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ABSTRACT

This study deals with the use of the rule-based fuzzy system for the
identification of non-linear dynamic systems. Main research directions in this field
include the complexity reduction of fuzzy models, structure identification of fuzzy
system, and application of new or improved training algorithms. In this study, a
constrained fuzzy system (CFS), which is a simplified form of the standard fuzzy
system (SFS), was proposed as an alternative identifier of non-linear dynamic
systems in order to indirectly reduce the rule explosion problems inherent in fuzzy
systems. In addition, the use of two alternative training algorithms, namely the
recursive prediction error (RPE) and Levenberg-Marquardt (LM) algorithms, were
proposed. In this study, the identification performance of the SFS trained by the
back-propagation (BP) algorithm forms the basis of comparison when evaluations
were made on the performance of the newly proposed CFS models. It was found
that, in most cases, the CFS performs better than the SFS with similar number of
adjustable parameters. It was also found that the convergence properties of the RPE
algorithm are better than those of the BP algorithm, and the performance of the LM
algorithm is comparable to that of the RPE algorithm. Furthermore, this study has
shown that the CFS is capable of producing adequate models that can satisfy the 95%
confidence requirement of the correlation tests. In addition, in a case study, it has
been shown that the CFS has some potential to be an alternative tool for aircraft
parameter estimation from flight data. It was also found that the CFS could be used
as substitutes for the rainfall-runoff models in cases where the autoregressive with
exogenous inputs (ARX) and the autoregressive moving average with exogenous

inputs (ARMAX) models need further improvements.
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ABSTRAK

Kajian ini adalah berkaitan dengan penggunaan sistem fuzi berasaskan petua
untuk pengenalpastian sistem dinamik tak lelurus. Arah utama kajian dalam bidang
ini termasuk pengurangan kekompleksan model fuzi, pengenalpastian struktur sistem
fuzi dan aplikasi algoritma baru atau yang diperbaiki. Dalam kajian ini, satu bentuk
sistem fuzi terkekang (CFS) berasaskan sistem fuzi piawai (SFS) yang
dipermudahkan telah dicadangkan untuk digunakan sebagai pengenalpasti alternatif
sistem dinamik tak lelurus supaya secara tidak langsung mengurangkan masalah
ledakan petua yang diwarisi oleh sistem fuzi. Sebagai tambahan, pengunaan dua lagi
algoritma latihan yang dinamai algoritma ralat ramalan jadi semula (RPE) dan
algoritma Levenberg-Marquardt (LM) telah dicadangkan. Dalam kajian ini, prestasi
pengenalpastian sistem dinamik tak lelurus menggunakan model SFS yang dilatih
oleh algoritma rambatan balik (BP) adalah menjadi asas perbandingan apabila
penilaian dibuat terhadap prestasi model CFS yang dicadangkan. Kajian ini
mendapati bahawa, dalam kebanyakan kes, prestasi pengenalpastian model CFS
adalah lebih baik daripada model SFS yang mengandungi bilangan parameter yang
setara. Kajian ini juga mendapati penumpuan algoritma RPE adalah lebih baik
daripada algoritma BP dan prestasi algoritma LM adalah setara dengan algoritma
RPE. Di samping itu, kajian ini telah menujukkan bahawa CFS mampu
menghasilkan model yang memenubhi syarat 95% keyakinan yang diperlukan oleh
ujian sekaitan. Kajian ini turut mendapati bahawa model CFS mempunyai
keupayaan sebagai alat alternatif untuk menganggar parameter pesawat terbang
daripada data penerbangan. Ia juga boleh menggantikan model auto mundur dengan
masukan luar (ARX) dan model purata bergerak auto mundur dengan maéukan luar
(ARMAX) dalam permodelan air hujan-air larian jika prestasi model periu
diperbaiki.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

