REAL-TIME MASS FLOW RATE MEASUREMENT FOR BULK SOLID FLOW USING ELECTRODYNAMIC TOMOGRAPHY SYSTEM

YAW WEE LEE

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2007

To my beloved parents, Yaw Ho Tian and Tan Mee Choo, my brothers, sister and my friends

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor, P.M. Dr Mohd. Fua'ad bin Hj. Rahmat, for his invaluable advice, patient guidance and encouragement throughout the research.

In addition, I wish to thank to all my friends and staffs from Faculty of Electrical Engineering for their support and encouragement. I also would like to express my sincere appreciation to the love and support given by my family. Last but not least, thanks to all those who give helps and support to me directly or indirectly for the success of this thesis.

ABSTRACT

In order to increase the efficiency of energy and raw materials usage and to improve product quality and process efficiency, the demand of continuous monitoring of the flow rate of solids in pneumatic pipelines is rising in many industrial areas. This requirement can only be achieved by installing a proper realtime measurement system. Electrodynamic sensor offers the most inexpensive and simplest means of measuring solids flows in pipes. As electrostatic sensors respond only to moving solids in the pipe, the measured data enjoy a large degree of immunity from the effects of solids accretion which adversely affect other technologies. For the developed measurement system, sixty-four channels of KPCI-1802HC are used to capture the output voltages of thirty-two sensors. The sampling frequency is 1 kHz for each channel. Data per frame was collected over 156 ms. The distance between upstream and downstream sensors is 5 cm. The falling distance of material is set to 1.4 m. Linear back projection algorithm (LBP) and filtered back projection algorithm (FBP) are implemented for image reconstruction. The tomographic technique will generate the real-time concentration profile of the sensing volume. Subsequently, real-time pixel-to-pixel velocity profile can be calculated from cross-correlation of two set of time series that obtained from a number of upstream and downstream concentration profiles. By combining the concentration profile with corresponding velocity profile, mass flow rate profile can be generated. The summation of all pixels value in the mass flow rate profile is carried out to obtain a total value of pixels. The mass flow rate of the solids flow can be calculated by substituting the total value into mass flow rate equation. The dedicated software for the electrodynamic tomography system is developed using Microsoft Visual C++ 6.0. The developed software supports real-time mode and offline mode of the system. The results obtained from the experiments are presented and compared with the calculation of MATLAB. To conclude, a real-time mass flow rate measurement system using elctrodynamic tomography is developed successfully.

ABSTRAK

Untuk meningkatkan kecekapan penggunaan tenaga dan bahan mentah di samping memperbaiki kualiti bagi produk dan kecekapan proses, keperluan untuk kawalan yang berterusan terhadap kadar aliran bagi bahan pepejal di dalam paip pneumatik semakin meruncing. Keperluan ini hanya dapat dicapai dengan penggunaan sistem pengukuran yang sesuai. Penderia elektrostatik merupakan kaedah yang paling murah dan senang untuk pengukuran aliran pepejal dalam paip. Ini disebabkan oleh ia hanya bertindak balas terhadap pepejal yang bergerak di dalam paip. Data yang diperolehi jarang dipengaruhi oleh kesan pengumpulan pepejal di mana teknologi lain akan terganggu oleh kesan ini. Bagi sistem pengukuran yang dibina, 64 saluran bagi KPCI-1802HC digunakan untuk memperolehi voltan keluaran bagi 32 penderia. Frekuensi persampelan ialah 1 kHz bagi setiap saluran. Data bagi satu bingkai dikumpulkan selama 156 ms. Jarak antara penderia 'upstream' dan 'downstream' ialah 5 cm. Jarak jatuh bebas bagi pepejal dalam eksperimen ialah 1.4 m. Algoritma 'linear back projection' dan 'filtered back projection' digunakan untuk pembinaan imej. Profil penumpuan akan dibina dengan penggunaan kaedah tomografi. Seterusnya, profil halaju dapat dikira dengan menggunakan fungsi sekaitan silang ke atas dua set data yang diperolehi daripada sebilangan profil penumpuan aras atas dan profil penumpuan aras bawah. Melalui gabungan profil penumpuan dan profil halaju yang berkaitan, profil kadar aliran jisim boleh diperolehi. Percampuran bagi semua nilai dalam profil kadar aliran jisim akan menghasilkan nilai jumlah bagi profil itu. Dengan menggantikan nilai jumlah ini ke dalam persamaan kadar aliran jisim, maka nilai kadar aliran jisim boleh diperolehi. Perisian bagi sistem ini telah ditulis dengan menggunakan Microsoft Visual C++ 6.0. Perisisan ini boleh digunakan secara masa nyata atau 'offline'. Keputusan ujikaji ditunjukkan dan dibandingkan dengan kiraaan menggunakan MATLAB. Kesimpulannya, sistem pengukuran kadar aliran jisim secara masa nyata bagi tomografi elektrodinamik telah berjaya direkabentuk.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATION	xxi

