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ABSTRACT

FUNDAMENTAL ASPECT OF 3D SPATIAL OBJECTSVALIDATION VIA
SET AND EULER THEORIES

(Key words: 3D spatial objects, DBMS set theory, and Euler theory)

This research attempts to explore two mathematicd theories, namdy, st and Euler
theories for vdidation of 3D spatid objects which were generated or constructed
from triangular irregular network. The rdationship between the theories and spatid
database development of the objects dso investigated. Vdidatiing of 3D objects was
restricted to 3D solid only, other primitives of vdidation such as solid and surface,
solid and line, etc are not part of the sudy. The vaidation process of the 3D objects
was caried out by developing a computer program based on C++ and couple with
open source DBMS such as PostgreSQL. The results show that the theories could be

utilised for vaidating 3D spatid objects.
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CHAPTER |

INTRODUCTION

1.1 General Introduction

Nowadays, 2D GISs are common. 2D dataset involves in the geometrical
modeling and spatial relationships are also well defined. In most of the tasks related
to any 2D GIS applications are quite straightforward and can be solved in a very
efficient manner (Abdul-Rahman, et al. 1998). However, some applications which
involve the third dimension, such as geologic & geo-science explorations,
meteorology, underground construction or even seabed profiling need 3D GIS. The
available 2D GIS tools are no longer sufficient to represent the real world. If one
insists to apply 2D tools into 3D situations, this definitely will limits the scientific
work either in term of visualization of the volumetric object or even data
manipulation for 3D analysis. The limitations of current 2D GIS for 3D Situations
have been discussed by severa authors such as Smith & Paradis (1989), Verbree et
al. (1999), Taylor (2000), and Zlatanova et al.(2004). For example, any 2D display
tools are unable to make use of 3D datasets and provide 3D environment view due to
the absent of the 3 dimension. Besides, 3D datasets only are treated as 2D data in
terms data manipulation. With all these issues, the third dimension should be added
into 2D GIS in order to solve these problems. Yet, Zlatanova (2000) stated that the



3D conceptual spatial model, topological relationships, data collection, and spatial

andys's might comprise awide spectrum of questions.

With these efforts, the possibility of implementing set and Euler theories in
3D GISis obvious and could be done by extending the existing 2D spatial data type
to 3D. Therefore, some important questions are raised:

1). What are the fundamental set and Euler theories that can be
implemented for 3D spatial modeling?
2). How to implement the set and Euler theorieswithin DBM S?

Therefore, from the foregoing discussion, it can be seen that many issues
need to be investigated. In this project, only part of the problems attempt to be
investigated, that is to investigate the possibility of set and Euler theories for 3D GIS
within DBMS environment. First, a new 3D data type, i.e. polyhedron, will be
defined, which implements the set theory for object primitives and features. Later on,
the 3D topological data structure will be designed within geo-DBMS (in this context,
PostGIS (2006) is used). The 3D spatial object will be validated using the Euler
theory. Recall the ultimate goal of this research is to develop 3D spatia spatial
modelling using set and Euler theories, 3D visualization is out of the scope of this

research.

1.2 Problem Statement and M otivation

Topology deals with object’s semantics and relationship, either within feature
itself or with other feature objects. Topological properties are those that are invariant
to topological transformations, i.e. those properties, which do not change after

transformations like rotation, trandation, scaling, and rubber sheeting. Topology can



be considered the most primitive kind of spatial information, since a change in
topology implies a change in other geometric aspects, while the opposite is not true.
The strength of topology comes from its mechanism, which able to reduce redundant
data, provide object relationship for topological anaysis (spatial query). Besides,
other useful application is to accelerate/skip the computational geometry process.
This could be accomplished as feature instances and geometric object instances are
associated explicitly. This method manages to produce fast topological query
because the geometrical calculations such containment (point-in-polygon), which is
computationally intensive process is not involved. The combinatorial structures,
which known as topological complexes are implemented to convert computational
geometry algorithms into combinatorial agorithms. The methodology of combining
topological primitives, i.e. nodes, edges, or faces, to construct a topological complex,
e.g. solid, will be involved into combinatoria algorithms. In GIS, topology is
commonly used in DBMS in order to enhance the functionalities of topologica

andyss, eg. object’s congtruction and validation, reationship, etc.

The 3D spatial data modeling that implement set and Euler theories for
topologica structure are not available n DBMS. Two researches had been done in
creating new 3D data types in DBMS: 3D polyhedron (Arens, 2003) and 3D
freeform object (Pu, 2005). Both user-defined data types were designed and mapped
into DBMS using external program. However, the 3D spatial data modeling does not
implement the set and Euler theories. The implementations of both theories are

important for topologica data Structure and data type validation.

1.3  Research Objectives

To answer the questions raised from section 1, the research direction should
be referred to the 3D spatial data modeling implementing set and Euler theories.

Therefore, the objectives of the research are:



1.4

1.5

Since the 3D gpatial data modeling implementing the set theory is rather
limited within DBMS, the research is to investigate the possibility of
developing 3D topologicd data structure within the DBM S environment;

Since validation function that implements Euler theory is important to
validate the correct input data, the research also investigates the Euler theory
to vaidate the defined 3D spatid data type from the topologica sructure.

Resear ch M ethodology

The methodologies of the research are to:

Implement the C language to create new user-defined data type for 3D object,
3D polyhedron for topological data structure. The data structure will
implement the set theory that will ensure the produced 3D spatial data type
could be used for an input vdidation function.

Validate the produced 3D spatia object from the 3D topologica data
structure using the Euler theory. The rule for the validation function should
clearly define the valid 3D spatia object within DBM S environment.

The design is mapped using the C language (3D validation function) into
DBMS. The Linux operating system and PostgreSQL will be implemented.
Visudlize the 3D spatia object using ESRI ArcGIS module.

Resear ch Scope

The research concentrates on 3D spatial operations for DBMS. Several

fundamental condderations outline the area of research as follows:



1.6

1.7

Since the research is focused on geometrical and topological models, the data
structure (in defining a new 3D data type) of both models will be discussed
extengvely.

Since the absent of 3D data type in DBMS, the research aims to create a new
user-defined data type for 3D gpatial object, 3D polyhedron. With this effort,
C language is used to define the new data type, whereas PostgreSQL will be
used to provide the DBM S environment.

Since the absent of validation function that implement Euler theory for 3D
gpatial data type in LBMS, the research will attempt to create a validation
function to vaidate the data input for 3D spatid object.

Questions related to data collection, dataset preparation, and 3D visualization

are not treated explicitly in the research.

I ssuesto be Considered

How to implement the set theory for 3D topological data structure for 3D
gpatid data moddling?

How to implement the Euler theory for validating the designed 3D spatial
datatype, i.e. polyhedron?

Organization of Thess

This report may be divided into four major parts. Part one includes the

introduction, the elaboration of the status and prospects of 3D spatial data modeling

for DBMS. This part comprises chapters 1, 2, and 3. The second part reports the



background theories of set and Euler theories. This part focuses on the supported
theories for 3D spatial data modeling. This part is included in the chapters 4. The
third part is the implementation and testing phase. It demonstrates how the design of
3D data type came into practice and explains the validation function for 3D spatial
data object. This part includes chapter 5. Finaly chapter 6, the concluding part,
summarizes the most important achievements of the report.

Chapter 1 discusses the introduction for research. The chapter also discussed
in brief the current DBMS status with respect to the defined scope is given, leading
to the identification of the remaining problems and the objectives of the research.

Chapter 2 discusses the existing DBMS in general. A detailed review of
current DBMS status is carried out, in term of spatial aspect, and data model. The
research aso selects one existing module as a DBMSS platform.

Chapter 3 relates some reviews of OGC standard for 3D spatial data
modeling. The standards include abstract specification and implementation issues for
DBMS.

Chapter 4 discusses the background theory relating to the set and Euler
theories. The theories will be used to extend the existing 2D spatial data modeling to
3D. The validation function that implements the Euler theory also being included in
this chapter.

Chapter 5 discusses the aspects of the approach in developing 3D spatial data
and topologica structure implementing the set theory. The data structure for user-
defined 3D datatypein DBMS s dso mentioned in this chapter.



Chapter 6 concludes with the maor findings of the research and

recommendations of issues for future research.

1.8  Expected Findingsand Contributions

The contributions to knowledge as aresult of thisresearch are:

Investigation of 3D spatia data modelling implementing set for topologica
data Sructure, and Euler theory for vaidation function within geo-DBMS
environmen.

Documentation of a methodology for the 3D spatial data modding for 3D
GlS.

Thefindings and contributions of thisthesis are applicable and ussful to:

Commercid DBMSfor 3D GIS

1.9 Conclusion

This study was motivated by the need to address issue such as. What are the
important 3D spatial data modelling issues should be discussed? Does that apply in
any 3D topological data structure? Hence, this study creates new user-defined data
type for 3D spatia object, polyhedron, in DBMS environment. Comprehensively, the
approach of developing 3D spatial data modelling implementing set and Euler
theories within DBMS environment will be described. The entire procedures related
to the databasing, validation function, and the experiment will be presented.



CHAPTERIII

DBMS

2.1 I ntroduction

The second stage of the research dtarted with a review existing DBMSs, in terms
of ther characterigtics and functiondities in managing data A daabase management
system (DBMS), or database manager, is a program that lets one or more computer users
create and access data in a database. The DBMS manages user requests (and requests
from other programs) so that users and other programs are free from having to
understand where the data is physicdly located on storage. In handling user requests, the
DBMS ensures the integrity of the data (that is, making sure it continues to be accessble
and is conggently organized as intended) and security (meking sure only those with
access privileges can access the datd). The most typicad DBMS is a relationd database
management system (RDBMS). A newer kind of DBMS is the object-oriented database
management system (ODBMS). Common DBMS implements a sandard user and
program interface, called Structured Query Language (SQL) to execute users request.



2.2 DBMSin General Terminology

The database management system, or DBMS, is a computer software program
that is designed as the means of managing dl databases that are currently ingtdled on a
sysem hard drive or network. Different types of database management systems exig,
with some of them desgned for the oversght and proper control of databases that are
configured for specific purposes. A DBMS can be thought of as a file manager tha
manages data in databases rather than files in file sygsems In IBM's manframe
operating systems, the non-relational data managers were (and are, because these legacy
gopliction sysgems ae ill used) known as access methods. IBM's  Information
Management System (IMS) was one of the firs DBMSs. A DBMS may be used by or
combined with transaction managers, such as IBM's Customer Information Control
System (CICS).

There are four essentid eements that are found with just about every existing
DBMS. The firg is the implementation of a modding language that serves to define the
language of each database that is hosted via the DBMS. There are severd agpproaches
currently in use, with hierarchicd, network, relaiona, and object examples. Essentidly,
the modeing language ensures the ability of the databases to communicate with the
DBMS and thus operate on the system.

Second, data dructures adso are administered by the DBMS. Examples of data
that are organized by this function are individua profiles or records, files, fiedds and
their definitions, and objects such as visud media Data structures are what dlow DBMS
to interact with the data without causng and damage to the integrity of the data itsdlf.
Some related works could be found in Hadzilacos and Tryfona (1996), Lipeck and
Neumann (1987) and, Manola and Orenstein, (1986).
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A third component of DBMS software is the data query language. This dement
is involved in mantaining the security of the database, by monitoring the use of login
data, the assgnment of access rights and privileges, and the definition of the criteria that
must be employed to add data to the system. The data query language works with the
data Structures to make sure it is harder to input irrdlevant data into any of the databases

in use on the system.

Last, a mechanism that dlows for transactions is an essentid basic for any
DBMS. This hdps to dlow multiple and concurrent access to the database by multiple
users, prevents the manipulation of one record by two users a the same time, and
preventing the creation of duplicate records. Related work could be found in Abd et al.

(1995).

Various agpplications of DBMSs have brought to the great evolutions to the
computer revolution. It can store a huge quantity of data at one place and queried with
sample methods. DBMS are furthermore idedly thought of facilitating severad processes,
such as (Rigaux et al., 2002):

Defining a database - that is specifying data types, structures and congtraints.
Develop adatabase - create database and store dataset.

Manipulaing a cetabase.

Querying a database to retrieve specific data

Updating a database.

To execute any commaend within DBMS environment, the most common
language is ‘Structured Query Language (SQL), which was initidly developed by IBM.
RDBMS are regarded as effective tool to store and manipulate smple data that is
organized in tabular form using unique keys to join or relae different tables together.



11

However, as RDBMS only dores smple data types, dternaive solution had to be
invented to handle complex data types like spetid data. The solution is to implement the
object-oriented approach in the DBMS (OO-DBMS). This technology has however not
ganed as much popularity as fird expected, but guided the development of object
relational DBMS (OR-DBMS) that somewhat combines the functiondities of the two
approaches (Shekhar and Chawla, 2003).

2.2.1 SQL (Structured Query Language)

SQL dands for Structured Query Language. SQL is an ANSI (American
Nationad Standards Inditute) standard computer language for accessng and
manipulating database systems. SQL dtatements are used to retrieve and update data in a
database. Unfortunately, there are many different versons of the SQL language, but to
be in compliance with the ANSI standard, they must support the same major keywords
in a dmilar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and

others).

While the SQL Standard is often percelved as established technology, rather than
the innovative, cutting edge technology it was when the standards process dtarted in
early 1980's, it is dill an expanding, evolving, relevant sandard.

The origind SQL sandard was completed as a USA ANSI (American Nationa
Standards Ingtitute) standard in 1986, and adopted as an 1SO (International Standards
Organization) standard in 1987. To dlow relevant pieces to progress at different rates,
the SQL dandard has been divided into multiple parts. Two of these pats were
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completed in the 1990's, as additions to SQL-1992. SQL/CLI (Cdl Language Interface)
was completed in 1995 and SQL/PSM (Persstent Stored Modules) was completed in
1996. Following the completion of SQL:1999, there has been significant work on SQL
with Java (a Sun trademark) and XML, as wel as the use of SQL to manage data
external to an SQL database.

Ancther revison to al of the pats was completed as SQL:2003. Since
SQL:2003, the SQL standards committees have expanded XML support and corrected
some errors. The expanded SQL/XML standard will be completed in late 2005 or early
2006. In addition to the SQL standards, there is a separate set of specifications called
SQL/MM that isamulti-media expansion of the SQL Standard.

From SQL sandard language, there are severd separate components in SQL
dructure. Two of the most important are ‘Data Definition Language (DDL) and ‘Data
Manipulation Language’ (DML ) (Shekhar and Chawla, 2003; Rigaux et al., 2002).

The Data Definition Language (DDL) pat of SQL permits database tables to
define the data, tables, condrains and association. User can aso define indexes (keys),
gpecify links between tables, and impose congraints between database tables. The most
important DDL gtatementsin SQL are:

CREATE TABLE - creates a new database table
ALTERTABLE - dters (changes) a database table
DROPTABLE - deletes a database teble
CREATE INDEX - cregtes an index (search key)
DROP INDEX - deletes an index
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In Contrary, DML is apply SQL syntax for executing queries or used to access and edit
daa in a database and peform operation like INSERT, UPDATE, DELETE, and
SELECT. These query and update commands together form the DML part of SQL:

SELECT - extracts data from a database table
UPDATE - Updates data in a database table
DELETE - deletes data from a database table
INSERT INTO - inserts new data into a database teble

2.2.2 Conventional DBM S data types

All DBMSs provide multiple choices of daa types for the information that can
be stored in their database table fiedlds. However, the set of data types made available
(typicdly numeric and dpha-numeric) varies from DBMS to DBMS.

The Object ID data type usudly utilizes as primary key type for mogt of the
DBMSs. The primary key of a relationa table uniquely identifies each record in the
table. The mgor difference is that for unique keys the implicit NOT NULL condraint is
not automdicdly enforced, while for primary keys it is It can ether be a normd
atribute that is guaranteed to be unique or it can be generated by the DBMS (such as a
globdly unique identifier, or GUID, in Microsoft SQL Server). Primary keys may
condst of a dngle atribute or multiple attributes in combination. The common data type
for Object ID isusudly referred as NUMBER (without decimd fraction) or INTEGER.
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The Integer data type may dtore integer vaues as large as eech DBMS may handle
Feds of this type may be created optiondly as signed or unsgned integers, depending
on different DBMS that support it. The type of integer can be divided into INTEGER
(-2,147,483,647 to 2,147,483,647) SHORT INTEGER (-32,768 to 32,767), LONG
INTEGER (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

The decimd data type may dore decima numbers accurady with a fixed
number of decima places. This daa type is suiteble for representing accurate vaues like
currency amounts. Some DBMS drivers may emulate the decima data type using
integers. Such drivers need to know in advance how many decima places tha should be
used to peform eventud scade converson when doring and retrieving vaues from a
database. There are severd kinds of decimd daa type avalable in DBMS, eg.
Float/Real, and Double. The Float/Real data type may dore floating-point decimd
numbers. This data type is suitable for representing numbers within a large-scale range
that do not require high accuracy. The scde and the precison limits of the vaues that
may be stored in a database depends on the DBMS that it is used (usudly referred to 32
bit floating point).The Double data type stores same as Float/Real data type if the data
type is suitable for representing numbers that require high accuracy. The scde and the
precison limits of the values tha may be stored in a database depends on the DBMS
that it isused (usudly referred to 64 bit floating point).

The text data type is avalable with severd options for the length. For instances,
Character, and Varying Character. The fidds of this type should be able to handle 8 bit
characters (variable-length character string, 0-255). Some DBMS able to provide 16 bits
character (variable-length character dring, 0- 65,535) for specific storage purposes, eg.
Character Sring.
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The Date data type may represent dates with year, month and day. DBMS independent
representation of dates is accomplished by using text strings formatted according to the
ISO 8601 standard. The format defined by the 1SO 8601 standard for dates is YYYY-
MM-DD where YYYY is the number of the year (Gregorian cdendar), MM is the
number of the month from 1 to 12 and DD is the number of the day from 1 to 31.
Months or days numbered below 10 should be padded on the left with 0. Some DBMS
have native support for date formats, but for others the DBMS driver may have to
represent them as integers or text vaues In any case, it is dways possble to make
comparisons between date values as well sort query results by fidds of this type.
Another data type related to Date is the time data type that may represent the time of a
given moment of the day. DBMS independent representation of the time of the day is
aso accomplished by using text drings formatted according to the 1SO 8601 standard.
The format defined by the 1SO 8601 standard for the time of the day is HH:MI:SS where
HH is the number of hour the day from 0 to 23 and MI and SS are repectively the
number of the minute and of the second from O to 59. Hours, minutes and seconds
numbered below 10 should be padded on the left with 0. Some DBMS have native
support for time of the day formats, but for others the DBMS driver may have to
represent them as integers or text vaues In any case it is always possble to make

comparisons between time vaues aswell sort query results by fields of this type.

The large object data types are meant to store data of undefined length that may
be to large to dtore in text fidds, like data that is usudly stored in files. Certain DBMSs
support two types of large object fields Character Large OBject (CLOB) and Binary
Large OBject (BLOB). CLOB fidds are meant to store only data made of printable
ASCIl characters. BLOB fidlds are meant to dtore dl types of data in binay format.
Table 2.1 provides overview of database data types, its description and naming.

DataType

Name Oracle SQL Server DB2 Informix Access PostgreSQL MySQL
Object ID NUMBER INT INTEGER INT LONG INTEGER | NUMBER NUMBER
Short Integer | NUMBER SMALLINT  SMALLINT SMALLINT [ INTEGER INT2 SMALLINT
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Long Integer | NUMBER INT INTEGER INT LONG INTEGER | INT8 BIGINT

Float / Real NUMBER REAL DECIMAL DECIMAL SINGLE FLOAT FLOAT

Double NUMBER DOUBLE DECIMAL DECIMAL DOUBLE FLOATS8 DOUBLE

Varying VARCHAR2 | VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR

Character

Character CHAR CHAR CHAR CHAR CHAR CHAR CHAR

Date DATE DATETIME TIMESTAMP | DATETIME | DATE/TIME DATE DATE

BLOB BLOB IMAGE BLOB BLOB OLE Object Bytes BLOB
Table 2.1: Lig of the default datatypesin DBMS

23  Spatial DBMS

A great way to manage with geographic objects and images of immense size with
high performance is to use of spatid DBMS technology. When a DBMS offers a native
geometry type together with supporting capabilities (such as gpatid indexing), it is
referred to as aspatial DBM S (Paredaens, 1995; and Schneider, 1997).

GIS has become an important computerized application that mgor DBMS
vendors have extended ther DBMS products with native geometry types as well as with
supporting capabilities. Oracles dedicated spatiad product, Oracle Spatia, provides
Oracleés SDO_GEOMETRY in order to manage spatiad object within DBMS. Other
DBMS packages, such as IBM DB2 have spatial extenders, and open source DBMS
packages such as PostgreSQL now include “spatid” capabilities aswell.

There are two kinds of eements, which will be stored into the spatid DBMS.
One type of data is the geometric information that defines objects that represent the
abdract of red world. This type of geometric information is often smply cdled the
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geometry of the spatid object. It specifies the shape and location of the points, lines and
aeas of which the object conssts. The second type of information is the atributes
information that may be attached to geometric objects. For example, an object (polygon)
that conssts of a set of coordinates triplet providing the name from a country, may aso
have attributes that give information about its area

In nature, spatid data types are not provided by DBMS. Hence, a DBMS is
named as spatid DBMS if gpatid data types are consdered. A specid column is used to

dored soatia data types within spatidl DBMS, namely spatia column. However, specid
program would be needed to visudize the geometry.

2.3.1 DBMS Advantagesover File System

There are other ways to store and retrieve spatid information than offered by
DBMS (Ingvarsson, 2005). File format such as ESRI shape file (SHP) and Drawing
eXchange Format (DXF) used in CAD systems implement file syssem to gore geometry
data. However, the concept of spatid DBMS offer severd advantages batter than file
based solution (Shekhar & Chawla 2003). These advantages come from the capability of
DBMS system and architecture, which it manage to:

Handle large amounts dataset with different data structures,
Perform complex spatid query on the data with near ingtant results (e.g. routing);
Provide concurrency control, like eg. locking mechanism and consstency

checks, enabling multi-users.
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No doubt, there are several advantages to storing dtribute data externdly outsde
the DBMS. Even though geometry continues to be managed exclusvely within the file
system, some limitations may be appeared.

The firg limitation is that GIS packages usudly do not have the sheer capacity
and clugter scadability of mainstream DBMS packages like Oracle or SQL Server. As a
result, the number of objects in geometry will normaly be limited by the performance of
the file sysem running on a single machine,

A second limitation is often a redriction to dngle users or Sngle processes
working with the geometry data stored by the file sysem. Mainstream DBMS packages
have evolved to meet intensdy multi-user, multi-process needs but most file systems
have not been built with the multi-process, transaction-oriented architecture required for
intendvely multi- user operations on geometry.

A third limitation is limited dynamic interoperability between different file
system packages and other gpplications. File system data can be interchanged more or
less successfully in a datic, limited way usng wedl known formats such as shepefiles,
but cannot in genera be interchanged dynamicdly as is taken for granted with DBMS

Servers.

A dataset that can dtore geometry in a spatidl DBMS can escape the above
limitetions. Storing geometry in a DBMS can take advantage of the capacity and
scdability of the DBMS, resulting in drawings that can be terabytes in sze. If a DBMS
stores geometry, a GIS can operate as a client to the DBMS server in multi-user settings,
taking advantage of this extensve module that will provide the smultaneous use of daa
by many different users. Storing geometry within the DBMS using data types native to
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the DBMS dlows interchange with any gpplication that understands those data types,
which will improve the interoperability in GIS.

2.3.2 Native Geometry and Non-Native Geometry Types

In spatid database, spatid data types are usudly defined as Abstract Data Types
(ADT), i.e. encapsulated types together with spatid operations. At implementation leve,
one can define spatid indices on spatiad ADTs (Cardelli and Wegner, 1985; Liskov and
Zilles, 1974; Stonebraker, et al., 1983; Stonebraker, 1986). A gspatial object is an
indance of a gpatid type it can have 0 (point), 1 (line), 2 (polygon), and 3 (solid)
dimensons. All data sored in a DBMS is ultimately in binay form. When soring
geometry within a DBMS, the quegtion is what internal format the DBMS should use to
order the binary data used to store that geometry. There are two approaches.

One gpproach is used in DBMS as spaid DBMS. A spatid DBMS will have a
pre-defined way of organizing binary data to represent geometry, and this pre-defined
way of organizing binary data is built into the DBMS in the form d a data type, such as
SDO_GEOMETRY in Oracle Spatid or ST_GEOMETRY in IBM's DB2 Spatia
Extender. Because this data type is built into the DBMS it is cdled a native geometry
type. The data is dill binary data, of course, but it has been organized in accordance with
a format expected for geometry data by the DBMS. When a DBMS has its own data
types, ndive geometry type it is adso usudly beng supported within the DBMS
environment with additiond infrastructure, such as the automatic cregtion of gpatid
indices or the provision of DBM S server commands that understand that data type.
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The other approach is used with DBMS that do not specify a pre-defined way of
organizing binary data to represent geometry but dlow applications to utilize a generic
binary data type. Almogt dl exising DBMS provide a generic binary data type that can
be usad to store binary data, which is unstructured by the DBMS. Often referred to as a
BLOB (Binay Lage OBjects), such generic binary storage can be employed by
goplications if they can fit. When such generic binary dorage is used to store geometry
in a form not built into the DBMS it is cdled a nonnative geometry type. Although the
use of nonnative geometry types dlows doring geometry within - generd- purpose
DBMS without requiring a specid spatid form of a DBMS, it does require a GIS
gpplication that supports the geometry formats to be used.

The main advantages of usng a native geometry type within a spatid DBMS is,
fird, to provide interoperability with any appication that uses the native type and
second, using a native type automaticaly takes advantage of the infrastructure within the
gpatiadl DBMS that supports that native data type.

The man advantages of nontnative binary dorage are, fird, to make use of
goatid DBMS functiondity utilizing non-native types within virtudly every DBMS and
second, using a choice of nonnative geometry types can provide greeter flexibility
rather than committing to a dngle data type with gpecific forma. A possble
disadvantage is that choosing from a variety of geometry types can make interoperability
with other gpplications more difficult. However, if a generic geometry type that is well-
defined and accepted by many applications, such as Wel-Known Binay (WKB), is
used, then interoperability might well be preserved.
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2.3.3 Spatial Queries

Spatid query is a method of data searching within DBMS that stisfy a given
condition. There are two types of queries, both queries are not much different compared

to each other:

1. Query of attribute data - A gpatid digtribution or an area will be searched
with respect to agiven attribute of interest.

2. Query of geometric data - With a given geometric condition for example
location, shape or intersection, dl data that satify the condition will be
searched. In the case of a vector data form, to search an area, which includes
a given point, and to find dl line ssgments that intersect a given line would
be a typicad query of geometric data. In the case of raster form of data, it will
be easier to search any attribute and geometric data based on agiven grid.

From the query of geometric data (also caled spatid query), it is divided into
two types. datic and dynamic query. A datic query only observes the spatid objects and
returns a result without affecting the objects queried, eg. measure area of a polygon.
Dynamic queries are different from datic in the way that they affect the data itsdf, eg.
merge, split, rotate, resize and copy (Shekhar and Chawla, 2003).

To peform spaid, some quey languages ae used. Query languages for
geographic databases and geographic information systems are ether complex macro
languages, or extensions of SQL (Egenhofer, 1996). There are a large variety of Spatia
SQL dialects, and such SQL provides the means for accessing geographic databases and
retrieving data from a database. Mogt critical is the support for spatia relations. The
spatiad relations are defined in order to become the logica condition for spatia query.
Cetan DBMS, eg. Oracle Spatid, uses a two-tier query modd to resolve spdtid
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queries, which relates spatid rdations. The term two-tier is used to indicate that two
diginct operations are performed in order to resolve queries. If both operations are
performed, the exact result set is returned. The two operations are referred to as primary
filter and secondary filter operations (Oracle Spatid 10g, 2007).

The primary filter permits fast sdection of candidate records to pass aong to the
secondary filter. The primary filter uses geometry gpproximations (or index tiles)
to reduce computational complexity and is consdered alower-cos filter.

The secondary filter gpplies exact computationa geometry to the result set of the
primary filter. These exact computations yied the exact answer to a query. The
secondary filter operations are computationdly more intensve, but they are
gpplied only to the rdaively smal result set returned from the primary filter.

2.34 Spatial Indexing

Another important aspect of data management within DBMS is spatid indexing.
Spatid indexes are used in DBMS for fast search especidly when spatia functions are
goplied. The problem with querying spatid data is that a common query, like querying a
point, would need to compare and check the point location with the geometry of every
object in the database, which is both time and memory consuming if the database is
large. Spatid indexing was developed to resolve this. Without indexing, any searches for
a feature would require a sequentid scan of every record in the database. Indexing
Speeds up searching by organizing the data into a search tree that could be quickly
traversed to find a particular record. There are few kinds of indexes within DBMS, i.e.
PostGIS and Oracle Spatid: they are B-Treeindexes, R-Tree indexes, and GiST indexes.
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B-Trees are used for data, which can be sorted dong one axis, for example,
numbers, letters, dates. B-tree is a fast datarindexing method that organizes the
index into a multi-level set of nodes. Each node contains a sorted array of key
values (the indexed data). Two important properties of a B-tree are that al nodes
ae a leegt hdf-full and that the tree is dways badanced (that is, an identica
number of nodes must be reed in order to locate al keys a any given levd in the
tree). A detall description of B-tree could be found in ITTIA (2005).

Another spatid indexing methods that store the gpproximation of geometry isin
the form of minimum:bounding box. Thiskind of spatia query is consdered asa two-
step process, which involves the filter step and refinement step. The filter step compares
and eeminate the candidates that do not intersect with the query condition. Thisisless
time consumed asiit is much smpler to compare and filter the geometry of the envelops
than the object geometry. The refinement step drops out the geometry that does not
intersect
with the spatid query though its envelope did. Findly the correct objects are returned as
aresult of the spatia query.

The refinement gep is rather uniform in dl goatid indexing methods It is
conventiondly categorised into either space-driven or datadriven approaches (Rigaux et
al. 2002).In a space-driven approach, the 2dimensond planar space is partitioned into
number of rectangles that are independent of the objects they serve. The objects are then
mapped to cels according to geometric criteria that differ somewhat consdering what
method is used. Most popular space-driven methods are named “grid-file’, “linear-
quadtreg’ and “z-ordering treg’. A data-driven approach on the other hand, focuses on
the objects and in partitioning them into appropriate/logica groups considering number
and didribution in space. Most popular data-driven methods is the ‘R-tree and its
reformed versons ‘R+tree’ and ‘R* tree’ (Rigaux et al., 2002; Guttman, 1984).
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R-Trees bresk up data into rectangles, and sub-rectangles, and sub-sub
rectangles, etc. R Trees are used by some spatia databases to index GIS data, but
the PostGIS R-Tree implementation is not as robust as the GiST implementation.
Oradle Spatid will implement the 3D R-Treesin the coming version 11g.

The concept of sample R-tree dructure is given in Figure 2.1, Figure 2.2, and
Figure 2.3 in two-dimenson and three-dimenson. The impact of z-coordinate in the 3D
gpatid indexing will influence the execution time due to the indexing mechanism will
search each of the (x, y) dements that relates to its zcoordinate. For example, 7 (X, Y, 2)
points will search 7 times greater than 7 (X, y) dements. Note that the Oracle Spatiad R
Tree indexing provides the spatiad index up to 4D, and the dimengondity should be

defined in the syntax.

Ri | Rz
Rs| Rq Rs [ Rs | Ry
P P> Ps P4 Ps

Figure 2.1: Directory of R-Tree indexing
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Figure 2.2: A planar representation of an R-tree
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Figure 2.3: A 3D representationof an R-tree

Another complex spatiad query developed by PostgreSQL (2007) in order to be
implemented as part of PotGIS moduleis GiST.
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GiST (Generdized Search Trees) indexes break up data into “things to one sde’,
“things which overlgp”, “things which are ingde’ and can be used on a wide
range of datatypes, including GIS data. PostGIS (2006) uses an RTree index
implemented on top of GIST to index GIS data.

GIST indexes have two advantages over R-Tree indexes in PostGIS. Firdly,
GIST indexes dlow null vdue in the index columns. Secondly, GiST indexes could
eadly ded with GIS dyjects larger than the PotGIS 8K page size. The important part of
an object in an index will only be consdered within DBMS, eg. in the case of GIS
objects, just the bounding box. GIS objects larger than 8K will cause RTree ndexes to
fail in the process of being built. It could take a long time to creste a GiST index if there
is a ggnificant huge arount of data in a table. However, The GIST index is widely used
for 2D data The implementation of GiST is rather limited for 3D data The research and
gpplication on 3D GiST is expected in near future.

Other DBMS, eg. Oracle Spatid, are able to provide 3D indexing for 3D object
(MULTIPOLYGON). For Spdtid, the metadata that maintains the lower and upper
bounds and tolerance of 3D object needs to be created. Later, a spatid index (R-treein
3D) could be created on the tables to speed up spatial queries. The following example
denotes the sample in creating a 3D spatia index within Oracle Spatid.

-- Inserting netadata for 3D object: MJTI POLYGON

| NSERT | NTO user _sdo_geom net adat a VALUES
('Solid3D, 'shape', ndsys.sdo_dimarray(
nmdsys. sdo_di melenment (' X, 0, 100, 0.1),
nmdsys. sdo_dimelenment ('Y, 0, 100, 0.1),
nmdsys. sdo_dimelenent('2Z2', 0, 100, 0.1)
), NULL);

-- Creating 3D Spatial |ndex
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CREATE | NDEX Sol i d3D_ | on Soli d3D(shape)
| NDEXTYPE | S ndsys. spati al _i ndex
PARAMETERS(’ sdo_i ndx_di ns=3"); -- Dinension = 3

ANALYZE TABLE SA i d3D COWPUTE STATI STI CS;

24  Spatial Data Model

Tdchritzis and Lochovsky (1977) define a data modd as a set of guiddines for
the representation of the logica organization of the data in a daabase conssing of
named logicd units of data and the rationships between them. While the concept of the
data modd is used in a variety of ways by numerous disciplines, a digitd geographic
data modd is generdly defined as an informaion structure, which dlows the user to
sore specific phenomena as distinct representations, and enables the user to manipulate
the phenomena when held in the system as data (Raper and Maguire, 1992).

The data model represents a set of guidelines to convert the red world (cdled
etity) to the digitdly and logicaly represented spatid objects conssing of the
atributes and geometry. The attributes are managed by thematic or semantic Structure
while the geometry is represented by geometric-topologica structure (Shunji 1999). The
ability to take the geogrephic location of objects into account during search, retrievd,
manipulation and andlyss lies at the core of a GIS data modd (Smith et al. 1987). How
well these tasks can be accomplished is determined by the spatial data modd, apart from
other factors such as the data structures and database management systems selected for
the DBMS (Berry 1993). The theory of spatid data modeds currently attracts the most
active research and development with in the GIS community (Clarke 1986, Van Roesd
1987, Mounsey and Tomlinson 1988, Goodchild and Gopa 1989). The following
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section discusses two types of data models, which they were reflected to this study, in
term of geometry and topology data types.

241 Spaghetti Model

Among many of the commonly used vector based data structure, the spaghetti
data modd has the most ample data Structure (Aronoff 1989). In the spaghetti data
model each entity on a map becomes one logica record in the digitd file, and is defined
as a dring of x, y coordinates. It indicates no explicit dructure and it is used if the
geometry of spatid features in spatid DBMS is described completely independent and
irrespective of other features in the database (Ingvarsson, 2005). Although al entities are
soatidly defined, no spatid reationships are encoded. This represents a sgnificant
deficiency snce, to peform any type of spatid andyss, the spatid relaionship between
such entities must be derived through computation. Relaionships like adjacency, within,
outside etc., between separate geometries are therefore cadculated on demand. But the
goaghetti data model can  efficiently reproduce maps digitdly because information
unconnected to the plotting process is not stored (Peuquet 1984).

This modd is dso referred to raw data. The main characteristics of such data are
possble overlapping geometries and dangling lines. This is evident when representing
land parcels as spaghetti polygons, whereas each boundary has to be stored twice, and
the same corner monument stored a least three times, in different polygons (Ingvarsson,
2005). This creates problem of tracking boundary measurements. Also if geometric data
is of different qudity, adjacent land parcels can ether overlgp or be digoint, but not
touching as would be correct.
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The properties of spaghetti datamode are given asfollows:

Point is enclosed as single XY co-ordinate pair;

Lineis encoded asagring of XY co-ordinate pairs,

Polygon is encoded as a closed loop of XY co-ordinates that define its boundary.
The common boundary between adjacent polygons must be recorded twice, once
for each polygon;

The Spaghetti modd is a file of spatid data condructed in this manner is
essentidly a collection of co-ordinage drings with no inherent sructure, and
hence the term spaghetti model is named; and

Although dl the gspatid fegtures are recorded, the spatid relationships between

these features are not encoded.
Point feature
D=1 4
Feature ID Location
Pol)igon feature Line fegture pqim 1 X\
Polygon 100 X1,y1,X2,Y2,X3,Y3, X4.Y4

Figure 2.4: Spaghetti data model
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2.4.2 Topological Model

In this section, the discussion is focused on a model, which involves properties of
the database that are topologicd in nature. In this data modd, concepts such as
adjacency, connectivity, and contanment are important. Queries like “what is next to
polygon A? or “Lig dl the lines tha condructs the polygon C’ ae typicd in this
respect. Characteristic of topologica properties is that they do not distinguish between
two databases that can be obtained from each other by a topological deformation. Such
datamoded is called topologicdly equivaent.

In gpplications in which only topological properties are under congderation, it
may be desrable to be able to work with a representation of the database, which is
topologicdly invariant, meaning that two topologicaly equivaent databases will be
represented identically. The idea of topologica propety in 2D spatid databases is
congging of points in the plane Ry, lines between these points, and areas formed by
these lines. This modd is commonly referred to as the topologica data modd (GUting,
1994a; Gilting, 1994b; Guting, 1989; Guting, and Schneider, 1993; Thompson and
Laurini, 1992). An example agpplication is a subway or ralway mgp in which only
relative pogtions of spatid objects such as sations and tracks are depicted without, for
instance, taking the actud length of the trgectory into account.

The Census Bureau of the United States introduced this data modd in 1979
(Corbett, 1979) to modd topologicd information on what they cdled zero-cdls (points),
one-cdls (lines) and two-cdls (areas) (Thompson and Laurini, 1992). The information in
the two-dimensond plane is described by a number of cells and each has an identifier.
Furthermore, the following topologica reations Ry, Rz, Rs and R4 are given:



31

R;: every one-cdl has two zero-cdls (indicating that every line has exactly two
endpoints);

R.: every one-cdl has two two-cdls (indicaiing that every line is the border
between exactly two areas);

Rs: every two-cdl is surrounded by a (ordered) cycle of one-cdls and zero-cdls
(indicating the border of an areq);

Ra: every zero-cdl is surrounded by a (ordered) cycle of one-cells and two-cdls
(indicating the neighborhood of a point).

For relation Ry a clockwise order is agreed upon for outer borders of areas and a
counter-clockwise order is used for holes in aress. For relation R, a clockwise order is
used. To sdtle the planarity of the modd there is the additiond condition that al
intersections of one-cdls are zero-cdls and dl intersections of two-cels are one-cdls

(see Figure 2.5).

R1 R2 R3 R4
ApQq A a ap Al p A al
Aqgop AR a qg B 2 p Cd 2
B qgrr B a ? ar C 3 p DB 3
Br q B ? a B p D1 g B al
Cr p C a B s E 2 g A B 2
Cpr C d a Bt F 3 g F ? 3
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Figure 2.5: Therdations Ry, Ry, R3 and Ry (Paredaens, and Kuijpers, 1998)

25 TheExisting Geo-DBM S

Exising DBMS provides a SQL schema and functions that facilitate the storage,
retrieval, update, and query of collections of gspatid features. Mogt of the existing spetia
database support the object-oriented modd for representing geomeries. The benefits of
this modd is that it support for many geometry types, including arcs circles and
different kinds of compound objects. Therefore, geometries could be modeled in a single
row and single column. The modd dso able to create and maintain indexes, and later on,
perform spatid queries efficiently.

Conventiond DBMS offer spatid data types and spatiad functions fully in two
dimenson. Storing spetid data and peforming spatid andyss can be completed with
SQL queries. The spatid data types and spatid operations reflect only smple two
dimensond features. Laely, 2D spatid objects have been extended and embedded in
3D space. The support of 3D coordinates alows for dternatives in management of 3D
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features. With this spatid extend, DBMS have immediately been chdlenged by the third
dimenson. The volumetric 3D data type (eg. polyhedron, and tetrahedron) is expected
to be avalable in the coming Oracle 11g. However, certain DBMSs provide the support
of creating new data type usng native programming. For indances, Oracle and
PostgreSQL  support Java and C++ native programming. Consequently, function for
vdidation and 3D operators remains sdf-regponsble by the users. The conclusions,
some DBMSs offer 2D data types (basically point, line, and polygon) but support 3D/4D
coordinates and offer a large number of functions more or less compliant with the Open
Geospatid Consortium (OGC) dandards. Most of the functions ae only 2D
dimensond. Severd geo-DBMS, eg. MySQL, and PostGIS, however, supports very
limited 3D operations, but only limited to certain regular 3D volumetric object, i.e. 3D
box. In the next section, some @mmercid spatia database will be discussed, in term of
ther characteridics, capabilities and limitations in handling multi-dimensond datasets.
The last section will provide reasons in order to decide which geo-DBMS was selected
to be implemented into this study. The criteria to sdect one DBMS as testbed was
consdered in many aspects asfollows:

1. Commerciad aspect — As this reseach was am to produce critica
development that manage to fill the gaps of spatid DBMS in the context of
3D, the chosen DBMS should be able to provide an useful module for
educational purposes. One of the important issues is that the opensource
issue was the primary target for this research. The didribution terms of open
source tools / software must comply with free redisribution. The license
ghdl not redrict any paty from sdling or giving away the software as a
component of an aggregate software didribution containing programs from
severa different sources. Besides, it shdl not require a roydty or other fee
for such sde. Other than licenang aspect, the program must include source
code, and must dlow digtribution in source code as well as compiled form. If
some form of a product is not digtributed with source code, there must be a
wel-publicized means of obtaning the source code for no more than a

reasonable reproduction cost preferably, downloading via the Internet
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without charge. The source code must be the preferred form in which a user
would modify the program. The benefit of usng the opensource module is
that it dlows modifications and derived works, and dlows them to be

digtributed under the same terms as the license of the origina software.

OGC compliant aspect — Standardization in GIS is very important for the
interoperability. The purpose of the OGC compliance module to be chosen is
to permit any user to take advantage of the standards that OGC has created.
This important aspect should be able to provide a research direction that
follows the OGC's abdract and implementation specifications. The key to dl
of this is “interoperability”, that is the ability for different kinds of software
to successfully interact with one another. An applicable example is to build a
GeoSpatid web, smilar in scope to the World Wide Web, where anyone just
needs a Web Server, such as Apache or IIS, and then others can dart
interacting with their information. The advantage over high interoperability is
that data exchange effort become less and ensure same data format could be
accesed eadly to any user. One of the best things the OGC has done is
define a standard specification for data type and spatia operations. And
beyond that OGC have made every effort to be as easy as possible to set up a
gandards compliant module, with no additiona configuration needed to meet
the open standards for GIS development.

Native programming support — Severd DBMSs were designed for non
goatid data only. Until very recent development of geospatid modeling,
DBMS has been linked with spatid data, where a specific column is meant
for managing the geographic object. Taking the advantages doring data
logicdly in the form of tablespaces and phydcdly in the form of data files,
gpatial data can be managed securdly due to the available tool for checking
the data integrity. However, severd @geo-DBMSs provide very limited
geospatid daa type, respectivdy to the dimensondity. The native
programming support is the most gppropriate way to create user-defined data
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types and functions within geo-DBMS environment. By extending the geo-
DBMS with cusom data type and functions, this sudy could design the new
data type and spatid operations according to the proposed structure that
follows the standard specifications given by OGC. Some example of native
programming support are C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC,
etc.

4, Portability aspect - For the genera usability purposes, portability gives an
important mean of oftware ingdlaion with as low requirement as it can,
and easy-to-use. It is aso the &bility to ingdl to other platforms, i.e. different
operating systems, with |ess data Size consumed.

25.1 Oracle Spatial

Oracle Spatid technology was fird introduced in Oracle 7.2 under the name
Oracle MultiDimenson (MD). Later, the product name was changed to Oracle Spatia
Data Option (or SDO) and to Spatial Data Cartridge in Oracle 8. Since objects were not
supported in these releases, the coordinates of a geometry were stored as multiple rows
in an associated table. Managing spatid (geometry) data in these prior versons was
inefficient and cumbersome.

Starting with Oracle 8i, the SDO_GEOMETRY data type was introduced to store
gpatid data. Even in Oracle 10g, the same SDO_GEOMETRY mode is used to store
spatid data in Oracle. In Oracle 9i (and Oracle 10g), the geometry data aso included
support for coordinate systems information pecified using the SRID attribute in the
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SDO _GEOMETRY data type. In Oracle 10g, additional functiondity (that exigts in the
Advanced Spatid Engine) such as the Network Data Modd is introduced in the Spatid
option of Oracle. Since the prior versons are named MultiDimension (MD) and Spatia
Daa Option (SDO), users will see the prefixes MD and SDO for the files and schemas
that ingal Spatid technology. The name of the spatid ingdl schema is MDSYS in Al

versons of Oracle.

Oracle Spatid technology is automaticaly ingdled with the Standard or
Enterprise Edition of an Oracle database server, since Oracle Database 10g. Oracle
Spatid supports the object-rdationd modd for representing geometries. The object-
relationd mode uses a table with a sngle column of SDO GEOMETRY and a dngle
row per geometry ingtance. It supports the data storage of three-dimensond and four-
dimensgonad geometric types, where three or four coordinates are used to define each
vertex of the object being defined. The SDO_GEOMETRY data type captures the
location and shgpe information of data rows in a table This data type is interndly
represented as an Oracle object data type. It can modd different shapes such as points,
lines, polygons, and appropriate combinations of each of these. In short, it can mode
gpatid data occurring in most spatia gpplications and is conformant with the OpenGIS
Consortium (OGC) Geometry modd. The Oracle Spatid data model is a hierarchicd
dructure congsting of dements, geometries, and layers. Layers are composed of

geometries, which in turn are made up of dements.

An dement is the basc building block of a geometry. The supported spatia
eement types are points, line drings, and polygons. Each coordinate in an dement is
gored as an X,Y par, and it can be stored up to four-dimenson. However, spatia
functions can work with only the firg two dimensons, and dl spatid operaors are
disbled if the gpatid index has been crested on more than two dimensons. The
primitive datatypes are:
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Point data congists of one coordinate.

Line data congsts of two coordinates representing a line segment of the eement.
Polygon data conssts of coordinate pair vaues, one vertex par for each line
segment of the polygon. Coordinates are defined in order around the polygon
(counterclockwise for an exterior polygon ring, clockwise for an interior polygon

ring).

A geometry (or geometry object) is the representation of a spatid feature,
moddled as an ordered st of primitive dements. A geometry can condst of a sngle
eement, which is an ingance of one of the supported primitive types, or a homogeneous
or heterogeneous collection of dements. A multipolygon, such as one used to represent a
st of idands, is a homogeneous collection. A heterogeneous collection is one in which
the dements are of different types, for example, a point and a polygon. With the
gpproach of homogeneous collection of dements, the coming Oracle 11g & expected to
provide 3D primitive, i.e. Polyhedron. However, the 3D spatid function remains
uncertainty.

A layer is a collection of geometries having the same attribute set. For example,
one layer in a GIS might include topogrgphica festures, while another describes
population dengity, and a third describes the network of roads and bridges in the area
(lines and points). Each layer's geometries and associated spatid index are stored in the
database in standard tables.

In the ingdlation, Oracle Spatid requires user to verify sysem requirements. For
Oracle 10g, the minimum RAM required is 1024MB, and the minimum required swap
space is 1GB. Swap space should be twice the amount of RAM for systems with 2GB of
RAM or less and between one and two times the amount of RAM for systems with more
than 2GB. Beddes, users dso need 25GB of avalable disk space for the Oracle
Database 10g Release 2 software and another 1.2GB for the database. The /tmp directory
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needs a least 400MB of free space. Although the development of current computer
technology able to fulfill such requirements, for educationa and research purposes, the
research development must be synchronized with the latest computer technology if more
rescarch applications intended to be extended. Thus the portability of usng Orade
Spatid is consdered low, as more expenses would be used on setting up a moderate type

of database server.

As the Oracle Database is developed for high commercid gpplications, the
Oracle Spatid is not an opensource module. Some of the commercid offerings like
Oracle Spatid are not cogt-sensible. This is because in order to use Oracle Spatid you
need to buy Oracle Enterprise. Plus if you are going to use it for Web Applications then
you will have to pay the per CPU license ingtead of the per user license. Therefore, the
educationd aspect for Oracle Spatid is rather low compared to other open-source
module like PostgreSQL.

The native programming supported by Oracle Spatial are PL/SQL, C/C++, Java,
and ect. These supports are the most appropriate way to create user-defined data types
and functions within geo-DBM S environment.

252 PostGIS

Refractions Research Inc. develops PostGIS (first released in 2001) as a spatid
database technology research projet for PostgreSQL. It is a GIS and database
consulting company, specidizing in data integration and cusom software development.
The company develops PostGIS to support a range of important GIS functiondity,
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advanced topologica congructs (coverages, surfaces, networks), desktop user interface
tools for viewing and editing GIS data, and web- based access tools.

In terms of spatial databases, PostGIS is the most capable open source spetia
database extender for the PostgreSQL Database Management System. Built as an object
extenson to PostgreSQL, PostGIS has been cetified as “Simple Features for SQL”
compliant by the Open Geospatid Consortium.

Although OGC gandard only support 2D geometries, PostGIS extended formats
are currently superset of OGC one (every vdid WKB/WKT is a vdid EWKB/EWKT).
PostGIS EWKB/EWKT add 3DM, 3DZ, 4D coordinates support and embedded SRID
information. Examples of the text representations (EWKT) of the extended spatid
objects of the features are as follows (PostGI S, 2007):

POINT(0 0 0) -- XYZ

SRID=32632;POINT(00) -- XY with SRID

POINTM(000) -- XYM

POINT(0000) -- XYZM

SRID=4326;MULTIPOINTM(0 00,1 2 1) -- XYM with SRID
MULTILINESTRING((000,110,121),(231,32 1,54 1))
POLYGON((000,400,440,040,000),(110,210220,120,110))
MULTIPOLYGON(((000,400,440,040,000),(110,210220,120,11
0),((-1-10,-1-20,-2-20,-2 -1 0,-1 -10)))

GEOMETRY COLLECTIONM(POINTM(2 3 9),LINESTRINGM((2 3 4,3 4 5)))

PogGIS dso implements the extended of simple features for SQL specifications
by defining a number of circularly interpolated curves. It includes 3DM, 3DZ and 4D
coordinates, but do not alow the embedding of SRID information (different compared to
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linear object, eg. polygon). The wdl-known text extensons are not yet fully supported.
Besides, PostGIS cannot support the use of Compound Curves in a Curve Polygon.
Examples of some smple curved geometries are shown below (PostGIS, 2007):

CIRCULARSTRING(0 0, 11, 1 0)

COMPOUNDCURVE((00,1 1,1 0),(10,01)

CURVEPOL Y GON(CIRCULARSTRING(00,40,44,04,00),(11,33,31,11))
MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

MULTISURFACE(CURVEPOLY GON(CIRCULARSTRING(00,40,44,04,00),(1
1,33,31,11)),(1010, 14 12, 11 10, 10 10),(11 11, 11.511, 11 11.5, 11 11)))

Same as other spatial databases such as Oracle Spatid, it is used for high
performance multi-user access to large seamless data sets. In a nutshdl it adds spatid
functions such as distance, area, and specidty geometry data types to the database.
PogGIS is very smilar in functiondity to ESRI ArcSDE, Oracle Spaid, and DB I
goatid extender. The latest release verson, it comes packaged with the PostgreSQL
DBMS inddls as an optiond add-on. This spatid DBMS works in  windows
environment dthough most of the implementation applies to other supported platforms
such as Linux, Unix, BSD, Mac, and etc.

The PostGIS module is an extension to the PostgreSQL backend server. As such,
PostGIS 1.3.2 or above requires full PostgreSQL server headers access in order to
compile. PostGIS 1.3.2 can be built againgt PostgreSQL versons 7.2.0 or higher. The
inddlation does not require complex setting. The minimum memory of physcad RAM is
256 MB, 2 GB of hard drive space, axd minimum of 250-MHz processor are required. It
was easy to dat and stop the server (same for client side), and user could do this
without logging in as root.
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Within the PostgreSQL environment, it alows usa-defined functions to be
gpecified in a number of languages, including its own procedura verson of SQL cdled
PL/PGSQL, and C/C++, Java.

When compared with commercid spatial databases, PoGIS has most of the
core functions users will see in the commercid databases such as Oracle Spatid, has
comparable speed, fewer deployment headaches, but lacks some of the advanced add
ons modules, such as Oracle Spatid network topology modd, Raster Support and
Geodetic support. Often, the advanced spatia features are add-ons, on top of the
standard price of the database software. In certain application that requires wide-ranging
of database functions, Oracle Enterprise verson with its myriad of features maybe able
to fulfill the requirements of a project better than PostgreSQL/PostGIS. However, as far
as spatiad databases are concerned PostGIS does make economic sense more than Oracle

Spatial.

253 MySQL

MySQL (2007) is one of open source SQL database management system is
developed, distributed, and supported by MySQL AB. MySQL AB is a commercia
company, founded by the MySQL developers. It is a second-generation open source
company that unites open source values and methodology with busness modd. MySQL
IS a reationd database management sysem. MySQL implements spatial extensons
folowing the gpecification of the Open Geospatid Consortium (OGC). MySQL
implements a subset of the SQL with Geometry Types environment proposed by OGC.
This term refers to an SQL environment that has been extended with a set of geometry
types. A geometry-vaued SQL column is implemented as a column that has a geometry
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type. The specification describe a set of SQL geometry types, as well as functions on
those types to creste and andyze geometry vaues.

MySQL has data types that correspond to OGC classes. Some of these types hold
sngle geometry values

GEOMETRY
POINT
LINESTRING
POLY GON

GEOMETRY can dore geometry vaues of any type. The other single-vdue
types (POINT, LINESTRING, and POLYGON) redrict ther vaues to a particular
geometry type. The other data types hold collections of vaues:

MULTIPOINT
MULTILINESTRING
MULTIPOLY GON
GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can dore a collection of objects of any type. The
other collection types (MULTIPOINT, MULTILINESTRING, MULTIPOLY GON, and
GEOMETRYCOLLECTION) redrict collection members to those having a particular

geometry type.
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Smilar to PogGIS, MySQL enable spatia object being created using WKT , and
WKB functions, which are defined in the OGC standard. Besides, MySQL aso provides
MySQL-spedfic functions in create spatia object.

MySQL requires average time from software download to indalation
completion. It remains true whether the platform is Microsoft Windows, —Linux,
Macintosh, or UNIX. The sdf-management feaiures like automatic Space expanson,
auto-restart, and dynamic configuration changes are ready once indaled. The portability
level is more or less gmilar to PostGIS. Recommended hardware requirements for
MySQL ingdlation are Pentium V processor and 128 MB RAM. Note that MySQL can
be ingdled on a platform with as little as 32 MB. However, for better performance it is
recommended to have at least 128MB memory.

Although MySQL is pat of LAMP (Linux, Apache, MySQL, PHP / Perl /
Python) environment, it only supports user-defined functions if written in C, and a
privileged account is then needed to link the compiled verson with the MySQL
executable. The native programming language support aspect is rather low, compared to
Oracle and PostgreSQL .

254 Some Reasons Why the PostgreSQL Was Chosen

In this study, PostgreSQL was chosen as a DBMS testbed to perform 3D spatia
operations. The reasons to support the chosen DBMS are based on four factors as
mentioned in the previous section.
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The firg perceived advantage of open source models is the fact that open source
software is made available without fee, as what PostgreSQL provided to user. The
availability of the source code and the right to modify it is very important. The source
code of PostGIS could be found a PostGIS officd web page
(http://postaisrefractions.net/download/). It enables the unlimited tuning and
improvement of a software tool. It adso makes it possble to port the code to new
hardware, to adapt it to changing conditions, and to reech a detalled understanding of
how the system works. This is why many experts are reaching the concluson that to

redly extend the lifetime of an application, it must be available in source form. In fact,
no binary-only application more than 10 years old now survives in unmodified form.
Source code avalability dso makes it much esser to isolae bugs and (for a

programme) to fix them.

The PogtGIS is rdeased under the GNU Generd Public License (GPL), which is
the directly referred to open-source license. The right to redidribute modifications and
improvements to the code, and to reuse it, permits al the advantages due to the
modifiability of the software to be shared by large communities. This is usudly the point
that differentiates open source software licenses from the commercid one. In substance,
the fact that redistribution rights cannot be revoked, and that they are universd, is what
atracts a substantial crowd of developers to work around open source software projects.
This ensures a large population of users, which helps in turn to build up a research and
development medium for support and customization of the software, which can only
atract more and more developers to work in the project. This in tirn helps to improve
the qudity of the product, and to improve its functiondity. With this point, the
utilizetion of PostgreSQL in educationd purposes is more gppropriate as students can
benefit from it without any fee. Thus, the study was dso amed to produce an extenson
that part of PostGIS module, which add-on the 3D spatid operation for spatid DBMS.
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Another advantages of utilizing PostgreSQL, following of the advantage of easy
access to source code is that it supports many languages, eg. SQL, PL/pgsal, PL/perl,
PL/python, PL/tcl, PL/PHP, PL/R, PL/Java, PL/J, C/C++, and etc. Mot of the spatial
data types found in the source code of PostGIS were created usng C/C++ language. The
native programming support in C/C++ language is the most gppropriate way to create
user-defined data types and functions within geo-DBMS environment. By extending the
geo-DBMS with cusom data type and functions, this sudy could design the new data
type and spatia operations for 3D object, i.e. polyhedron.

The third factor related to the portability issue. The notion of portability is
widdy used, and it's often atached to software ingppropriatey. Software is only
porteble if it can actudly be moved to a different plaform. The operaing system
portability is somehow the most troublesome issues, because operating systems vay
much more widdy than compilers CPU architectures and build environments.
Sometimes, it's often smply not possble to work around with a common operating
system, eg. Windows or UNIX, in the sane way that it can be resolved with another
specific operating system, like Apple Mac OS. However, PostgreSQL work fine in
maority of the operating system platforms, and its hardware requirement is rather low
compared to the current computer technology.

The OGC dandard specification for SQL schema is to insert, query, manipulate
and delete spatial objects That is one of the reason of choosing PostGIS for this Sudy, is
that the PostGIS follows the OpenGIS “Simple Features Specification for SQL” and has
been certified as compliant with the data types and functions profile. The purpose of
implementing this specification to PodGIS is to define a dandard SQL schema for
geospatia object. Smple geospatid feature collections will conceptudly be dored as
tables with geometry vaued columns in DBMS environment, each feature will be stored
as a row in a table. The non-gpatia attributes of features will be mapped onto columns
whose types are drawn from the st of standard ODBC/SQL92 data types. The spatid
attributes of features will be mapped onto columns whose SQL data types are based on
the underlying concept of additional geometric datatypesfor SQL.
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2.6  Summary and Concluson

DBMS attempts to make an effort in handling and upgrading geometries for GIS.
The support of 2D objects with 3D coordinates is adopted by al mainstream DBMS.
The genera discusson related to the spatid DBMS and its functiondities were given in
this chepter. The sdected gspatid DBMS for this study is cdear with the practica
explandion given in the previous section. However, most of the offered functions and
operations are predominantly in the 2D domain. The DBMS spatid schemas have to be
extended to fully represent the third dimenson. In the next chapter, the discusson will
focus on the OGC dandards for geospatid moddling. It involves the specification for
data type schema together with the spatid operations. The discusson will provide a
clear direction in order assst the study to extend the current spatia data type to the third
dimension and perform spatid operations for 3D GIS.



CHAPTERI 11

OGC STANDARDSFOR GEOSPATIAL MODELING

3.1 I ntroduction

GIS introduce methods and environments to visudize, manipulate, andyze and
display geographic data These methods and environments have some interoperability
problems. Different organizations and commercid vendors develop their own daa
modeds and storage structures. If GIS services are not interoperable, GIS services cannot
interact with each other even though they are in the same organization or they belong to
same commercid vendor. The nature of the geographica applications requires seamless
integration and sharing of spaia daa from a variety of provides To solve the
interoperability problems, the OGC has introduced some dandards by publishing
goecifications for the GIS sarvices OGC is a nonprofit, international standards
organization that is leading the development of standards for geographic data related
operations and services. OGC has variety of contributors from different aress such as
private industry and academia to create open and extensble software application
programming interfaces for GIS (OGC, 2007). Therefore, the third stage of the research
sarted with areview of Open Geospatia Consortium (OGC) standards for GIS.
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The OGC is a voluntary consensus sandards organization. Founded in 1994, the
OGC produces many kinds of technical documents, including standards, working drafts,
technical reports, discussion papers, and XML schemas. A number of OGC standards
and application schemas of OGC dstandards are row used and/or referenced by standards
gpoecifications from other dandards organizations, including OASIS, the IETF, IEEE,
ISO, and OMA. The OGC core misson is to develop spatid interface and encoding
specifications that are openly available and roydty free. Products and services that
conform to OGC interface specifications endble users to fredy exchange and process
spatia information across networks, computing platforms, and products. Interoperability
in such an environment is facilitated by the use d a sysem of peragtent identifiers that
ae globd in scope The OGC is the only standards organization whose misson is
specificaly focused in interfaces and encoding for geospatid content and services. This
chapter discussed the abdiract specification for feature geometry, together with the
implementation specification in DBMS.

3.2 OGC Abstract Specification for Feature Geometry

This OGC gandard presents the conceptua schemas to describe and manipulate
the spatid characteristics of geographic features (OGC, 2001). A feature is an
abdraction of a red world phenomenon; it is a geographic feature if it is associated with
a location reative to the Earth. There are two kinds of data types. vector data conssts of
geometric and topologicd primitives used, separately or in combination, to construct
objects that express the spatia characteristics of geographic festures, raster data is based
on the divison of the extent covered into smdl units (normdly defined as pixe dze)
according to a tessellation of the space and each unit is assgned to an atribute vaue.
This abgtract standard dedls only with vector data. In this sandard model, the attributes
to describe spatid characteristics are given by a geometric object (GM_Object) or a
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topological object (TP_Object). Geometry provides the means for the quantitative
destription  (in the form  of coordinates and mahematicd  functions), including
dimenson, pogtion, Sze, shape, and orientation. The mathematicd functions used for
describing the geometry of an object depend on the type of coordinate reference system
used to define the spatid postion. Geometry is the only aspect of geographic
information that changes when the informaion is tranformed from one geodetic
reference system or coordinate system to another.

Topology deds with the characterigics of geometric figures that remain invariant
if the goace is deformed dadticdly and continuoudy — for example, when geographic
data is trandformed from one coordinate sysem to another. Within the context of
geographic information, topology is commonly used to describe the connectivity of an n-
dimensond graph, a property that is invariant under continuous transformation of the
graph. Computational topology provides information about the connectivity of
geometric primitives that can be derived from the underlying geometry.

Standardized conceptud schemas for spatid characteristics will increase  the
adility to share geogrgphic information among gpplications. These schemas will be
reviewed and extended into third dimenson for spatia operation implemented in spatid
DBMS. In the next section, the discussons will focused on the concept of Unified
Modding Language as it give a generd idea to describe the architecture of spatid data
and modd. The study will implement UML method to develop the standard notation for
new 3D spatia datatype and spatia operations.
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3.2.1 Unified Modding Language (UML) Concept

The architecture of gpatiad data type and modeing for GIS are commonly
presented usng UML. Instead of entities, it modes object classes. It can be used it to
specify, visudize, congtruct and document designs. The language is aso used to denote
the desgn dructure of software systems, as a part of the software development process.
UML become a standard notation for representing the structure of data in the object-
oriented community. It was developed when the object-oriented method adopted the
dandard notation for modeding purposes (Embley, et al. 1992). The UML was published
by the Object Management Group in 1997 (OMG, 1998). The Unified Modeing
Language includes.

Elements that involve the fundamenta concepts and semarntics;
Notation for visud rendering; and

Rules and condition involve in the architecture.

UML aso provides extenshility and specidization mechanisms to extend the
core concepts. It has a semantics modd that maps well to a family of OO languages, but
in itsdf does not require the use of a specific programming language. Besides, UML
does not define a dandard process, and it has intentionaly been made process
independent.

As a sysem of notation for representing the sructure of data, the UML datic
diagran is functiondly the exact equivdent of any other daa modding,
entity/relaionship modeling, or object modeling technique. Its classes of entity objects
are redly entities, and its associations are reationships. It has specidized symbols for
some things that are dready represented by the main symbols in other notations, and it

lacks some symbols used in E/R diagrams. It does, however, have a more extensive
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ability to dexcribe inter-rdaionship condraints. Severd modeing add the ability to
describe the behavior of each object classentity, but the technique for data structure is
amilar to the UML data modeling technique. The components of UML include:

Entities (Object Classes) and Attributes: As sated above, in object models,
entities are caled object classes. A class in the UML datic modd is a square cornered
rectangle with three divisons. The top part contains the class name. The middle section
contains a ligt of attributes. The bottom, if included, contains descriptions of behavior.
Snce the UML is modly used for design, these behavior descriptions are usudly in the
form of pseudo-code.

Name

Frame./

Class

Attributes ® . menuBar : MenuBar

Responsibilities:

Behaviors - Manage MenuBar
- Process events

Figure 3.1: Sample of UML diagram

An attribute can be referred to by one or more of the following eements:
Vighility - In terms of the object-oriented code which may implement the class,
is this attribute vishble to adl (+), to only those dasses which are sub-types of this
class (#), or to thisclass only (-).

Name - Thisisthe only required eement.

Multiplicdty - Object-orientation is not condrained by the relationd notion that
an object may have only one vadue for an dtribute This parameter lets you
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define that it may have more than one, up to five etc. If the lower limit is zero,
then occurrences of the related entity are optiond.

Type - This is the data type of the attribute (number, character, etc.). The vaues
for this depend on the modd’ s environment.

= Initid vaue - Here can be specified adefault vaue.

Relationships (Associdtions): A rdationship is cdled an associdion in the
object-oriented world. Rather than usng grgphic symbols, dl the information on a UML
asociation is conveyed by chaacters. Severd dements involve in providing the
asociation for UML are:

Cadindity / Optiondity: Both cadindity and optiondity ae conveyed by
charactersin the form:

<lower limit>

<upper limit>

where the <lower limit> denotes the optiondity (nearly dways O or 1, dthough
concaivably it could be something else), and the <upper limit> denotes the cardindlity.
The <upper limit> may be ether an agterisk (*) for the generic “more than one’, or it
may be an explicit number, a st of numbers, or a range. For example, “0.*” means
“may be one or more’ (zero, one, or more), and “1..1” means “must be exactly one’.
Since they are most common, “0.*” may be &bbreviated “*”, and “1.1° may be
abbreviated “1”.
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“Part of/composed of”: Extra symbols represent the particular association where
each object in one class is composed of one or more objects in the other class. (Each
object in the second class must be part of one and only one object in the fird class)
The assodation acquires a diamond symbol next to the parent (“composed of”) class.
If the association is mandatory and the referentid integrity rule is “cascade delete’ -
that is deetion of the parent deletes al the children - this is cdled “compostion”
and the diamond is solid. If the association is optiond to the parent (and therefore
has the referentid integrity rule “nullify deete’) - that is, a parent can be deleted
without affecting the children - then the diamond is open and is caled “aggregation”.
The notation does not address the “redtricted” rule, in which deletion of a parent is
not permitted if children exist. Nor does it address referentia integrity rules for any
other kind of association.

Composition
Aggregation
\J/ EventM anager
MenuBar
Event
+ post (e : Event)
+ suspend Menultem
@ (b)

Figure 3.2: (). Composition, and (b). Aggregation

3.2.2 DataTypesand Collection Types

There are many different spatial standards on how to mode geographic features
to gpatid objects in databases. It depends on which kind of DBMS solution is used,
which spatid data types are available b use. However, the OpenGeospatid Consortium
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(OGC, 1999) produced a standard specification on smple features that established some
consensus on this matter by creating a paradigm for database users and vendors to
fdlow in hendling two-dimensond gpatial daa The smple feature modd has dnce
been adapted and developed further by the International Standards Organization (1S0),
eg. in 1SOMC211-19107: Geographic Information Spatiad Schema (ISO 2003). The
discusson on spatid dandard darted by introducing the OGC smple feature
Specification that is currently gpplicable in most patial enabled databases.

The OGC defines spatid model as collections of spatid objects that referred as
Geometry. It is associated to spatid extent in space, which defined in spatiad reference
sysem. The Geometry class is divided into four subclasses as geometric primitives:
Point, Curve, Surface and GeometryCollection. All these classes provide methods to
their subclasses to be extended the modd in the future (ngvarsson, 2005). For example,
the Surface was used for this study in extending the two-dimensond spatid data type to
three-dimension, i.e. polyhedron. Point represents a O-dimensond object located in
gpace. Linear feature connects at least two Points to creste a 1-dimensond LineString,
which denotes a class Curve. Arc or Spline could also be consdered as class of Curve.
The smplest LineString is a draight Line segment that only connects two Points. If the
LineString is smple (i.e. does not cross itsdf) and closed with it's begin and end points
connected, it is conddered to be LinearRing. At least one LinearRing is necessary to
define the boundary of a 2-dimendond Polygon, a specidization of the geometric
primitive Surface. Extra LinearRings define interior boundaries of the Polygon. Other
classes than Polygon can be conddeed as specidization of Surface, eg.
TriangulatedSurface.

A collection of one ore more Points, LineStrings or Polygons can be gtored in as
collection  objects, eg. MultiPoint, MultiLinestring  or  MultiPolygon.  The
MultiLineString and MultiPolygon are specidizations of MultiCurve and MultiSurface
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repectivedy, with eveything a <gpeddization of the geomeric primitive
GeometricCollection. The OGC specification on smple feeturesis given in Figure 3.3.

<<Type>>
GM_Obiject
<<Type>> <<Type>>
GM_Complex GM_Aggregate
<<Ti/pe>> <<Type>> <<Type>>
GM_Primitive GM Composite GM_MultiPrimitive
[ I I
<<Type>> e <<Type>> <<Type>>
GM_Point GM_CompositePoint GM_MultiPoint
<<Type>>
GM_OriantablePrimitive
I
<<Type>> e <<Type>> <<Type>>
GM_OrientableCurve GM_CompositeCurve GM_MultiCurve
<<Type>> <_ <<Type>> <<Type>>
GM_OrientableSurface| GM_CompositeSurface GM_MultiSurface
<<Type>>
GM_Curve
<<Type>>
GM_Surface <<Type>> | <<Type>> <<Typg>> ‘
GM_Solid GM_CompositeSolid GM_MultiSolid

Figure 3.3: Geometry basic classes given in OGC

The Geometry class given by OGC gspecification is GM_Object. It has three
subclasses GM_Primitivess, GM_Complex and GM_Aggregate. The specidization of
GM_Primitives are GM_Point, GM_Curve and GM_Surface smilar to Point, Curve and
Surface. To dores sequence of GM_Primitives, GM_Complex is used, as if
implemented in  GM_ComposteCurve. GM_Aggregate is a function smilaly as
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GeometricCollection in the OGC spedfication. The spatid extent is not associated with
root class, i.e. GM_Object, but to GM_Primitives. Consequently, the GM_Complex and
GM_Aggregae are extending from primitives, with spatid reference dependence on the
cdassGM_Primitive.

3.2.3 0OGCWsedl-Known-Text

There are two ways of expressng spatid object, especidly within DBMS
environment like data insartion. They are defined by OGC, i.e the Wdl-Known Text
(WKT) form and the Well-Known Binary (WKB) form. Both WKT and WKB record
the information about data type and the coordinates in order to form an object. The
purpose of identifying this specification is to implement the method of expressng spdid
object into three-dimenson for the study. Although OGC only defines these methods in
two-dimenson, the mehod could be extended into three-dimendon, with minor
modification from the coordinate structure. For the sake of this study, only OGC WKT
was given datention, and some examples of the text representations (WKT) are as

follows,

POINT (X1 y1)

LINESTRING(X Y1, X2 Y2, X3 ¥3)

POLY GON(X1 Y1, X2 Y2, X3 Y3, X4 Ya, X5 Y5, X1 Y1)

MULTIPOINT(X1 Y1, X2 Y2)

MULTILINESTRING((X1 Y1, X2 Y2, X Y3),(Xa Y4, X5 Y5, X6 Y6))

MULTIPOLY GON((X1 Y1, X2 Y2, X3 Y3, % Y4, X5 Y5, X1 Y1),( X6 Y6, X7 Y7, X8 Y8, X0

Yo, X10 Y10, X6 Y6))
GEOMETRY COLLECTION(POINT (X1 y1),LINESTRING(X: Y1, % )
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The OGC specification dso requires other dorage format such as include the spatia
referencing system identifier (SRID). The SRID is required if spatid objects are inserted
into the database. Input/Output of these formas are avalable usng the following
interfaces:

bytea WK B = asBinary(geometry);

text WKT = asText(geometry);

geometry = GeomFromWK B(bytea WKB, SRID);
geometry = GeometryFromText(text WKT, SRID);

A vdid insart statement to insert aspatia object is given asfollows:

INSERT INTO table (geometry, name) VALUES
(GeomFromText(’ POINT 100 200)’, 312), 'City A’);

3.24 OGC Absdtract Specificationsfor 3D Solids

According to the Spatiad Schema, spatid characteristics are described by one or
more spatid atributes whose vaue is given by a geometric object (GM_Object) or a
topological object (TP_Object).

Geometry provides the means for the quantitative description, by means of
coordinates and mathematica functions, of the spatid characterigics of features,
including dimenson, postion, Sze, shgpe, and orientation. The mathematicd functions
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used for describing the geometry of an object depend on the type of coordinate reference
system used to define the spatid pogtion. Geometry is the only aspect of geographic
information that changes when the informaion is tranformed from one geodetic
reference system or coordinate system to another.

Topology deds with the characterigtics of geometric figures that reman invariant
if the goace is deformed dadticdly and continuoudy — for example, when geographic
data is transformed from one coordinate sysem to another. Within the context of
geographic information, topology is commonly used to describe the connectivity of an n
dimensond graph, a property that is invariant under continuous transformation of the
graph.  Computationd topology provides information about the connectivity of
geometric primitives that can be derived from the underlying geometry.

3.2.4.1GM_Solid

OGC defines 3D object as GM_Solid (OGC 2001) and it is a subclass of
GM_Primitive and is the bads for 3-dimensond geometry. The extent of a solid is
defined by the boundary surfaces. The boundary defines a sequence sets of
GM_Surfaces that limit the extent of this GM_Solid (see Figure 3.4). These surfaces
ghdl be organized into one st of surfaces for each boundary component of the
GM_Solid. Each of these shels shdl be a cyde (closed composte surface without
boundary). In genera, asolid in a bounded 3-dimensond manifold has no distinguished
exterior boundary. In cases where “exterior” boundary is not well defined, dl the shdls
of the GM_SolidBoundary shdl be listed as “interior”. The GM_OrientableSurfaces that
bound a solid del be oriented outward — that is, the “top” of each GM_Surface as
defined by its orientation shdl face away from the interior of the solid. To represent a
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3D solid as a volumetric object, GM_Solid is the best abstract spesification defined by
OGC. Other than the GM_Solid, some feature geometry such as GM_Composite aso
involves 3D solid object with other primitives, eg. point, line, and polygon.

There are some functions or operaions that could be implemented by usng
GM_Solid. The function/operetions are:
Area the operation shdl return the sum of the surface areas of dl of the
boundary components of a solid. For example:
GM Solid::area() : Area

< -:Ty pe==
GM_Primitive

<<Type==
GM_Solid

+ boundary() : GM_SolidBoundary

+ area() . Area

+ volume() : Volume

+ GM_Solid{boundary : GM_SolidBoundary) : GM_Solid

Figure 3.4: GM_Solid data type defined by OGC

Volume the operation shdl return the volume of this GM_Solid. This is the
volume interior to the exterior boundary shdl minus the sum of the volumes
interior to any interior boundary shell. For example:
GM Solid::volunme() : Vol une
GM_Solid  (condructor): since this dandard is  limited to 3-dimensond
coordinate reference systems, any solid is definable by its boundary. The default
congructor for a GM_Solid is from a properly sructured set of GM_Shells
organized asa GM_SolidBoundary. For example:
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GM Solid:: GM Solid(boundary : GM Sol i dBoundary)
GM _Sol i d

Although the OGC does not discuss some operations that refer to 3D solid eg.
3D intesection between 2 solids, in order to extend to third dimenson, sSmilar
specifications could be given to the 3D operations, if the zcoordinate is considered. The
notion for operations provided by OGC as given below:

return-type type-1::operation(type-2, type-3 ...)
Example

Doubl e Preci sion Geonetry 1::Di stance(Geonetry 2,

Geonetry 3)

operation(nane-1 : type-1, nane-2 : type-2, nane-3 :

type-3 ..) : return-type,

Example
3D Intersects(Al: Geonetry 1, A2: Geonetry 2) : Geonetry
3

There are other 3D objects being consdered in OGC specification, i.e. cone,
sphere and, etc. Some 3D object are not considered as volumetric solids but till apears
in 3D space, i.e. free-form curve and surface. Figure 3.5 denotes the complete list of 3D
objects (with highlighted part) consdered in OGC specification.
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3.2.4.2 TP_Solid

The OGC dso defines solid object that implement the use of topology, i.e
TP_Solid. The main purpose of using topology is to accelerate computational geometry.
Geometric cdculations such as contanment (point-in-polygon), adjacency, boundary,
and network tracking ae computaiondly intendve. For this reason, combinaorid
Sructures known as topologicd complexes are constructed to convert computationa
geometry dgorithms into combinatorid dgorithms. Another purpose is, within the
geographic information domain, to relae festure ingances independently of ther
geometry. The class "TP_Solid" (see Figure 3.6a) provides topologica primitives for
GM_Solid. For TP_Salid, the operation “boundary” defined a TP _Object shal return a
collection of faces or ther negative proxies. This operation is overidden from
TP_Object (see Figure 3.6b).

zxTypa=r
] ,-f'._mfw T {boundary (). dimension() = dimension{) - 1} Ij
TP _DmcisdFaca
L ]
1 +lapo vy . f
<<interface>>
TF_Object
S previne Borciasy
< Ty pas» ¢_ + dimension() : Integer
TP _Esli a2 + boundary () . TP_Boundary
+ coBoundary() . Set<TP_DirectedTopo>
1 + interion) | Set<TP_Primitive>
vira T 1 + closure() : Set<TP_Primitive>
+ externon]) | Set<TP_Primitive=
=Ty pass + maximalComplex() : TP_Complex
o b “Poan | TR DischedSoid
2
skttt 4’
i <<Type>> <<Type=>>
Cemer i =
oy i Fi TP_Complex TP_Primitive
2 _Lhinciadope {from Topolegical Complex) (from Topological primitive)
@ (b)

Figure 3.6:(a). TP_Solid defined, and (b). TP_Object defined by OGC
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3.3  OGC Implementation Specificationsfor DBM S

The GM_Solid defined by OGC as a gened 3D primitive in abdtract
gpecification (OGC 19993). However, the existing implementation (for SQL) of 3D solid
(e.g. polyhedron, tetrahedron) is not available due to the &sent of 3D data type (as 3D
primitive) within exigsing DBMS. A volumetric object could be moddled by usng multi

collection of same or different geometries. OpenGIS implementation Specification for
3D solid object can be refered to as PolyhedralSurface and MultiPolygon. A

PolyhedralSurface is a contiguous collection of polygons, that share common boundary
sgments. It is a subtype of Surface. The primitive of PolyhedralSurface and
MultiPolygon are referred to Polygon (see Figure 3.8). The different between these two
geometries is that the polygons that congtruct PolyhedralSurface must share boundary to
the neighboring polygons. The MultiPolygon is flexible, i.e. share boundary may not
exig for certan polygon(s). For each pair of polygons that “touch”, the common
boundary shal be expressble as a finite collection of LineStrings. Each such LineString
shdl be part of the boundary of a most 2 polygon patches. A TIN (triangulated irregular
network) is a PolyhedrdSurface congsing only of Triangle patches. For any two
polygons that share a common boundary, the “top” of the polygon shdl be consstent.
This means that when two LinearRings from these two Polygons traverse the common
boundary segment, they do so in oppodte directions. Since the Polyhedral surface is
contiguous, dl polygons will be thus consgently oriented. This means that a non
oriented surface shadl not have sngle surface representations. Figure 3.7 shows an
example of such a consgently oriented surface (from the top). The arrows indicate the
ordering of the linear rings that from the boundary of the polygon in which they are
located. The methods of implementing the polyhedrad surface in DBMS is given as
below (see Figure 3.9):

NumPatches (): Integer — Returns the nunber of
i ncl udi ng pol ygons.
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PatchN (N: Integer): Polygon — Returns a polygon in
this surface, the order is arbitrary.

Boundi ngPol ygons (p: Polygon): MiltiPolygon — Returns
the collection of polygons in this surface that bounds

the given polygon “p” for any polygon “p” in the

surface.

IsClosed (): Integer — Returns 1 (True) if the pol ygon
closes on itself, and thus has no boundary and encl oses.

20710
O D

Figure 3.7: Polyhedral Surface with consstent orientation

Geome iy
Surface

areal) : Area

centroid() : Paoint
pointOnSufaced) : Paoint
boundaryi) . MultiCurve

I

+ o+ o+ o+

Polyhedral Suface

Polygon
+patch
T ; numPatches) : Integer
+ exterorRing() : LineString < foe ki
+ numlinterierRingl) : Intager 1.0 Patchh(N :Integer) : Polygan

boundingPalygonsp :Polygan) : MultiPolygon
igClosed() : Boolean

+ o+ o+ o+

+ interioRingMN(M Integar : LinaString

Figure 3.8: Implementation specification for Polyhedral Surface
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In the implementation specification, OGC provides the geometry function that
does not limit to any dimensons. Only DBMS itsdf decides the implementation of the
gandard functions (specified by OGC) that consders the third dimenson or not. Some
of the standard functions given by OGC (Smple Festure Specification for SQL,

Revison1.1) are:

I ntersection (gl Geonetry, g2 Geonetry): Geonetry
Return a Geonetry that is the set intersection of
geonetries gl and g2.

Difference (gl Geonetry, g2 CGeonetry): Geonetry
Return a Geonetry that is the closure of the set

difference of gl and g2.

Union (gl Geonetry, g2 Geonetry): Geonetry

Return a Geonetry that is the set union of gl and g2.
SynDi fference(gl CGeonetry, g2 Geonetry): Geonetry
Return a Geonetry that is the closure of the set
symmetric difference of gl and g2 (logical XOR of

space).

Buffer (gl Geonmetry, d Double Precision) : Geonetry
Return as Ceonetry defined by buffering a distance d
around gl)

ConvexHul | (g1 CGeonetry) : Geonetry

Return a Geonetry that is the convex hull of gl.
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Figure 3.9: SQL Geometry type hierarchy

Summary and Conclusion

The OGC abdract and implementation gpecifications provide the sandard
method to define spatial objects and their functiondities. The research was attempted to
extend the exiding two-dimensond dandard specifications to the third dimenson.
UML diagram was used to present the desgn of spatid object, in order to define the
properties and functions for 3D gpatid object. The study dso discussed the Wel-
KnownText, as what PostGIS expresses 3D object in DBMS, eg. point, line, and

polygon in 3D. The solid object will follow the WKT method in order to express
Polyhedron as a solid object within DBMS. The exising implementation (for SQL) of
3D solid (eg. polyhedron, tetrahedron) is not avalable due to the dsent of 3D data type
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(as 3D primitive). An dternative to mode volumetric object is to use multi collection of
sane o different geomeries. The dudy will implement multi collection of Surface,
gmilar to MultiPolygon, with minor modification, in order to creste a solid object, i.e.
Polyhedron. This user-defined solid object will be used as input for 3D spatid operation,
which extend the dtandard implementation specification for SQL. Next chapter explans
the related works and study for 3D spatia operaions for geometry and topology data

types.



CHAPTER IV

FUNDAMENTAL SET AND EULER THEORIES

4.1 I ntroduction

The second stage of the research dtarted with a review fundamentd set and Euler
theories. The drength of set theory is focused on the topologica data modeding for 3D
gpatid data object. On the other hand, the drength of Euler theory is defined in the
vdidation function for 3D gpatid object, for this research, polyhedron. This chapter
discusses the fundamenta issue for st and Euler theories. The discusson continues by
extending these theories for 3D spatid data modeling for 3D GIS. The discussion will be
implemented in the next chapter to verify the developed topologica data structure and
the validation function is gpplicable within DBM S environment.
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42  Set Theory

Sa theory is the mathematica theory of sets, which represent collections of
abstract objects. It often encompasses as Venn diagrams about collections of objects. Set
theory provides the language in which mathematica objects are described. Along with
logic and the predicate caculus, it is one of the axiomatic foundations for mathemdtics,
dlowing mathematica objects to be congructed formdly from the undefined terms of
“sat” and “set membership”.

In naive set theory, sets are introduced and understood using what is taken to be
the sdf-evident concept of sets as collections of objects considered as a whole. In
axiomdtic set theory, the concepts of sets and set membership are defined indirectly by
fird assuming certain axioms which specify their properties. In this conception, sets and
st membership are fundamenta concepts like point and line in Euclidean geometry, and
are not themselves directly defined.

4.2.1 NaiveSet Theory

In naive st theory, a set is described as a well-defined collection of objects.
These objects are cdled the eements or members of the set. Objects can be anything:
numbers, people, other sets, etc. For instance, 4 is a member of the sat of dl even

integers. Clearly, the st of even numbers is infinitdy large; there is no requirement that
a st befinite.
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If x is a member of A, then it is ds0 sad that x belongs to A, or that x is in A. In this
case, it can be written as X | A. The symbol | is sometimes used to write x | A,

meaning “x isnatin A”.

Two sets A and B are defined to be equa when they have precisdy the same
dements, that is, if every dement of A is an dement of B and every dement of B is an
edement of A. Thus a st is completely determined by its dements, the description is
immateria. For example, the set with dements 2, 3, and 5 is equd to the set of al prime
numbers less than 6. If the sats A and B are equdl, this is denoted symbolicdly as A = B

(asusud).

It is dso alowed for an empty set, often denoted @ and sometimes {}: a set without any
members a al. Since a set is determined completely by its ements, there can only be
one empty st

4.2.2 Axiomatic Set Theory

Axiomatic st theory is a verson of set theory, in which axioms are taken as
uninterpreted rather than as formdizations of pre-exiding truths. Axiomatic st theory is
a firg order logica sructure. First order logic works with propostions, i.e, logica
statements constructed according to the rules of logic and that can take two vaues. For
convenience we cal these two vaues “True’ and “Fasg’. Set theory, and thus the entire
body of mathematics reducesto logica propositions that use the following eements:

1. Vaiables(eg., a b, ---X,Y, 2), which stand for sets.
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2. The predicate | , which gands for dement incuson. For example, if the
proposition & | y) takes the value true, we know that both x and y are sets and

that x isan dement of y. For example, the proposition

(1,23} 1 {{1,2},{4,5},{1 2 3}} (3) takesthe value “True’.

3. Logica operators

@
©
©
@
©
(f)
()

=P, where - isthelogica “negation” operator.

P U Q, where U isthelogicd “and’ operator.

P U Q, where U isthelogica “or” operétor.

P® Q,where ® isthelogicd “implication” operator.
P« Q,where « isthelogica “bijection” operator.
" xPisthelogicd “for-al” quantifier.
$xPisthelogicd “exigs’ quartifier.

All propogtions in st theory are built out of aomic propostions of the form (x

| y) connected using the logical operators. If P and Q are propostions, eg., P could be
xI yyandQcouldbe(y | zthen-P,P UP,PUQP® QP « Q," xPand
$xP ae dso propostions. The effect of the connectives on the truth vaue of

propositionsis expressed in Table 4.1:

P | Q P PUQ [ PUQ [ P®Q | P« Q
T [T F T F T T
T | F F F T F F
F | T T F T T F
F | F T F T T T

Table4.1: Logica operators, T = TRUE; F = FALSE
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4.3 3D Topological Data Modeling for DBM S

A lot of work had been done in the management of 3D topologicad data in geo
DBMS environment. Existing 3D spatid modd (3D FDS by Molenaar (1990), TEN by
Filouk (1996), and SSS by Zlatanova (2000)) are mainly aimed to perform visudization
andyss Different spatid modds involve different primitives and congructive object,
and thus, performances are differed to each other. All the faces that congtruct a body, in
this case, a polyhedron, should be mentioned in the relationship modd. Following this
drategy, three modes will be discussed extensively. Topological sructures could be
used to represent planar partitions or linear network without redundancy. Relaiond
DBMSs can dtore very well the topologica references. area left and right of a boundary,
boundary to boundary references etc. They aso support certain topology structure
management, as they are able to do consstency checks, providing spatid queries and
functions.  Currently, the DBMSs do seem to offer the most flexible platform for
implementing the complex featuress DBMS offers the posshility to navigate through
the database, contralled by programming the implementation of methods.

4.3.1 3D Formal Data Structure (3D FDS)

The design of 3D FDS (Molenaar, 1990) design is based an the decomposition of
a fedure into identifier, geometry, and theme. The mode consgts of three fundamentd
levels (see Figure 4.1): feature (rdlated to a thematic class), four eementary objects
(point, line, body and surface) and four primitives (node, arc, face and edge). A node
and an arc will be created in the first place. Edge is extended by arc in the sense that the
series of arcs could be backward or forward. Edges are additiona geometric primitives
providing the link between arcs and faces and so permitting the unique reference to left
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and right bodies that are 3D features. Faces are 2D geometric primitives in addition to
nodes and arcs, respectively of 0 and 1 dimenson. The data modd distinguishes four
types of features, i.e. point, line, surface and body. A point feature conssts of a node; a
line feasture condsts of one or more arcs, a surface conssts fegture of one or more faces,
and a body feature is bounded by faces. The role of the edge is dud, i.e. to define the
border of a fce (rdationship face-arc) and establish an orientation for a face, which is
needed to specify left and right body. The number of arcs condituting an edge is not
redricted. Arcs are draight lines and faces are planar. The surface has one outer
boundary and may have severd nonnested boundaries, i.e. may have holes or idands.

The body has one outer surface without a boundary and can have several non-nested
bodies or holes.

The fundament concept of 3D FDS is referred to a single-vaued map that able to
partition the space into non-overlgpping objects, and thus ensuring 1.1 relaionships
between edementary object and primitives of same dimensions, eg. surfaces and face.
Primitives of different dimensons can overlap, eg. reationships node-on-face, arc-on
face, node-inbody and arc-in-body ae explictly stored.  Thus, sngulaities are
permitted in this modd. In generad, 3D FDS contains dl the necessary data to visudize
the geometry of objects. The modd adso provides the orientation of faces which is
cucid for the correct rendering. Therefore, The 3D FDS is suitable for direct
representation and query-based spatid analyss.  However, with the absent of 3D
primitive data type, eg. tetrahedron or polyhedron, the modd is not suited to solving
problems for applications that involve complex computation.
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Figure4.1: 3D FDS

4.3.2 TEtrahedron Network (TEN)

TEN was introduced by Filouk (see Pilouk 1996) to overcome some difficulties
of 3D FDS in modeling objects with indiscernible boundaries.  TEN (Figure 4.2) had
extended the TIN-based data mode to facilitate handling of 3D objects in order to
dretch the cegpability of the integrated data modd in both dimensondity and
computability. The triangular network had been generdized into a tetrahedra network.
The generd properties of a tetrahedron are the same as a triangl€'s, where each is a
amplex of its dimensgon and convex. Some important properties of their networks, for
example, locdity, fiddity and capability of embedding features are dso the same. The
latter indicates that the geometry of the features can dso be mantaned within the
tetrahedra network (TEN), which means that TEN aso has the capability of maintaining
human knowledge about the red world. However, TEN created a body-fegture that
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involves a contiguous et of tetrahedrons as a whole, s0 as to surface-festure of triangles,
and line-festure of arcs. The mode condraints sdf-overlapping or sdf-intersecting of a
festure are not alowed, and thus, avoiding sngularity in the object. According to the
definitions, TEN has four primitives, i.e. node, arc, triangle, and tetrahedron. The ARC
table gives the reaionship of acnode; the TRIANGLE table contains the tetrahedron
triangle-edge link. A body object is composed of tetrahedrons, a surface object of
triangles, a line object of arcs and a point object of nodes. The generd rule for creating
the modd is based on the fact that each node is part of an arc, each arc is part of a
triangle and each triangle is pat of a tetrahedron. The mode is appropriate for
representing irregularities in the red world.

The complete tetrahedronization condrained the triangles for both 25D and 3D
objects. For the logicd modd, the lig of the triangles will be increesed if certan
triangles are placed in the same plane. Moreover, the space is completely subdivided
into tetrahedrons, which the interiors of objects, as well as the open space, are dso
decomposed into tetrahedrons. These tetrahedrons will lead to database size expansion.
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4.3.3 Simplified Spatial Model (SSM)

Smplified Spatial Modd (Figure 4.3) was developed by Zlatanova (2000). It
was named as “smplified” because arcs are not used to congtruct objects. The moded
consists of two constructive objects, (nodes and faces) and four geometric objects (oint,
ling surface and body). A point is a spatid object that does not have shape or size but
position is the space. A line is a type of a spatia olject that has length and position. A
surface is an abgtraction of spatia object that has pogition and area. A body is a type of
goatia object that has a podtion and a volume. Nodes conditute points and lines and
faces condtitute surfaces and bodies. The Smplified Spatid Modd differs from other 3D
spatia topologicd modes in the number of condructive objects used, i.e. nodes and
faces. The geometric objects (known as complexes, cel complexes, feature objects) are
the same. It is smilar to 3D DS and some modifications of the cdl modd in permitting
sngularities. The modd dlows abitrary shgpes (but convex faces) as the cdl modds
and 3D FDS do. Smilarly to TEN, triangulation of red surfaces is a basic operation to
resolve interactions (point on, line on surface or face) with other objects and complex
shapes (holes, concave faces). The complete triangulation of al the surfaces may be
consdered a modification of TEN. The TRIANGLE and ARCLINE tables will contan
only the identifiers of the nodes instead of arcs.

XYZ

Figure 4.3: Smplified Spatid Moddl
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4.3.4 Modified Topological Structure Mode

In this section, the definition of a modified topologica mode will be given. In order to
produce a model that implements only the most essmtial primitives, arc and surface are not used
to construct objects. Due to the arcs store multiple nodes information within Geo-DBMS
database, lines are used to reduce datasets storage and improve the abilities of data retrieval and
spatiad query. Besides, a surface created from multiple faces aso omitted from this modd. This
is because a single but planar face may give a common boundary either for two solid objects, or
topological space and an object. On the other hand, a surface that created by faces may or may
not represent a common boundary between two solid objects. Furthermore, topologica
relationship that implements surface will become more complex, i.e. more relaionship will be
involved within node-surface, line-surface, surface-surface, or even surface-solid (Chen et. al,

2005). Therefore, three primitives are given, i.e. node, line, and face.

The geometry of each spatial object can be associated with four abstractions of
geometric objects, i.e. point, line, face and solid. A pointisatype of spatial object that does not
have shape or size but position is the topological space. A lineis atype of a spatial object that
has length and position. A face is atype of spatial object that has position and area. A solid isa
type of spatial object that has a position and a volume. Figure 4.4 denotes the conceptual design
of modified topologica data model. The three primitive objects are used to compose the four
feature objects, i.e. point, line, face and solid object. However, the feature objects are
constructed using these rules as follows. nodes congtruct points and lines; lines construct faces;

faces construct solid objects.
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==Type==
TR Obyect
==Types=z ==Types=z ==Typess ==Type==
TR Primitive TP Primitive TP Primitive TP Primitive
==Type=s ==Type=> =<Type=» ==Type==
TP_Paint3D TP _Line3Dr TP_Palygon3D TP_Paolyhedran
+PID(): Integer +LID ) Inteper +PID () Integer +PolylD () Integer
+ TP_Mode (xy,2) : TP_Node + TP_Line30 (TP_Pairt30Array) : TP_Line3D | |+ TP_Line3D (TP_Ling3DArray): TR_Palygon3D | | 4 TP | ine3D (TP_PalygonaDarray) | TP_Polyhedron

! ! il ?

==Data Type==
TP_Made

+x(): Double
+y () Double
+Z(): Double

Figure 4.4: Modified topological data structure

4.4  Implementation of Set Theoriesfor Spatial Data M odeling

In GIS, the vector data mode that used for geographic phenomena may be
represented by geometric  entities  (primitives)  like points, lines, polygons, and
volumetric solid object. With the integrated Geo-DBMS module (such as Oracle Spatid,
2002), geometric objects can be tored together with topologica information. These
vector data models that include the description of topology, as well as the location of the
spatial entities will be sored. In generd, topology in GIS requires a data sStructure,
where common boundary between two adjacent areas is stored as a single line,
amplifying the map maintenance. On the other hand, geometric entities require full data
insartion of any object. For instance, two triangles that share a common boundary stores
topologicd information of gx lines However, in geometric condition, they will be
sored twice of four nodes. Figure 4.5 gives the difference between topologica and
geometric data storage in Geo-DBMS.
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N2 TOPOL OGICAL DATA
. 4
FacelD LinelD
N4 A 1-2-3
N1 N3 B 45

Note:  1). 2representsthe common boundary
2). Line2 represents node N2 to N3

Figure 4.5: Topologicd data structure

Beside reducing data storage, Geo-DBMS dlows multi-user control on shared data and
crash recovery, automatic locks of sngle objects while usng database transactions,
advanced database protocol mechanisms to prevent the loss of data, data security, data
integrity and operations that comfortably retrieve, insert and update data (Bruenig and
Zlatanova (2004), Patd et. al (1997)). In this research, capabilities of topology in
handling spatid datasets in GIS will be discussed. It involves spatid primitives that ded
with spatid data recognitions (semantics) and their relaionships among objects. A new
framework for representing gspatid modd is introduced. The modd implements
topologicd mechanism for object semantic and reationship that able to represent the

red world, i.e. node, ling, face, solid3D.

4.4.1 Geometric Properties

Node is defined as single coordinate triplet represented by (X, y, 2) in three
dimensiona space (R®). It appears as OD object in 3D Euclidean space. It is used to
represent objects that are best described as shape- and Szeless sngle-locality features.
The location of each different node must be unique. The interior of a point is the empty
set, denoted by pe. For any cases, interior of point will not be reated to any kind of
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primitives due to the intersection results is an empty set. The boundary of a point,
denoted by 1p, isthe point by itsdlf. Findly, the exterior of apoint is denoted by p- .

Line is defined as series of nodes connecting together with an gppropriate
sequence. It is a one-dimensond spatia entity that defines a path through 2D or 3D
space. The geometry of line is defined by an ordered collection of two or more digtinct
coordinate tuples. The orientation of a line is defined by the ordering of its coordinate

tuples.

A line is used to represent one-dimensond objects such as road, railways,
cands, rivers, or even power lines in 3D Euclidean space. A line connecting two nodes
forms an arc. However, two end nodes connecting a vertex or more vertices define a
line. The draight parts of a line (or an arc) between two consecutive vertices are caled
line segments. Collections of (connected) lines may represent as network in red
gpplications. These end points are defined as the border of a line, denoted by 1. The
interior of line is defined as the line segment itsdf, denoted by 1°. The exterior of line is
denoted by |-.

Face is defined as a planar ared object. This ared feature is determined by series
of lines with an appropriate connected sequence, forming a closed boundary. It appears
as 2D object in 3D Euclidean space. A face connects three points forms a triangle,
otherwise, with a least four points forms a polygon. In most cases, the coordinate tuples
of the bounding edges of a face are not necessarily coplanar. Any entity nodes that are
contained within the face dso hep to define its three-dimensonad shagpe. The darting
and ending points are the same point that defined as the border of polygon, denoted by
TPo.
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In three-dimensional space, a face shares only between two solid objects. This
implies a face has two Sdes. The orientation of a face is defined by the order of the
edges that make up its outer boundary. The "top" Sde of a face is the sde for which the
outer boundary is defined in counter-clockwise order; otherwise the inner boundary
defines in clockwise order. In order to support verticd and overhanging surfaces, the
orientation of the "top" side of a face must be capable of being defined to be an arbitrary
direction, not necessarily pardld to the podtive Z-axis. Therefore, a face must have an
explicit "up" vector. Either a ample face or face with holes the properties of face will
not affect any topologica reationship between other objects. The different between
these two kinds of face is the face with hole consigts of two or more borders, whereas
the smple face only remans one border. The interior of a face is defined as the area
within its boundary, denoted by po°. The exterior of faceisdenoted by p- .

A solid is defined as indexed set of faces (polygons) joining together that forms a
volumetric object. It gopears as 3D object in 3D Euclidean space. A solid may be
topologicaly linked to nodes, edges, and faces. These nodes, lines, and faces that form a
s0lid are defined as the border of solid, denoted by So. In the topological model, either
a smple 3D object or solid object with holes, the properties of polygon will not affect
the topological relationship between other objects. The different between these two
kinds of solid is the one with hole consgts of two or more borders, whereas the smple
solid only remains one border. The interior of solid is defined as the closure of Al

borders, denoted by so°. The exterior of solid isdenoted by so-.
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Figure 4.6. The conceptua design of topologica data structure

45  Euler Theory

In dgebrac topology, the Euler characteristic is a topologicd invariant, a
number that describes one aspect of a topological space's shape or dtructure. It is
commonly denoted by ? (Greek letter chi). The Euler characterigic was origindly
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defined for polyhedra and used to prove various theorems about them, including the
classfication of the Platonic solids (see Figure 4.7).

(a) Tetrahedron (b) Cube (c) Octahedron

(d) Icosahedron (e) Dodecahedron
Figure 4.7: Sample of Platonic solids
The Euler characteridtic, ? was classicdly defined for polyhedra, according to the
formula

?=V-E+F

where V, E, and F are repectively the numbers of vertices, edges and faces in the given

polyhedron. A convex polyhedron is homeomorphic to a sphere, so its Euler
characteridic is



?2=V-E+F=2

This result is known as Euler's formula, and can be gopplied not only to polyhedra but
also to embedded planar graphs. A proof is given below.

Platonic solids | Vertices | Lines | Faces Euler characteridic (V-E+F)
Tetrahedron 4 6 4 2
Cube 8 12 6 2
Octahedron 6 12 8 2
Dodecahedron 20 30 12 2
|cosahedron 12 30 20 2

Table 4.2: Platonic solids (without hole) that apply the Euler characteristic

451 TheGeneralization of Euler's Formula

A dight genedization of Euler's formula to take into account polyhedron that

having holes.

V-E+F=2-2G

where G is the number of holes in the polyhedron. Thus the Euler characteridtic is 2 for a
regular polyhedron but O for a torus-like polyhedron (see Figure 4.8). It was the French

mathematician Henri Poincaré who fully generadized Euler's formula
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Figure 4.8: Torus-like polyhedron

45.2 The Euler-Poincaré Formula

The Euler-Poincaré formula describes the relaionship of the number of vertices,
the number of edges and the number of faces of a manifold. It has been generdized to
include potholes and holes that penetrate the solid. To State the Euler-Poincaré formula,
we need the following definitions:

V: the number of vertices
E: the number of edges
F: the number of faces
G: the number of holes that penetrate the solid, usudly referred to as genusin
topology
S: the number of shdlls. A shdl isan internd void of asolid. A shdll isbounded by a
2-
meanifold surface, which can have its own genus vaue. Note that the solid itsdlf is
counted as ashell. Therefore, thevauefor Sisat least 1.
L: the number of loops, dl outer and inner loops of faces are counted.
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Then, the Euler- Poincaré formulais the following:

V-E+F-(L-P-2S-G)=0

Examples
1). A cube has eight vertices (V = 8), 12 edges (E = 12) and six faces (F = 6), no holes
and one shell (S=1); but L = F since each face has only one outer loop. Therefore, we

have

V-E+F-(L-F)-2(S-G) = 8-12+6-(6-6)-2(1-0) = 0

~

Figure 4.9: A cube

2). The following solid has 16 vertices, 24 edges, 11 faces, no holes, 1 shell and 12 loops

(11 faces + one inner loop on the top face). Therefore,

V-E+F-(L-F)-2(S-G) = 16-24+11-(12-11)-2(1-0)=0

g
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Figure 4.10: A cube with one inner loop on the top face

3). The following solid has 16 vertices, 24 edges, 10 faces, 1 hole (i.e, genus is 1), 1
shell and 12 loops (10 faces + 2 inner loops on top and bottom faces). Therefore,

V-E+F-(L-F)-2(S-G) = 16-24+10-(12-10)-2(1-1)=0

Figure 4.11: A cube with hole

45.3 Validation Usng TEtrahedral irregular network (TEN)

The basc preference for these smplex-based data structures is based on certain
quditiesof Smplexes.

Well defined: anamplexisboundedby n+ 1 (n - 1)-smplexes E.g.
0 3-amplex (TEN) is bounded by 4 2-smplexes (4 triangles)
0 2-smplex (triangle) is bounded by 3 1-smplexes (3 edges)
0 1-samplexes (edge) is bounded by 2 0-smplexes (2 nodes)
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Flatness of faces are defined by three points (triangle)

The TEN dgructure consst of nodes, edges and triangles. A forma definition of a
ndmplex S, can be given: a n-dmplex S, is the smdlest convex st in Eudlidian space
IRm containing n + 1 points vo, . . ., Va that do not lie in a hyperplane of dimengon less
than n. As the ndimendond smplex is defined by n + 1 nodes it has the following
notation: S, = <vp, . . ., Vp>. The boundary of a Ramplex is defined by the following

sum of n- 1 dimensond smplexes (Figure 4.12):

- +
4
Vo Vi
S =<Vo, V1> 1S =<vi>- <vp>
V2
-
Vo Vi
S =<vy, V1, V2> 1S =<v1, V2> - <vg, Vo> + <vp, V1>

S =<Vo, V1, V2,v3> 1S =<vi,V2,V3>- <Vq,V2,V3>+<Vq,V1, V3> - <Vo, Vi, V2>

Figure 4.12: TEN model
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454 Validating the data structure

A TEN is vdid when it is a ull decompostion of space, i.e. there are no overlaps
or gaps in the dructure. Additional requirements are that each tetrahedron has postive
orientation, meaning that the norma vectors of the bounding triangles al point
outwards. The data structure can be vaidated by applying the Euler- Poincaré formula

N- E+F - V = 0 with N the number of nodes,

E the number of edges,

F the number of faces, and

V the number of volumes (including the exterior).

As can be sen in Figure 4.10, the Euler- Poincaé formula holds for dl
amplicid complexes, induding smplicid complexes tha conds of Smplexes of
different dimensons. Due to this characterisic dangling edges and faces cannot be
detected, but for ingance holes (i.e. missng faces) can be detected. Within the smplicia
complexbased approach the validation drategy is to sat with a vaid tetrahedronization
and to check every update for correctness before committing it to the database. As a
result one will migrate from one vdid date into another vaid dae. This srategy will
dso incdude the gpplicaion of for ingance flipping dgorithms for the deetion of
vertices, as such adgorithms are designed to maintain a vaid TEN during eech step of the
process. Other correctness checks can be implemented, like for instance a check on the
triangle view to ensure that every triangle gppears two times (with opposte sgn,
ignoring the inherited object id's). Also vadidation on fegture level can be considered, for
ingtance one can check whether al congtrained triangles form avalid polyhedron.
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46  Summary and Conclusion

The implementations of set and Euler theories for topologica data structure and
object vdidatiion were given in this chapter. The review of exiging topologicd mode,
eg. 3D FDS, TEN, and SSM were discussed in order to provide background theories
related to topologicd modd, and later with the implementation of set theories, an
modified topologicd data structure for 3D solid object will be developed. All reaed
geometric properties were mentioned in the desgn of the modified topologicd data
dructure. The devdoped 3D gpatid data moddling will be vdidated usng Euler
Poincaré Theorem. The implementation of developed idea will be verified in the next
chapter, where the experiment is carried out within geo-DBMS environment.



CHAPTER V

IMPLIMENTATION AND EXPERIMENT

51 Introduction

The review of concept and background of set and Euler theories for 3D
gpatial data modeling had been discussed in chapter 4. The approach mentioned from
the previous chapters will be tested. This chapter explains the methodology of
constructing new 3D topological data structure (implements the set theory) and
validation function (implements the Euler theory) in DBMS environment. The
intention of developing the topological data structure is to create a new data type in
3D, i.e. polyhedron that implements the set theory for structuring 2D primitives in
order to construct a 3D solid object. The characteristics of user-defined data type in
DBMS environment will be discussed at the beginning of the research. It is followed
by the validation function that implements the Euler theory to validate the input data
for DBMS. The implementation is divided into 2 phases, where the first part deals
with the topological database of spatial data modeling, and the second part deals with
the spatid function, i.e. the vaidation function.
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5.2 User-defined function for DBM S

Existing DBMS only manage to provide two-dimentional objects with 3D
coordinates. The absent of 3D primitive, e.g. tetrahedron or polyhedron, causes the
inavailability of 3D operations. However, some of the commercial DBMS, e.g.
PostgreSQL, enable user to create new user-defined datatype and functions. This
user-defined datatype and functions can be written in C (or a language that can be
made compatible with C, such as C++). For the purpose of research, only user-
defined function will be discussed, as it can be implemented for validation function.
However, for the 3D data type, i.e. polyhedron, the complete topologica data
structure will be developed within geo-DBMS.

5.2.1 Calling ConventionsVersion 0 for C-Language Functions

Although this approach is now deprecated, it's easier to get a handle on
initialy. In the version0 method, the arguments and result of the C function are just
declared in normal C style, but being careful to use the C representation of each SQL
data type as shown above.

Here are some examples:

#i ncl ude "postgres. h”
#incl ude <string. h>

int add_one(int arqg)

{
return arg + 1,
}
float8 *add _one_float8(float8 *arg)
{

float8 *result = (float8 *)



93

pal | oc(si zeof (fl oat8));
*result = *arg + 1.0;
return result;

Supposing that the above code has been prepared in file sample.c and compiled into a
shared object, we could define the functions to PostgreSQL with commands like this:

CREATE FUNCTI ON add_one(i nteger) RETURNS i nteger
AS *‘ DI RECTORY/ funcs’, ‘add_one’

LANGUAGE C STRI CT,;

CREATE FUNCTI ON add_one(doubl e preci sion) RETURNS doubl e
preci sion

AS ‘' DI RECTORY/ funcs’, ‘add _one float8

LANGUAGE C STRI CT;

The DIRECTORY stands for the directory of the shared library file (for
instance the PostgreSQL tutorial directory, which contains the code for the examples
used in this section). (Better style would be to use just ‘funcs in the AS clause, after
having added DIRECTORY to the search path. In any case, user may omit the
system-specific extension for ashared library, commonly *.s0)

Notice that user has specified the functions as "strict”, meaning that the
system should automatically assume a null result if any input value is null. By doing
this, user avoid having to check for null inputs in the function code. Without this,
user would have to check for null values explicitly, by checking for a null pointer for

each pass-by-reference argument.

Although this calling convention issmple to usg, it is not very portable. On
some architecture, there are problems with passing data types that are smaller than

integer. Also, neither there is no Smple way to return anull result, nor to cope with
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null arguments in any way other than making the function gtrict. The verson-1

convention, presented next, overcomes these objections.

5.2.2 Calling ConventionsVersion 1 for C-Language Functions

The version1 cdling convention relies on macros to suppress most of the

complexity of passing arguments and results. The C declaration of a version1

functionis

Dat um f uncname( PG_FUNCTI ON_ARGS)

PG_FUNCTI ON_I NFO _V1(funcnane);

In addition, the macro call must appear in the same source file.
(Conventionally. it's written just before the function itself.) This macro cal is not
needed for internal-language functions, since PostgreSQL assumes that all internal
functions use the version1 convention. It is, however, required for dynamically-
loaded functions.

In a versionl function, each actual argument is fetched using a
PG_GETARG_xxx() macro that corresponds to the argument's data type, and the
result is returned using a PG_RETURN_xxx() macro for the return type.
PG_GETARG_xxx() takes as its argument the number of the function argument to
fetch, where the count starts at 0. PG_RETURN_xxx() takes as its argument the
actual value to return. Here denotes the same functions as above, coded in version-1

yle

#incl ude "postgres. h"
#i ncl ude <string. h>
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#include "frmgr. h"
PG _FUNCTI ON_I NFO V1(add _one);

Dat um add_one( PG_FUNCTI ON_ARGS)

{
i nt32 arg = PG _GETARG_ I NT32(0);
PG _RETURN I NT32(arg + 1);

}
PG_FUNCTI ON_I NFO _V1(add_one_f| oat 8);

Dat um add_one_f | oat 8( PG_FUNCTI ON_ARGS)

{
float8 arg = PG _GETARG _FLOAT8(O0);

PG RETURN_FLOAT8(arg + 1.0);

The CREATE FUNCTION commands are the same as for the version-0 equivaents.

At first glance, the version1l coding conventions may appear to be just
pointless obscurantism. They do, however, offer a number of improvements, because
the macros can hide unnecessary detall. An example is that in coding
add one float8, user no longer needs to be aware that fl oat 8 is a pass-by-
reference type. Another example is that the GETARG macros for variable-length
types dlow for more efficient fetching of vaues.

One big improvement in version-1 functions is better handling of null inputs
and results. The macro PG_ARG SNULL( n) alows a function to test whether each
input is null. (Of course, doing this is only necessary in functions not declared
“strict”.) Aswith the PG_GETARG xxx() macros, the input arguments are counted
beginning at zero. Note that one should refrain from executing PG_GETARG _xxXx ()
until one has verified that the argument isn't null. To return a null result, execute
PG_RETURN_NULL () ; thisworksin both drict and non-strict functions.
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5.2.3 Compiling and Linking Dynamically-L caded Functions

Before the implementation of PostgreSQL extension functions written in C,
they must be compiled and linked in a special way to produce a file that can be
dynamicaly loaded by the server. To be precise, a shared library needs to be created.

Creating shared libraries is generally analogous to linking executables. First,
the source files are compiled into object files, then the object files are linked
together. The object files need to be created as position-independent code (PIC),
which conceptually means that they can be placed at an arbitrary location in memory
when they are loaded by the executable. (Object files intended for executables are
usualy not compiled that way.) The command to link a shared library contains
gpecia flags to distinguish it from linking an executable. In the following examples,
it is assumed that the source code is sample.c and a shared library sample.so will be
created. The intermediate object file will be called sample.o unless otherwise noted.

A shared library can contain more than one object file, but only one will be used

The dynamic loading feature is what distinguishes “C language” functions
from “interna” functions, and the actual coding conventions are essentially the same
for both. Hence, the standard internal function library is a rich source of coding
examples for user-defined C functions. The dynamic loading feature involves 2

Processes:

Dynamic loading is what PostgreSQL does to an object file. The object fileis
copied into the running PostgreSQL server and the functions and variables
within the file are made available to the functions within the PostgreSQL
process. PostgreSQL does this using the dynamic loading mechanism
provided by the operating system. The syntax that runs in Linux platform is
to produce an object file caled sample.o that can then be dynamically loaded
into PostgreSQL.
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gcc -fpic -c sanple.c

Loading and link editing is what user does to an object file in order to
produce another kind of object file (e.g., an executable program or a shared
library). User performs this using the link-editing program. This share library
will be registered within PostgreSQL environment.

gcc -shared -o sanple.so sanple.o

The methodology of creating user-defined function could be represented as

Figure5.1.
[ it e G e e -1
Linux / UNIX
GNU compiler (build-in) PostgreSQL

= C, C++, Java, Fortran, ect. z
share library

F

[ s (New functons) | ik ecitor

gce —share —o sample.so sample.o

Compile into object files
(position-independent cade - PIC)

L 4

Object files (PIC)

gee —fpic —c sample.c

Fgure 5.1: The methodology of cregting new function in DBM S environment
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5.3  Querying 3D Topological Data Structure

The spatial query for the 3D topological data structure could be done using
the SQL within geo-DBMS environment. The following query shows the results of
“dl facesinabuilding” (see Figure 5.2).

psql > SELECT face ID FROM Polyhedron_Table, where
psqgl > Pol yhedron_ID = 121;

Pol yhedron_I D face_ ID

121 12
121 16
121 24
121 56
121 57
121 58
121 67
121 78
121 79
121 82
121 83
121 85
121 86
L= N =] (=]

Figure 5.2: Sample of polyhedron
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54  Validation of The 3D Spatial Object

It is important that the spatial data is checked when it is inserted in the
DBMS. This check on the geometry of the spatial objects is called validation. Valid
objects are necessary to make sure the objects can be manipulated in a correct way.
For this research, the validation function is based on the Euler Poincaré theorem. The
Euler-Poincaré formula describes the relationship of the number of vertices, the
number of edges and the number of faces of a manifold. It has been generalized to
include potholes and holes that penetrate the solid. To state the Euler-Poincaré
formula, we need the following definitions:

V: the number of vertices

E: the number of edges

F: the number of faces

G: the number of holesthat penetrate the solid, usually referred to as genus in topology

S: the number of shells. A shell isaninternal void of asolid. A shell isbounded by a 2-
manifold surface, which can have its own genus value. Note that the solid itself is
counted as ashell. Therefore, thevaluefor Sisat least 1.

L: the number of loops, all outer and inner loops of faces are counted.

Then, A polyhedron is valid when it follows the Euler-Poincaré formula given as
below:

V-E+F-(L-F)-2S-G)=0

Thefollowing SQL statement runs the vdidation function on column geom.

psqgl > SELECT val i dat e_pol yhedron(geom 0. 05) VALI D FROM
psqgl > Pol yhedron_Tabl e, where Pol yhedron_ID = 121;

The reault;

Storage is valid
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55  Summary and Conclusion

In this chapter, the implementation of topological data structure and
validation function based on Euler Poincaré theorem was presented. However, there
are many issues that need to be given attention in order to improve the current
situation of 3D spatia modelling. These issues are in-line to the requirements of 3D
gpatiad modelling. Many kinds of 3D modeling are basically based on their
applications. The use of 3D modeling, e.g. ssimulation of 3D city, has become a
common application for both the military and private sector. Detailed 3D city models
are one of the popular mapping products that have seen widespread use in recent
years. Besides, the spatial operations for the 3D city model aso become importart
for urban planning, telecommunication, environment analysis, transportation, risk
management and visualization of proposed development. The future challenges for
3D GIS modeling aso involves the interoperability between different applications,
data model, the integration between DBMS and visualization, and the linkage
between data model and data acquisition.



CHAPTER VI

CONCLUSIONSAND RECOMMENDATIONS

6.1 Conclusions

Research and development within the scope of 3D-GIS is now extensive.
This research can only deal with some parts of it. The emphasis here is on the
development of 3D spatia data modelling for topological data structure. Some
methods utilizing the 3D sgpatiad modeling with respect to the development
introduced in this report are aso given. Severa problems associated with 3D GIS
were identified in chapter 1. The scope of this thesis, however, restricts the emphasis

to various stages of the development of new 3D datatype, i.e. polyhedron.

The review of the current situation of 3D modeling indicates that existing
researches do not provide adequate, complete and optimized 3D nodeling tools and
operations for earth science applications needing to model the spatial objects.
Moreover, different spatial modelings deal with different applications. The review of
the existing DBMS was given in chapter 2, whereas the chapter 3 dedls with the
OGC standards for geospatial modelling. These reviews reflect the incompl eteness,
probably weaknesses for 3D GIS in certain 3D applications. Thus, the study

commences with a review of al the existing of geo-spatial modeling that deals with
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3D dject and spatial operations within DBMS. Although different theories and
approaches abound, only those supporting the design of a 3D modeling are reviewed.
By relating and bringing some order into those theories and approaches, the study
also contributes to the further development of spatial data modelling that implement

the set and Euler theories.

With respect to the spatial and topologica model, some reviews of
fundamental issue related to the set and Euler theories were discussed in chapter 4.
These topological models deal with spatial object construction and relationship
among primitives. In order to implement the topologica model, the research
attempted to extend to the third dimension. A new 3D data type, aso polyhedron,
was created for this topological model. The topological data structure is applicable
within DBMS environment.

6.2 Recommendations

The 3D spatial data modeling implements the set and euler theories for
DBMS could be implemented using different approaches such as using other
programming language, i.e. PL/PGSQL, PL/TCL, PL/Perl, and SQL within
PostgreSQL environment. However, since the PostgreSQL was developed mostly
using C language, an implementation using procedura languages could result in less

efficiency and low performances.

New data types can also be implemented in other DBMS, e.g. Oracle Spatial,
similar to the work by Pu (2005) that had been done using free-from objects. The
reason of using PostgreSQL in this research is that PostgreSQL follows the
specifications of Open GIS Consortium (OGC, 2006). The most important for user is

the commercial issues, which it is an open source technology and suitable for
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educational purposes. Some of the comparisons among DBMSs could be found at
Konrad et a. (2006).

The test data set consists currently of very simple objects as it can be seen
from the example, but some more experiments with real data sets are planned and
can be implemented in future. It is also interesting to compare the implementation
with the shortly coming implementation of Oracle Spetia 11.

Future research will concentrate a very important issue. That is visualization
of the result of 3D queries. Appropriate graphical visualization is especialy
important for 3D in order to get a better perception of the result of the query. Some

topicsto be considered are:

1) direct access to the new data type from GIS, avoiding first export to a shape
file,

2) direct connection with CAD/CAM software, e.g. Microstation and Autodesk
Map 3D to be able not only to visudize but aso edit,

3) user-defined environment, where user develops display tool that manage to

retrieve and visudize datafrom DBMS, or

4) accessvialnternet, eg. usng Web Feature Service (WFS).
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