An essential step toward the solution of many scientific problems is to
accomplish modeling and identification of some objects or systems under
investigation. In loose terms, a system is an object in which variables of different
kinds interact and produce observable signals. The observable signals are usually
called outputs and the external signals that can be manipulated by the observer to
affect the system are called inputs. System identification is defined as the process of
deriving mathematical models of dynamical systems based on observed data,
sometimes called input-output data, in accordance with some predetermined criterion
(Johansson, 1993). The resultant of the identification process is called a
mathematical model. Mathematical models can also be obtained by splitting up the
system under investigation into subsystems whose properties are well understood
from previous experiences. These subsystems are then integrated mathematically or
in a form of block diagram to produce a model of the whole system. This practice is
known as modeling and does not necessarily involve any experimentation on the
actual system (Ljung, 1999). Historically, modeling and identification as a |
methodology dates back to Galileo (1564-1642), who was first to establish the law of
falling bodies (Johansson, 1993). Nowadays, since dynamical systems are abundant
in our environment, the techniques of system identification have many areas of
application such as in the field of control engineering, electrical engineering,

economics, biomedicine, and computer science (Johansson, 1993; Ljung, 1999). The



main purposes for system identification include prediction or forecasting, control
systems analysis and design, signal processing, data compression, and simulation

(Ljung and Soderstrom, 1983; Johansson, 1993).

The main problem in system identification is to find a suitable model
structure within which a good model is to be found. Parameter estimation within a
given structure is in most cases a lesser problem (Sjoberg ez al., 1995). In general,
classifications of model structure have been color-coded based on the level of prior
knowledge as white-box models, gray-box models, and black-box models (Sjoberg et
al., 1995; Babuska and Verbruggen, 1996). The model is called white-box when it is
perfectly known and it has been possible to construct the model entirely from prior
knowledge and physical insight. When only some physical insight is available but
several parameters remain to be determined from observed data, then the model is
called gray-box. The model is called black-box when no physical insight is available
or used, but the chosen model structure belongs to families that have been successful
in the past. Many types of black-box model structure have been developed to fulfill
the demands imposed by advances in scientific and technological areas. Some of the
black-box model structures include finite impulse response (FIR) model, state-space
model, output-error model, autoregressive moving average with exogenous inputs
(ARMAX) model, non-linear autoregressive moving average with exogenous inputs
(NARMAX) model, basis function expansions model, feedforward and recurrent
neural networks, and fuzzy model (Sjoberg et al., 1995). Basically, the construction
of a model from data involves three entities, namely the data record, the set of
models or model structure, and the identification method for determining the ‘best’
model in the set guided by the data. After a particular model has been identified,
model validation tests are conducted to evaluate whether the identified model is
acceptable or valid for its purpose. It is quite likely that the model first obtained will
not pass the model validation tests. If the model is found to be deficient, then it is
necessary to revise the various steps in the identification procedures. It should be
noted that a model can never be accepted as a final and true description of the
system, rather, it can at best be regarded as a good enough description of certain

aspects that are of particular interest (Ljung, 1999).



The main theme of this thesis is the use of rule-based fuzzy system, which is
a form of non-linear black-box model structure, for identification of non-linear
dynamic systems. In this study, major identification properties of the standard fuzzy
system (SFS) trained by the popular back-propagation (BP) algorithm for
identification of non-linear dynamic systems were established. Advantages and
shortcomings of the BP algorithm were highlighted, and the needs to explore other
training algorithms were established. In this study, a form of simplified structure of
rule-based fuzzy system was proposed to be use as an alternative identifier of non-
linear dynamic systems. In this thesis, this simplified fuzzy system is called the
constrained fuzzy system (CFS) due to the nature of the spreads of its membership
functions that are constrained to be fixed and uniform. The motivation behind this
proposal is to indirectly reduce the rule explosion problems inherent in all fuzzy
systems. Major identification properties of the CFS trained by BP algorithm for
identification of non-linear dynamic systems were established in this thesis. Direct
comparisons between the performances of the SFS and CFS models were conducted.
Besides the use of BP algorithm, the use of two alternative algorithms, namely the
recursive prediction error (RPE) algorithm and Levenberg-Marquardt (LM)
algorithm, were proposed for training the CFS models. It has been shown that, in the
field of feedforward neural networks, the RPE and LM algorithms often yield better
model predictions and superior convergence properties than the BP algorithm but at
the expense of increased computational load (Gawthrop and Sbarbaro, 1990; Billings
et al., 1991 and 1992; Fun and Hagan, 1996; Jang and Mizutani, 1996; Mashor,
2000). In this study, direct comparisons were made on the convergence properties of
the BP, RPE, and LM algorithms when they were used as training algorithms for the
CFS models. Furthermore, model validation tests were conducted on the identified
CFS models to show that, despite using a more rigid structure, the CFS is capable of
producing adequate and acceptable models. In addition, practical applications of the
CFS for identification of non-linear systems in two case studies were explored. One
of the case studies involves the use of CFS for estimating the flight parameters of an
aircraft for the longitudinal flight motion. The other case study involves the use of
CFS for modeling the transformation of the rainfall to runoff for selected river

systems in Malaysia.



1.2  Statement of the problem

The basic problem in fuzzy model identification is how to construct a fuzzy

system from numerical data. Fuzzy model identification can be formally stated as
given some function g: X c R" - Y c R, where X is compact, a function
S :X cR" - Y cR that approximates the function g is to be constructed such

that the function f is in some form of fuzzy logic system. Here R is a set of real

numbers. Determining the structure of the respective fuzzy system and its

parameters is basically a system identification problem.

1.3  Background of research

It is generally recognized that fuzzy systems can be regarded as model-free
estimator that can approximate any real non-linear function to any arbitrary degree of
accuracy if enough fuzzy rules are used (Wang and Mendel, 1992a; Kosko, 1997).
Generally, three main types of fuzzy structure have been presented in the literature,
namely rule-based fuzzy systems, fuzzy relational systems, and fuzzy functional
systems which sometimes referred to as Takagi-Sugeno fuzzy systems (Branco and
Dente, 2000; Babuska, 1999). There are two important advantages of using fuzzy
system as an identifier. First, the parameters of the fuzzy systems have clear
physical meaning, i.e. the centers and spreads of the membership functions, and it is
therefore possible to choose good initial parameters. The second advantage of fuzzy
system is that it provides a framework in which human linguistic descriptions about
the unknown non-linear system can be incorporated (Wang, 1994). However, it has
been reported in the literature that all fuzzy system suffer from the rule explosion
problem (Kosko, 1997). All fuzzy systems face exponential rule growth in high
dimension. In general, the identification of fuzzy models consists of three basic
subproblems: structure identification, parameter estimation, and model validation
(Yen, 1999). Structure identification involves finding the important input variables
from all possible input variables, specifying membership functions, partitioning input

space, and determining the number of fuzzy rules in the underlying model.



Parameter estimation involves the determination of unknown parameters in the
model using some optimization method based on both linguistic information and
numerical data obtained from the actual physical system. Structure identification and
parameter estimation are interdependent, and either of them cannot be independently
identified without resort to another (Takagi and Sugeno, 1985; Sugeno and
Yasukawa, 1993: Yen, 1999). Finally, model validation involves testing the

identified model based on some performance criterion.

In the early days, the development of fuzzy systems required manual tuning
of the system parameters based on observing the system performance. However, it is
sometimes too difficult or impossible for human beings to give the desired fuzzy
rules or membership functions due to the complexity of the system to be identified.
Therefore, it is natural and necessary to generate or tune fuzzy rules by some
learning techniques. Using the fuzzy relational system, Pedrycz (1984) proposed a
new composition rule and the corresponding identification algorithm with the aid of
clustering techniques. Takagi and Sugeno (1985) took an important step by
developing the first approach for constructing (not tuning manually) fuzzy rules
using training data. | Their approach utilized the fuzzy functional system that learned
fuzzy rules for controlling a water cleaning process by observing how a human
operator controlled the process. For tuning the rule-based fuzzy system, the back-
propagation (BP) algorithm, sometimes referred to as the gradient descent method,
has been proposed by Nomura ef al. (1992) and Wang and Mendel (1992a)
independently. These pioneer works laid the foundation for further research in fuzzy
model identification. In recent years, a plethora of related works on fuzzy model
identification have been published in literatures (Dubois et al., 2002a and 2002b).

This current study represents part of the continuous efforts in the search for
improved performance of fuzzy models and new practical application of fuzzy
identification. The subjects addressed in this study include identification of non-
linear dynamic systems using standard fuzzy system (SFS) and the newly proposed
constrained fuzzy system (CFS). The CFS was proposed in this study to simplify the
standard rule-based fuzzy system and indirectly reduce the rule explosion problem.
The use of alternative algorithms for the training of fuzzy systems was also explored.

As an integral part of this thesis, comprehensive discussions are given on the



description of the rule-based fuzzy systems, the training algorithms, the inherent
problem of rule explosion in fuzzy systems, the use of fuzzy systems for
identification, and the method for model validation. Practical applications of fuzzy
system identification investigated in this study are in the field of aircraft parameters

estimation and the rainfall-runoff modeling.

1.4  Objectives and scope of the study

The primary objective of this study is to explore the use of more powerful
algorithms for training the rule-based fuzzy systems. The alternative training
algorithms proposed in this study were selected based on their proven capabilities in
the field of feedforward neural networks where they have been shown to possess
superior convergence properties than the back-propagation algorithm but receive
little attention in the training of rule-based fuzzy systems. The second objective of
this study is to provide a more attractive form of rule-based fuzzy structure with
similar or better identification properties compared with those of the standard rule-
based fuzzy system. The motivation behind this objective is to indirectly reduce the
rule explosion problem inherent in all forms of fuzzy systems. Finally, it is also the
objective of this study to evaluate the performance of the proposed fuzzy structure
and the respective training algorithms when they are used for system identification in

practical applications.

The scope of this study is defined such that the model structure for system
identification is the rule-based fuzzy logic system and the selected training
algorithms are recursive in nature. The adaptations of the models are conducted off-
line and the applications are limited to the identification of discrete non-linear
dynamic systems. Although fuzzy model identification consists of structure and
parameter identifications, this study focuses only on the parameter estimation
procedures. Furthermore, the model validity tests conducted on the identified fuzzy
systems are statistical in nature. For practical applications, this study explores the
use of the rule-based fuzzy system for the identification of longitudinal aircraft

parameters and the modeling of rainfall-runoff processes.
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1.5  Methodology

As a preliminary study, this study begins with an investigation about
identification properties of the standard fuzzy system (SFS) trained by BP algorithm
used as an identifier of dynamic systems. This preliminary work is necessary since,
in this thesis, the performance of the SFS trained by BP algorithm forms the basis of
comparison when evaluations were made on the identification properties of the
newly proposed constrained fuzzy system (CFS). Computer simulations for
identification of dynamic plants were conducted using six data sets. Three of these
examples used data sets collected from real experiments or observations of real
events. Meanwhile, the remaining three examples used synthetic data sets generated
using known mathematical expressions. Attentions were given mainly to the study
of the effects of user-selected conditions on the training of the SFS by the BP
algorithm. These user-selected conditions include the choice of learning rate,
momentum gain, initial parameters, number of fuzzy rules, and type of membership
functions. Four methods of defining the initial parameters were investigated, namely
the on-line initial parameters, off-line initial parameters, extrema initial parameters,
and random initial parameters. In addition, the use of two types of fuzzy
membership functions was explored, namely the Gaussian type membership

functions and triangular type membership functions.

Once the identification properties of the SFS trained by BP algorithm have
been established, this study proceeds with investigations about the identification
properties of the newly proposed CFS trained by BP algorithm. Special attentions
were given to the effects of the resolution factor of the fixed spreads of the
membership functions on the identification performance of the CFS. Guidelines for
designing the resolution factor of the spreads of the membership functions for the
CFS were established. Furthermore, with respect to the number of adjustable
parameters in the models, direct comparisons were made between the identification
performances of the SFS and CFS models when they were trained under the same
training conditions using the BP algorithm. Direct comparisons were also made

between the performances of the SFS and CFS for on-line identification.
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Besides the use of BP algorithm, two altefnative training algorithms were
proposed for the training of CFS models, namely the recursive prediction error (RPE)
algorithm and the Levenberg-Marquardt (LM) algorithm. Through simulations,
using the previously selected six data sets, the properties of the CFS trained by the
RPE and LM algorithms were established. Attentions were given mainly to the
effects of user-selected conditions on the training of the CFS using these two

alternative algorithms. These user-selected conditions include the choice of the

initial covariance matrix P, for the RPE algorithm, and the initial matrix S, and

multiplier 7 for the LM algorithm. Guidelines for selecting these designed

parameters for the respective training algorithms were established. Furthermore,
direct comparisons on the identification performances were made between the CFS
models trained by RPE and BP algorithms respectively and between the CFS models
trained by RPE and LM algorithms respectively. Further comparisons were also
made between the identification performances of the SFS and CFS models when they
were trained under the same training conditions using these two alternative training
algorithms. The correlation based model validity tests were also conducted on the

identified models using CFS as the model structure.

Practical applications of the proposed CFS are demonstrated through case
studies. The first case study involves the use of the CFS models for estimating the
flight parameters of an aircraft for the longitudinal flight motion. The flight
parameters identified in this case study are estimated from flight data as
conventionally defined in terms of stability and control derivatives. These identified
stability and control derivatives occur in the equations of motion of an aircraft, which
represent the partial derivatives of the aerodynamic forces or moments with respect
to the corresponding motion or control variables. The stability and control
derivatives were estimated as the change in the aerodynamic force or moment due to
small variation in one of the motion or control variables about its nominal value
when the rest of the variables were held constant at their respective nominal values.
In the estimation procedures, the changes in the aerodynamic force and moment were
predicted using the CFS. In this case study, the capabilities of the CFS models in
estimating the aircraft parameters for both the short-period and the phugoid mode of

motions were explored. The flight data used were generated using the three non-



linear longitudinal equations of motion for a small remotely piloted vehicle. All the
aerodynamic coefficients for this aircraft were obtained from wind-tunnel tests. The
flight data sets were obtained from maneuvers made through the deflection of the
aircraft elevator when all other control variables such as throttle, ailerons, and rudder
were held at fixed positions. Two methods of perturbation of the aircraft elevator for
data collection were investigated, namely the pulse and doublet elevator input
signals. In order to have an approximately balance number of data pairs about the
nominal values of the variables, two complementary sets of flight data obtained from
maneuvers made by positive and negative elevator input signals were used
simultaneously for the training of CFS model. In this study, both the BP and RPE
algorithms were used separately as training algorithms of the CFS. The numerical
values of the identified stability and control derivatives are compared with the values
obtained using aerodynamic coefficients from wind-tunnel tests, where the wind-

tunnel values are regarded as the ‘true’ values of the stability and control derivatives.

The second case study involves the modeling of the transformation of the
rainfall to runoff for selected river systems in Malaysia using CFS. The modeling of
the rainfall-runoff process was done on a daily basis as well as on an hourly basis.
For the daily rainfall-runoff modeling, the use of one-day-ahead prediction model for
forecasting the daily streamflow discharge of three river systems in Malaysia was
proposed. These three selected catchments are Sungai Lenggor, Sungai Lui, and
Sungai Bernam. In addition to the development of the daily rainfall-runoff models,
the application of CFS model for forecasting the hourly rainfall-runoff was also
explored. The hourly rainfall-runoff records for Sungai Klang catchment were
selected for the purpose of the hourly rainfall-runoff modeling. Although this is not
a comprehensive study of a rainfall-runoff modeling for a particular river system, the
use of standard performance criteria normally used in the field of rainfall-runoff
modeling provides some insight on the accuracy of the CFS models. Comparisons
between the performances of the CFS models, the autoregressive moving average
with exogenous inputs (ARMAX) models, and the autoregressive with exogenous

inputs (ARX) models for modeling the rainfall-runoff processes were also conducted.
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Finally, it should be noted that all numerical computations and computer
simulations were conducted using the MATLAB programming software version 5.3
developed by the MathWorks, Inc.

1.6  Summary of research contributions

This study deals with the use of the rule-based fuzzy system for identification
of non-linear dynamic systems. The outcome of this study can be summarized into
four major contributions. Firstly, a more attractive form of rule-based fuzzy
structure with better identification properties compared with those of the standard
rule-based fuzzy system has been successfully developed. This simplified fuzzy
system is called the constrained fuzzy system (CFS) due to the nature of the spreads
of its membership functions that are constrained to be fixed and uniform. The use of
this simplified form of fuzzy structure can indirectly reduce the rule explosion
problem inherent fuzzy systems. Secondly, this study has successfully implemented
the use of the recursive prediction error (RPE) algorithm and the Levenberg-
Marquardt (LM) algorithm for training both the standard fuzzy system and the
constrained fuzzy system. These two algorithms have been shown in this study to
possess superior convergence properties than the back-propagation algorithm in the
training of the rule-based fuzzy systems. Thirdly, new method for estimating the
flight parameters of an aircraft for the longitudinal flight motion has been
successfully developed. It has been demonstrated in this thesis that the flight
parameters as conventionally defined in terms of stability and control derivatives for
the longitudinal flight motion can be estimated from flight data using the CFS model
structure. Fourthly, this study has shown that the CFS models could be use as
substitutes for rainfall-runoff models in cases where the ARX and ARMAX models
need further improvement. For the rainfall-runoff modeling, it was found that the
CFS models performed their designed task of modeling the estimation data sets
better than the ARX or ARMAX models.
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1.7 Thesis outline

This thesis consists of seven chapters. Chapter 1 is the introduction chapter.
This chapter presents the research background, objectives of the study, methodology

of research, summary of research contributions, and the overall outline of this thesis.

Chapter 2 presents the literature reviews on related subjects concerning this
thesis. In this second introductory chapter, the historical development of fuzzy
systems, the concept of fuzzy set, relevant notions in fuzzy set theory, and the
classification of fuzzy systems are reviewed. As an integral part of this thesis,
comprehensive discussions are given on the description of the rule-based fuzzy
systems, the training algorithms, the inherent problem of rule explosion in fuzzy
systems, the use of fuzzy systems for identification, and the method for model
validation. Finally, reviews on recently published articles related to fuzzy modeling

which has become an attractive and powerful modeling environment are presented.

Chapter 3 presents the findings of this study concerning the properties of the
back¥propagation (BP) algorithm when it was used as training algorithm for tuning
the standard fuzzy system (SFS) and the newly proposed constrained fuzzy system
(CFS). The advantages and the shortcomings of the BP algorithm were highlighted,
and the needs to further explore other training algorithms were established. This
chapter also discusses the properties of the CFS with respect to the resolution of the
spreads of its membership functions. Comparative study between the identification
performances of the SFS and CFS for both off-line or batch identification and on-line

identification are also presented.

Chapter 4 presents the findings of this study concerning the properties of
recursive prediction error (RPE) algorithm and Levenberg-Marquardt (LM)
algorithm when they were used for training the SFS and CFS models. Direct
comparisons were made between the performances of the RPE and BP algorithms
and between the RPE and LM algorithms. Further comparisons were made between
the identification performances of the SFS and CFS models when they were trained

by RPE algorithm under the same training conditions. This chapter also presents the
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correlation based model validity tests of the identified models using CFS as model

structure.

Chapter 5 presents the findings of this study concerning the estimation of
longitudinal aircraft parameters using CFS. This chapter presents the overview of
aircraft parameter estimation procedures, the longitudinal modes of flight motion,
and the method of flight data collection. The implementation steps for aircraft
parameter estimation using CFS are also highlighted. This chapter demonstrates the
capabilities of the CFS in estimating the aircraft parameters for both the short-period
and the phugoid mode of motions where the identified aircraft parameters were
compared with the values obtained using aerodynamic coefficients from wind-tunnel

tests.

Chapter 6 presents the findings of this study concerning the modeling of
rainfall-runoff processes using SFS and CFS. This chapter discusses the overview of
rainfall-runoff modeling procedures, the design of test experiments, the daily
rainfall-runoff modeling, and the hourly rainfall-runoff modeling. The use of
standard performance criteria normally used in the field of rainfall-runoff modeling
provides some insight on the accuracy of the SFS and CFS models. Comparisons
between the performances of the CFS models, the autoregressive moving average
with exogenous inputs (ARMAX) models, and the autoregressive with exogenous
inputs (ARX) models for modeling the rainfall-runoff processes were presented in

this chapter.

Finally, Chapter 7 is the concluding chapter. This chapter summarizes the
works done in this entire study, infers conclusions that can be drawn, and provides

recommendations for future work.