LIST OF APPENDICES

1

xxiii

INTR	INTRODUCTION	
1.1	An Overview of Process Tomography and Its	
	Development	1
1.2	Problem Statement	2
1.3	Research Objectives	3
1.4	Research Scopes	4
1.5	Thesis Organization	5

TOMOGRAPHY SYSTEM		7	
2.1	Introd	uction	7
2.2	Senso	rs for Tomography System	8
	2.2.1	X-Ray Tomography	9
	2.2.2	Electrical Capacitance Tomography	10
	2.2.3	Electrical Impedance Tomography	11
	2.2.4	Ultrasonic Tomography	12
	2.2.5	Optical Tomography	13
	2.2.6	Positron Emission Tomography	14
2.3	Electr	odynamic Tomography	15
2.4	Electr	ical Charging Phenomenon	17
2.5	The P	hysical Model for a Single Particle	18
	2.5.1	The Induction Model	19
	2.5.2	The Response to a Moving Particle	21
2.6	Conce	entration Measurement and Image	
	Recon	istruction	26
	2.6.1	The Forward Problem	26
	2.6.2	The Inverse Problem	29

2

2.0.2.1 Emilia Back 110 could in Solution 27

2.6.2.2 Filtered Back Projection Algorithm 30

2.7	Veloc	ity Measurement	31
	2.7.1	Cross-correlation Function	32
	2.7.2	Principle of Cross-correlation	33
	2.7.3	Point-by-point Cross-correlation Function	34
	2.7.4	Evolutionary Calculation	35
	2.7.5	Comparison of Point-by-point and	
		Evolutionary Calculation Methods	36
2.8	Mass	Flow Rate Measurement	36
	2.8.1	The Mass Flow Rate Profile	37
	2.8.2	The Estimated Mass Flow Rate	38

MEAS	SUREM	IENT SYSTEM AND SOFTWARE	
IMPL	EMEN'	TATION	41
3.1	The G	ravity Flow Rig	41
3.2	Calibra	ation of the Gravity Flow Rig	42
3.3	The M	easurement System	45
3.4	Data A	Acquisition System	48
3.5	Softwa	are of the Developed System	50
	3.5.1	Graphical User Interface	51
		3.5.1.1 Real-time mode	52
		3.5.1.2 Offline Mode	60
3.6	Progra	mming Structures	64
	3.6.1	Concentration Profile	65
	3.6.2	Velocity Profile	66
	3.6.3	Mass Flow Rate Profile	67

RES	ULTS AND ANALYSIS	69
4.1	The Constructed Sensors	69

3

4.2	Senso	r Voltage Readings	71
	4.2.1	The Scaling Factor and Predicted Voltage	75
	4.2.2	The Relationship between Predicted Volta	lge
		and Measured MFR	83
4.3	Real-t	ime Concentration Measurement	84
	4.3.1	Concentration Profile for Linear Back	
		Projection Algorithm	85
	4.3.2	Image Reconstruction Using Linear Back	
		Projection Algorithm	91
	4.3.3	Concentration Profile for Filtered Back	
		Projection Algorithm	95
	4.3.4	Image Reconstruction Using Filtered Back	K
		Projection Algorithm	100
4.4	Real-7	Fime Velocity Measurement	104
	4.4.1	Sensor-to-sensor Velocity	104

	4.4.2	Pixel-to-pixel Velocity	109
4.5	Real-t	ime Mass Flow Rate Measurement	113
	4.5.1	Mass Flow Rate Profiles Using	
		Linear Back Projection Algorithm	113
	4.5.2	Visualization Using Linear Back	
		Projection Algorithm	119
	4.5.3	Mass Flow Rate Profiles Using	
		Filtered Back Projection Algorithm	121
	4.5.4	Visualization Using Filtered Back	
		Projection Algorithm	127
	4.5.5	The Estimated Mass Flow Rates	131
4.6	Perfor	mance of the System	142

CONCLUSION AND RECOMMENDATION1445.1Conclusions1445.2Significant Contribution from the Research1455.3Recommendations for Future Work146

5

REFERENCES

Appendices

154

LIST OF TABLES

TABLE	TITLE	PAGE

3.1	Mass Flow Rate and Flow Indicator	44
4.1	The scaling factors for full flow regime	77
4.2(a)	The predicted voltages for different measured mass flow rates	78
4.2(b)	The predicted voltages for different measured mass flow rates	79
4.3	Total predicted voltage	83
4.4	The unscaled estimated mass flow rate for linear back projection	
	and filtered back projection algorithm	131
4.5	The results of applying linear fit on graphs of summation of pixel	
	values versus measured mass flow rate using linear back projection	
	algorithm	134
4.6	The results of applying linear fit on graphs of summation of pixel	
	values versus measured mass flow rate using filtered back projection	
	algorithm	135
4.7	The results of estimated mass flow rate calculation for linear	
	back projection algorithm	137
4.8	The results of estimated mass flow rate calculation for filtered back	
	projection algorithm	137
4.9	The results of averaged estimated mass flow rate calculation for	
	linear back projection algorithm	140

LIST OF FIGURES

2.1 Tomography system and applications 2.2 An Example of X-ray Tomography System 10

TITLE

FIGURE

2.2	An Example of X-ray Tomography System	10
2.3	Electrical capacitance tomography system	11
2.4	Ultrasonic tomography system	13
2.5	Detector system of PET	15
2.6	Hardware connection of electrodynamic measurement system	16
2.7	The single charge particle model	20
2.8	Mathematical model of electrostatic signal	23
2.9	Induced charge and sensor current signal generated using MATLAB	24

PAGE

2.10	Electric field lines of a single charged particle	25
2.11	The arrangement of 16 sensors on 11x11 rectangular arrays	26
2.12	The mathematical model of sensor S1 in three-dimensional view	27
2.13	The mathematical model of sensor S1 in two-dimensional view	27
2.14	The naming of 121 pixels	28
2.15	The concentration profile based on linear back projection algorithm	30
2.16	The filtered mask matrix	30
2.17	The concentration profile based on filtered back projection	31
2.18	Block diagram of velocity measurement by cross-correlation technique	32
2.19	Cross-correlation of upstream and downstream signals	34
2.20	Point-by-point cross-correlation	35
2.21	Evolutionary cross-correlation	36
2.22	Calculation to generate mass flow rate profile	38
3.1	The gravity flow rig and measurement section	41
3.2	Diagram of the gravity flow rig	43

3.3	Graph for mass flow rate versus flow indicator	43
3.4	A block diagram of an electrostatic sensor	45
3.5	Block diagram of an electrostatic measurement system	47
3.6	A constructed electrical charge sensor	47
3.7	Alignment of thirty-two electrical charge sensors on a conveyer	48
3.8	The cabling of sensors to the data acquisition card	49
3.9	Main menu of the developed software	51
3.10	GUI of upstream concentration profile for real-time mode	52
3.11	GUI for numerical concentration profile	53
3.12	GUI of downstream concentration profile for real-time mode	54
3.13	GUI for displaying both upstream and downstream concentration	
	profiles	55
3.14	Modal dialog for both upstream and downstream numerical	
	concentration profiles	55
3.15	GUI of velocity profile for real-time mode	56
3.16	Modal dialog for numerical velocity profile	56
3.17	File saved for pixel-to-pixel velocity profile	57
3.18	File saved for sensor-to-sensor velocity profile	57
3.19	GUI of CCF graph for real-time mode	58
3.20	The page of "Sensitivity Map"	58
3.21	GUI of mass flow rate profile for real-time mode	59
3.22	Modal dialog for both upstream and downstream numerical mass	
	flow rate profiles	59
3.23	GUI of upstream concentration profile for offline mode	60
3.24	Open data file dialog for concentration measurement	61
3.25	GUI for displaying both upstream and downstream concentration	
	Profiles	61
3.26	GUI of velocity profile for offline mode	62
3.27	Open data file dialog for velocity measurement	62
3.28	GUI of CCF graph for offline mode	63
3.29	The page of "Sensitivity Map" for offline mode	63
3.30	GUI of mass flow rate profile for offline mode	64
3.31	Flow chart to obtain concentration profile using linear back projection algorithm	65

3.32	Flow chart to obtain concentration profile using filtered back projection	
	algorithm	66
3.33	Flow chart to obtain velocity profile	67
3.34	Flow chart to obtain mass flow rate and corresponding profile	68
4.1(a)	Simulated result of Output 1	69
4.1(b)	Simulated result of Output 2	70
4.1(c)	Simulated result of Output 3	70
4.2(a)	Experimental results of output 1 of the electrostatic sensor	70
4.2(b)	Experimental results of output 2 of the electrostatic sensor	71
4.2(c)	Experimental results of output 3 of the electrostatic sensor	71
4.3	The sensor readings of sensor 5 for zero flow condition	72
4.4	The sensor readings of sensor 5 and sensor 12 for measured	
	mass flow rate 53 g/s	73
4.5	The sensor readings of sensor 8 and sensor 14 for measured	
	mass flow rate 74 g/s	73
4.6	The averaged voltage of upstream sensors at measured mass	
	flow rate 53 g/s	74
4.7	The averaged voltage of downstream sensors at measured	
	mass flow rate 53 g/s	74
4.8	The averaged voltage of upstream sensors at measured mass	
	flow rate 85 g/s	75
4.9	The averaged voltage of downstream sensors at measured mass	
	flow rate 85 g/s	75
4.10	The graph of scaling factor versus measured mass flow rate	77
4.11	Comparison of experimental sensor outputs and predicted sensor	
	outputs for upstream sensors at measured mass flow rate 74 g/s	80
4.12	Comparison of experimental sensor outputs and predicted sensor	
	outputs for downstream sensors at measured mass flow rate 74 g/s	80
4.13	Comparison of experimental sensor outputs and predicted sensor	
	outputs for upstream sensors at measured mass flow rate 85 g/s	81
4.14	Comparison of experimental sensor outputs and predicted sensor	
	outputs for downstream sensors at measured mass flow rate 85 g/s	81
4.15	Comparison of experimental sensor outputs and predicted sensor	
	outputs for upstream sensors at measured mass flow rate 145 g/s	82

4.16	Comparison of experimental sensor outputs and predicted sensor	
	outputs for downstream sensors at measured mass flow rate 145 g/s	82
4.17	The graph of summed output versus measured mass flow rate	84
4.18(a	a) Numerical concentration profiles for 63 g/s using linear back	
	projection algorithm	85
4.18(t	b)Numerical concentration profiles for 63 g/s processed by Matlab	
	using linear back projection algorithm	86
4.19(a	a) Numerical concentration profiles for 85 g/s using linear back projection	
	algorithm	86
4.19(t	b)Numerical concentration profiles for 85 g/s processed by Matlab	
	using linear back projection algorithm	87
4.20(a	a) Numerical concentration profiles for 102 g/s using linear back	
	projection algorithm	87
4.20(t	b)Numerical concentration profiles for 102 g/s processed by Matlab using	
	linear back projection algorithm	88
4.21(a	a) Numerical concentration profiles for 122 g/s using linear back	
	projection algorithm	88
4.21(t	b)Numerical concentration profiles for 122 g/s processed by Matlab using	
	linear back projection algorithm	89
4.22(a	a) Numerical concentration profiles for 145 g/s using linear back	
	projection algorithm	89
4.22(t	b)Numerical concentration profiles for 145 g/s processed by Matlab	
	using linear back projection algorithm	90
4.23(a	a) Two dimensional concentration profiles for 63 g/s using linear back	
	projection algorithm	91
4.23(t	b) Three dimensional concentration profiles for 63 g/s using linear back	
	projection algorithm	91
4.24(a	a) Two dimensional concentration profiles for 85 g/s using linear back	
	projection algorithm	92
4.24(t	b) Three dimensional concentration profiles for 85 g/s using linear back	
	projection algorithm	92
4.25(a	a) Two dimensional concentration profiles for 112 g/s using linear back	
	projection algorithm	93

4.25(b)Three dimensional concentration profiles for 112 g/s using linear back	
projection algorithm	93
4.26(a) Two dimensional concentration profiles for 145 g/s using linear back	
projection algorithm	94
4.26(b)Three dimensional concentration profiles for 145 g/s using linear back	
projection algorithm	94
4.27(a) Numerical concentration profiles for 63 g/s using filtered back projection	
algorithm	95
4.27(b)Numerical concentration profiles for 63 g/s processed by Matlab using	
filtered back projection algorithm	96
4.28(a) Numerical concentration profiles for 85 g/s using filtered back projection	
algorithm	96
4.28(b)Numerical concentration profiles for 85 g/s processed by Matlab using	
filtered back projection algorithm	97
4.29(a) Numerical concentration profiles for 102 g/s using filtered back	
projection algorithm	97
4.29(b)Numerical concentration profiles for 102 g/s processed by Matlab	
using filtered back projection algorithm	98
4.30(a) Numerical concentration profiles for 122 g/s using filtered back	
projection algorithm	98
4.30(b)Numerical concentration profiles for 122 g/s processed by Matlab	
using filtered back projection algorithm	99
4.31(a) Numerical concentration profiles for 145 g/s using filtered back	
projection algorithm	99
4.31(b)Numerical concentration profiles for 145 g/s processed by Matlab	
using filtered back projection algorithm	100
4.32(a) Two dimensional concentration profiles for 63 g/s using filtered back	
projection algorithm	101
4.32(b)Three dimensional concentration profiles for 63 g/s using filtered back	
projection algorithm	101
4.33(a) Two dimensional concentration profiles for 85 g/s using filtered back	
projection algorithm	102
4.33(b)Three dimensional concentration profiles for 85 g/s using filtered back	

4.34(a) Two dimensional concentration profiles for 112 g/s using filtered back	
projection algorithm	102
4.34(b)Three dimensional concentration profiles for 112 g/s using filtered back	
projection algorithm	103
4.35(a) Two dimensional concentration profiles for 145 g/s using filtered back	
projection algorithm	103
4.35(b)Three dimensional concentration profiles for 145 g/s using filtered back	
projection algorithm	103
4.36(a) Input signals and CCF result of upstream sensor S2 and downstream	
sensor S18 by developed software for flow rate 63 g/s	105
4.36(b)Input signals and CCF result of upstream sensor S2 and downstream sense	sor
S18 by MATLAB for flow rate 63 g/s	106
4.37(a) Input signals and CCF result of upstream sensor S16 and downstream	
sensor S32 by developed software for flow rate 85 g/s	107
4.37(b)Input signals and CCF result of upstream sensor S16 and downstream	
sensor S32 by MATLAB for flow rate 85 g/s	107
4.38(a) Input signals and CCF result of upstream sensor S10 and downstream	
sensor S26 by developed software for flow rate 102 g/s	108
4.38(b)Input signals and CCF result of upstream sensor S10 and downstream ser	nsor
S26 by MATLAB for flow rate 102 g/s	109
4.39(a) Numerical velocity profile for mass flow rate 53 g/s by the developed	
software	110
4.39(b)Numerical velocity profile for mass flow rate 53 g/s by MATLAB	110
4.40(a) Numerical velocity profile for mass flow rate 94 g/s by the developed	
software	111
4.40(b)Numerical velocity profile for mass flow rate 94 g/s by MATLAB	111
4.41(a) Numerical velocity profile for mass flow rate 122 g/s by the developed	
software	112
4.41(b)Numerical velocity profile for mass flow rate 122 g/s by MATLAB	112
4.42(a) Numerical MFR profiles for 53 g/s using linear back projection	
algorithm	114
4.42(b)Numerical MFR profiles for 53 g/s processed by Matlab using linear back	k
projection algorithm	114
4.43(a) Numerical MFR profiles for 74 g/s using linear back projection	

algorithm	115
4.43(b)Numerical MFR profiles for 74 g/s processed by Matlab using linear	
back projection algorithm	115
4.44(a) Numerical MFR profiles for 94 g/s using linear back projection	
algorithm	116
4.44(b)Numerical MFR profiles for 94 g/s processed by Matlab using linear	
back projection algorithm	116
4.45(a) Numerical MFR profiles for 112 g/s using linear back projection	
algorithm	117
4.45(b)Numerical MFR profiles for 112 g/s processed by Matlab using linear	
back projection algorithm	117
4.46(a) Numerical MFR profiles for 134 g/s using linear back projection	
algorithm	118
4.46(b)Numerical MFR profiles for 134 g/s processed by Matlab using linear	
back projection algorithm	118
4.47(a) Two dimensional mass flow rate profiles for 63 g/s using linear	
back projection algorithm	119
4.47(b)Three dimensional mass flow rate profiles for 63 g/s using linear	
back projection algorithm	120
4.48(a) Two dimensional mass flow rate profiles for 85 g/s using linear	
back projection algorithm	120
4.48(b)Three dimensional mass flow rate profiles for 85 g/s using linear	
back projection algorithm	120
4.49(a) Two dimensional mass flow rate profiles for 145 g/s using linear	
back projection algorithm	121
4.49(b)Three dimensional mass flow rate profiles for 145 g/s using linear	
back projection algorithm	121
4.50(a) Numerical MFR profiles for 53 g/s using filtered back projection	
algorithm	122
4.50(b)Numerical MFR profiles for 53 g/s processed by Matlab using filtered	
back projection algorithm	123
4.51(a) Numerical MFR profiles for 74 g/s using filtered back projection	
algorithm	123
4.51(b)Numerical MFR profiles for 74 g/s processed by Matlab using filtered	

xviii

	back projection algorithm	124
4.52(a)	Numerical MFR profiles for 94 g/s using filtered back projection	
	algorithm	124
4.52(b)	Numerical MFR profiles for 94 g/s processed by Matlab using filtered	
	back projection algorithm	125
4.53(a)	Numerical MFR profiles for 112 g/s using filtered back projection	
	algorithm	125
4.53(b)	Numerical MFR profiles for 112 g/s processed by Matlab using filtered	
	back projection algorithm	126
4.54(a)	Numerical MFR profiles for 134 g/s using filtered back projection	
	algorithm	126
4.54(b)	Numerical MFR profiles for 134 g/s processed by Matlab using filtered	
	back projection algorithm	127
4.55(a)	Two dimensional mass flow rate profiles for 63 g/s using filtered back	
	projection algorithm	128
4.55(b)	Three dimensional mass flow rate profiles for 63 g/s using filtered back	
	projection algorithm	128
4.56(a)	Two dimensional mass flow rate profiles for 85 g/s using filtered back	
	projection algorithm	129
4.56(b)	Three dimensional mass flow rate profiles for 85 g/s using filtered back	
	projection algorithm	129
4.57(a)	Two dimensional mass flow rate profiles for 145 g/s using	
	filtered back projection algorithm	129
4.57(b)	Three dimensional mass flow rate profiles for 145 g/s using filtered	
	back projection algorithm	130
4.58	The graph of summation of pixel values (unscaled estimated mass	
	flow rate) versus measured mass flow rate for upstream sensors	
	using linear back projection algorithm	132
4.59	The graph of summation of pixel values (unscaled estimated mass	
	flow rate) versus measured mass flow rate for downstream sensors	
	using linear back projection algorithm	132
4.60	The graph of summation of pixel values (unscaled estimated mass	
	flow rate) versus measured mass flow rate for upstream sensors	
	using filtered back projection algorithm	133

xix

4.61	1.61 The graph of summation of pixel values (unscaled estimated mass	
	flow rate) versus measured mass flow rate for downstream sensors	
	using filtered back projection algorithm	134
4.62	The graph of estimated mass flow rate versus measured mass flow	
	rate for linear back projection algorithm	139
4.63	The graph of estimated mass flow rate versus measured mass flow	
	rate for filtered back projection algorithm	139
4.64	The graph of averaged estimated mass flow rate versus measured	
	mass flow rate for linear back projection algorithm	141
4.65	The graph of averaged estimated mass flow rate versus measured	
	mass flow rate for filtered back projection algorithm	142
4.66	Relationship between refreshing rate and number of data	143
4.67	Relationship between time per frame and number of data	143

LIST OF ABBREVIATIONS

AC	-	Alternating current	
ADC	-	Analogue to digital converter	
App	-	Application	
ART	-	Algebraic Reconstruction Technique	
CAT	-	Computed axial tomography	
CCF	-	Cross-correlation function	
CPU	-	Central processing unit	
СТ	-	Computed tomography	
DAS	-	Data acquisition system	
DMA	-	Direct memory access	
DIP	-	Double in-line package	
DDB	-	Device dependent bitmap	
DIB	-	Device independent bitmap	
ECT	-	Electrical capacitance tomography	
EIT	-	Electrical impedance tomography	
FBP	-	Filtered back projection	
FDG	-	Fluorodeoxyglucose	
fps	-	Frame per second	
GUI	-	Graphical user interface	
Hz	-	Hertz	
IC	-	Integrated circuit	
I/O	-	Input/output	
IPT	-	Industrial process tomography	
ISA	-	Industry standard architecture	
LBP	-	Linear back projection	
LED	-	Light emitting diode	
MFC	-	Microsoft Foundation Class	

MFR	-	Mass flow rate
NDE	-	Nondestructive evaluation
NMR	-	Nuclear magnetic resonance
PCB	-	Printed circuit board
PCI	-	Peripheral Component Interconnect
PDA	-	Personal digital assistant
PET	-	Positron emission tomography
PT	-	Process Tomography
PTP	-	Pixel-to-pixel
STS	-	Sensor-to-sensor

LIST OF APPENDICES

APPENDIX	TITLE	PAGE

А	Electrodynamic transducer circuit (Protel 99SE)	154
В	The connection of STA-1800HC screw terminal accessory	
	to KPCI-1802HC board	155
С	Block diagram of KPCI-1802 HC board	156
D	Pin assignments for the main I/O connectors of the	
	KPCI-1802HC board	157
E	Pin Assignments for the main I/O connectors of the	
	STA-1800HC	158
F	Source codes for concentration profile calculation	159
G	Source codes for velocity profile calculation	161
Η	Source codes for mass flow rate calculation	163
Ι	Sample results for concentration profile saved by	
	the developed software	165
J	Sample results for pixel-to-pixel velocity saved by the	
	developed software	166
Κ	Sample results for sensor-to-sensor velocity saved by the	
	developed software	167
L	Sample results for mass flow rate saved by the	
	developed software	168
Μ	Published Papers	169

CHAPTER 1

INTRODUCTION

1.1 An Overview of Process Tomography and Its Development

The developments of tomography can be dated back to early 1900s. This idea was first suggested by Mayer in 1914. It was developed to fulfill the need of medical noninvasive imaging. Since then, tomographic imaging become one of the most power tools used for clinical purposes. Tomography is a broadly used indirect mapping technology based on the idea that several images are taken from various angles in order to reconstruct the interior of the object under investigation. It is derived from Greek's word's 'tomos'(to slice) and 'graphy' (image) (William and Beck, 1995).

Tomography also utilized in many research fields. For example, the ocean's 3-dimensional temperature distribution is mapped in oceanographical research. For seismologic research, information about the inner part of the earth such as the distribution of temperature can obtained by measuring arrival times of earth quakes at various seismic stations distributed over the globe. For archaeological study, ceramics can be investigated in a same approach as in medical tomography in order to uncover hidden scriptures. Naturally, tomographic technique was introduced to industrial field. This new application of tomography is known as Process Tomography (PT) or Industrial Process Tomography (IPT).

Process tomography involves using tomographic imaging methods to manipulate data from remote sensors in order to obtain precise quantitative information from inaccessible locations (William and Beck, 1995). Undoubtedly, process tomography will improve the design and operation processes handling material by enabling boundaries between different components in an industrial process to be imaged. Depend on the requirement, information on the flow regime, concentration distribution, velocity of flow and mass flow rate can be determined using process tomography. The fundamental concept is to install a set of sensors around the pile to be imaged. Then, a computer or several computers are used to reconstruct tomographic images of the cross sectional area being investigated by the sensors. After that, the data can be processed quantitatively for subsequent use to initial process control actuator. It also can be used to develop or verify a model that describes a particular process.

In the 1970s, a number of applications of tomographic imaging of process equipment were described. In general, these involved applying radiation from X-ray or isotope sources and these were not satisfactory for the majority of online process applications on a routine basis. It was until the middle of 1980s, research started that

led to the current generation of process tomography systems. At the University of Manchester Institute of Science and Technology (UMIST) in England there began a project on electrical capacitance tomography for imaging multi-component flows from oil wells and in pneumatic conveyors. At almost the same time, a research group at the Morgantown Energy Technology Center in the USA was designing a capacitance tomography system for measuring the void distribution in gas fluidized beds. By 1990, it was felt that process tomography was maturing as a potentially useful technique for application to industrial process design and operation (William and Beck, 1995).

1.2 Problem Statement

Previous researches on mass flow rate measurement using electrodynamic tomography system were conducted in offline mode. Hence, timing of the data acquisition, processing and image reconstruction is not a critical issue. For instance, Visual Basic 6.0 language was used to develop offline software by Azrita (Azrita, 2002). