 0 0 4 0 0 6 0 0.5 
2 0 0 4 0 0 6 0 1 
2 0 0 4 0 0 6 1 0.8 
2 0 0 4 0 0 6 0 0.7 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0 0 6 0 0 
2 0 0 4 0.5 5 6 0 0 0.

 
 
 
Days 3217002 3217004 Days 3217002 3217004 Days 3217002 3217004 

7 0 0 9 0 0 12 0 0 
7 0 0 9 7.3 9.8 12 0 0 
7 0 4.2 12 0 0 0 9 10.3
7 0 0.5 12 0 0 0 9 0
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 9 0 0 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0 10 2.9 4.1 12 0 0 
7 0 14.8 10 6.4 6.7 12 0 0 
7 0 16.5 10 0.7 1 12 0 0 
7 7 0.7 10 0.5 1.5 12 0 0 
7 0 0 10 0 0.5 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0 10 0 0 12 0 0 
7 0 0.5 10 0 0 12 0 0 
7 0 0 10 0 0 13 0 0 .5 
7 1 0 10 0 0 13 0 0 
7 0 0 10 0 0 13 0 0 
7 0 0 10 0 0 13 0 0 
8 0 1 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
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8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 2 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 10 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 5 11 0 0 13 0 0 
8 0 0.5 11 0 0 13 0 0 
8 0 1.9 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 13 0 0 
8 0 0 11 0 0 14 0 0 
8 0 0 11 0 0 14 0 0 
8 0 0 11 0 0 14 0 0 
8 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 0 
9 0 0 11 0 0 14 0 3 
9 0 0 11 0 0 14 0 28 
9 0 0 12 0 0 14 6.4 0.6 
9 0 0 12 0 0 14 6 0 
9 0 0 12 0 0 14 0.6 0.5 
9 0 0 12 0 0 14 0 0 

 
D  32 02 32 004 ys 3217002 3217004 ays 17002 3217004ays 170 17 Da D 32

14 0 0 7 0 0 19 0 0 1
14 0 0 7 0 0 19 0 0 1
14 0 0 7 0 0 20 0 0 1
14 0 0 7 0 0 20 0 0 1
14 0 0 7 0 0 20 0 0 1
14 0 0 7 0 0 20 0 0 1
15 0 0 7 0 0 20 0 0 1
15 0 0 7 .5 0 20 0 0 1 0
15 0 0 17  0 20 0 0 0
15 0 0 17  0 20 0 0 0
15 0 0 17  0 20 0 0 0
15 0 0 7 0 0 20 0 0 1
15 0 0 7 0 0 20 0 0 1
15 0 0 7 0 0 20 0 0 1
15 0 0 17 0 0 20 0 0 
15 0 0 7 0 0 20 0 0 1
15 0 8.5 8 0 0 20 0 0 1
15 0 0.5 8 0 0 20 0 1 1
15 0 0 8 0 0 20 0 0 1
15 0.5  8 0 0 20 0 0 0 1
15 0 0 8 0 0 20 0 0 1
15 0 0 8 0 0 20 0 0 1
15 0 0 8 0 0 20 0 0 1
15 0 0 18 0 0 20 0 0 
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15 0 0 8 0 0 20 0 0 1
15 0 0 8 0 0 20 0 0 1
15 0 0 8 0 0 21 0 0 1
15 0 0 8 0 0 21 0 0 1
15 0 0 8 0 0 21 0 0 1
15 2 0 8 0 0 21 0 0 1
16 0 0 8 0 0 21 0 0 1
16 0 0 8 0 0 21 0 0 1
16 0 0 8 0 0 21 0 0 1
16 0 0 8 0 0 21 0 0 1
16 0 0 8 0 0 21 0 0.5 1
16 0 0 18 0 0 21 0 0.5 
16 0 0 18 0 0 21 0 0 
16 0 0.5 8 0 0 21 0 0 1
16 0 0 8 0 0 21 0 0 1
16 0 0.5 8 0 0 21 0 0 1
16 0 0 9 0 0 21 0 0 1
16 0 0 9 0 0 21 0 0 1
16 0 1 9 0 0 21 0 0 1
16 0 0 9 0 0 21 0 0 1
16 0 0 9 0 0 21 0 0 1
16 5 0.5 9 0 0 21 0 0 1
16 0.5  9 0 0 21 0 0 0 1
16 0 0 9 0 0 21 0 0 1
16 0 0 9 0 0 21 0 0 1
16 0.5  9 0 0 21 0 0 0.5 1
16 0 0 9 0 0 22 0 3.9 1
16 0 0 9 0 0 22 0 1.5 1
16 0 0 9 0 0 22 0 3.5 1
16 0 0 9 0 0 22 0 0 1
17 0 0 9 0 0 22 0 0 1
17 0 0 9 0 0 22 0 0.1 1
17 0 0 9 0 0 22 0 0.4 1
17 0 0 9 0 0 22 0 0 1
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 
17 0 0 19 0 0 22 0 0 

 
Days 321 02 321 04 D70 70 ays 321 02 321 04 D70 70 ays 321 02 321 0470 70

22 2 0 25 0 0 27 0 0 
22 6  .2 0 25 0 3 27 0 0 
22 1  .8 0 25 0 2 27 0 0 
22 0 0 25 0 0 27 1.5 0 
22 0 0 25 0 0 27 0 0 
22 1 0 25 0 0 27 0 0 
22 1 0 25 0 0 27 0 0 
22 0 0 25 0 0 27 0 0 
22 0 0 25 0 0 28 0 0 
22 0 0 25 0 0 28 0 0 
22 0 0 25 0 0 28 0 0 
22 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
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23 0 0 25 0 0 28 0 0 
23 0 0 25 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0.5 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 28 0 0 
23 0 0 26 0 0 29 0 0 
23 0 0 26 0 0 29 0 0 
23 0 0 26 0 0 29 0 0 
23 0 0 26 0 0 29 0 0 
24 0 0 26 0.5 0 29 0 0 
24 0 0 26 0 0 29 0 0 
24 0 0 26 0 0 29 0 0 
24 0 0 26 3 0 29 0 0 
24 0 0 26 0 0   
24 0 0 26 0 0   
24 0 5 26 0 0   
24 0 1.5 26 0 0   
24 0 0 26 0 0   
24 0 0 26 0.3 0   
24 0 0 27 5.2 0   
24 0 0 27 0.6 0   
24 0 0 27 0 0   
24 0 0 27 0.5 0   
24 0 0 27 0 0   
24 0 0 27 0 0   
24 0 0 27 0 0   
24 0 0 27 0 0   
24 0 0 27 0 0   
24 0 0 27 0 0   
24 0 2 27 0 0   
24 0 13.5 27 0.5 0   
24 0 0 27 0 0   
24 0 0 27 0 0   
25 0 0 27 0 0   
25 0 0 27 0 0   
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APPENDIX K 
 

 
RAINFALLS FORECAST RESULTS (PRE) USING THE MARIMA MODEL WITH OBSERVED VALUE (OBS), 

FORECAST ERROR (ER) A D THE ESTIMATED PARAMETERS ( .  
 
 
 

Study Case 1: Station E
 

Days E(obs) G(obs) 

 

 

N 11α , 12α , 21α , 22α )

mpangan Genting Kelang (E) and station Km.11 Gombak (G) 

E(pre) G(pre) E(er) G(er) 11α  12  α 21α  22α  
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 -0.0166 0.0898 0.5615
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3678 -0.0166 0.0898 0.5615
29 5.2000 17.8000 0.0000 0.0000 -5.2000 -17.8000 0.3679 -0.0165 0.0899 0.5615
29 66.0000 21.7000 0.0000 0.0000 -66.0000 -21.7000 0.3679 -0.0165 0.0899 0.5615
29 7.9000 3.2000 6.2725 24.6598 -1.6275 21.4598 0.3687 -0.0475 0.0800 0.3620
29 0.0000 4.8000 68.7757 23.6321 68.7757 18.8321 0.3294 0.1982 0.0202 0.1799
29 3.8000 4.8000 0.0000 0.0000 -3.8000 -4.8000 0.1369 0.1927 0.0247 0.2754
29 11.6000 4.8000 0.0000 4.9856 -11.6000 0.1856 0.1368 0.1919 0.0321 0.2745
29 7.0000 4.8000 4.3131 4.9137 -2.6869 0.1137 0.1350 0.1936 0.0299 0.2766
29 2.7000 4.8000 12.6704 5.0290 9.9704 0.2290 0.1372 0.1950 0.0294 0.2791
29 5.2000 4.8000 6.3066 4.6485 1.1066 -0.1515 0.1507 0.1929 0.0329 0.2906
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29 4.7000 4.8000 2.0401 4.6420 -2.6599 -0.1580 0.1535 0.1926 0.0367 0.2942
29 1.0000 1.2000 5.5846 4.8904 4.5846 3.6904 0.1538 0.1940 0.0362 0.2970
29 0.0000 0.0000 4.6217 4.7813 4.6217 4.7813 0.1566 0.1944 0.0374 0.3012
30 0.5000 0.0000 0.0000 0.0000 -0.5000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.5875 0.0188 188 0.1571 0.1946 0.0376 0.30220.5875 0.0
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.30220.0000

11α  12α  21α  22α  Days E(obs) G(obs) E(pre) G(pre) G(er) E(er) 
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1946 0.0376 0.3022
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.03760.1946 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376 0.3023
30 0 0.3023.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0376
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0377 0.3023
30 0.0000 0.0000 0.0000 0.0000 0.0000  0.1 1 0.1947 0.0377 0.30230.0000 57
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1947 0.0377 0.3024
30 0.8000 0.0000 0.0000 0.0000 -0.8000 0.0000 0.1571 0.1947 0.0377 0.3024
30 4.2000 1.0000 0.0000 0.0000 -4.2000 -1.0000 0.1571 0.1947 0.0377 0.3024
30 0.0000 0.3000 0.9257 0.0302 0.9257 -0.2698 0.1571 0.1947 0.0377 0.3023
30 0.5000 1.2000 4.9288 1.4296 4.4288 0.2296 0.1574 0.1937 0.0376 0.3016
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1937 0.0376 0.3016
30 0.0000 0.0000 0.7529 1.4901 0.7529 1.4901 0.1571 0.1937 0.0375 0.3015
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1936 0.0375 0.3014
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1571 0.1936 0.0375 0.3014
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1936 0.0375 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1936 0.0375 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0375 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0376 0.3015
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1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0376 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0376 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0376 0.3016
1 0.5000 1.1000 0.0000 0.0000 -0.5000 -1.1000 0.1572 0.1937 0.0376 0.3016
1 2.0000 1.4000 0.0000 0.0000 -2.0000 -1.4000 0.1572 0.1937 0.0376 0.3016
1 0.5000 0.0000 0.7916 1.4504 0.2916 1.4504 0.1572 0.1937 0.0376 0.3015

D  ays E(obs) G(obs) E(pre) G(pre) E(er) G(er) 11α  12α  21α  22α  
1 0.0000 0.0000 2.2938 1.5466 2.2938  0.1 2 0.1936 0.0375 0.30131.5466 57
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1936 0.0373 0.3014
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1936 0.0373 0.3014
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0373 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0373 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0373 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0373 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1572 0.1937 0.0373 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1573 0.1937 0.0373 0.3015
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1573 0.1937 0.0373 0.3016

 
 
 

St se on ga ng g ( tat mp ual  (K
 

D  

udy Ca 2: Stati Empan n Genti  Kelan E) and s ion Ka ung K a Saleh ) 

ays E(obs) K(obs) E(pre) K(pre) E(er) K(er) 11α  12α  21α  22α  
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2867 0.1974 0.0204 0.2479
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2867 0.1974 0.0205 0.2479
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2867 0.1974 0.0205 0.2479
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2868 0.1974 0.0206 0.2479
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2868 0.1974 0.0206 0.2479
29 5.2000 0.0000 0.0000 0.0000 -5.2000 0.0000 0.2868 0.1974 0.0207 0.2480
29 66.0000 24.3000 0.0000 0.0000 - -66.0000 24.3000 0.2868 0.1974 0.0207 0.2480
29 7.9000 1.2000 6.6008 0.0990 -1.2992 -1.1010 0.2694 0.1967 0.0190 0.2460
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29 0.0000 0.0000 72.3596 28.6702 72.3596 28.6702 0.0916 0.0325 0.0280 0.1097
29 3.8000 2.3000 0.0000 0.0000 -3.8000 -2.3000 0.1938 0.0321 0.0108 0.1870
29 11.6000 6.2000 0.0000 0.0000 -11.6000 -6.2000 0.1934 0.0321 0.0101 0.1871
29 7.0000 0.5000 4.6056 2.7657 -2.3944 2.2657 0.1928 0.0317 0.0098 0.1862
29 2.7000 3.5000 13.2479 7.0210 10.5479 3.5210 0.1957 0.0311 0.0112 0.1881

D  ays E(obs) K(obs) E(pre) K(pre) E(er) K(er) 11α  12α  21α  22α  
29 5.2000 4.0000 5.8543 0.0000 0.6543 0 0.2084 0.1988-4.000 0.0328 0.0071
29 4.7000 3.3000 1.8842 4.0555 -2.8158 0.7555 0.2118 0.0316 0.0103 0.1999
29 1.0000 0.0000 5.7478 4.1267 4.7478 4.1267 0.2126 0.0326 0.0103 0.2017
29 0.0000 0.0000 4.5688 3.1509 4.5688 3.1509 0.2157 0.0334 0.0111 0.2050
30 0.5000 0.0000 0.0895 0.0000 -0.4105 0.0000 0.2162 0.0335 0.0105 0.2055
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.6081 0.0052 0.6081 0.0052 0.2162 0.0335 0.0104 0.2055
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2161 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2161 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2161 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0335 0.0104 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0104 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0104 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0104 0.2057
30 .20570.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2057
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2058
30 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.2 2 0.0336 0.0105 0.20580.000 16
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2162 0.0336 0.0105 0.2058
30 0.8000 1.9000 0.0000 0.0000 -0.8000 -1.9000 0.2162 0.0337 0.0105 0.2058
30 4.2000 4.6000 0.0000 0.0000 -4.2000 -4.6000 0.2162 0.0337 0.0105 0.2058
30 0.0000 0.0000 1.0368 2.2990 1.0368 2.2990 0.2162 0.0336 0.0105 0.2056
30 0.5000 0.0000 5.0248 5.1891 4.5248 5.1891 0.2158 0.0337 0.0100 0.2056
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
30 0.0000 0.0000 0.6078 0.0049 0.6078 0.0049 0.2156 0.0335 0.0098 0.2053
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30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2156 0.0336 0.0098 0.2054

D  ays E(obs) K(obs) E(pre) K(pre) E(er) K(er) 11α  12α  21α  22α  
1 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.2 7 0.0336 0.0098 0.20540.000 15
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0336 0.0098 0.2055
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0336 0.0098 0.2055
1 0.0000 0.5000 0.0000 0.0000 0.0000 -0.5000 0.2157 0.0336 0.0098 0.2055
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2157 0.0337 0.0098 0.2055
1 0.5000 0.0000 0.0168 0.6028 -0.4832 0.6028 0.2157 0.0337 0.0098 0.2055
1 2.0000 1.5000 0.0000 0.0000 -2.0000 -1.5000 0.2157 0.0337 0.0099 0.2055
1 0.5000 0.0000 0.6079 0.0049 0.1079 0.0049 0.2157 0.0336 0.0099 0.2055
1 0.0000 0.0000 2.3737 1.8226 2.3737 1.8226 0.2157 0.0334 0.0099 0.2052
1 0.0000 0.0000 0.1262 0.0000 0.1262 0.0000 0.2158 0.0334 0.0097 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0096 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0096 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0097 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0334 0.0097 0.2053
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2158 0.0335 0.0097 0.2054
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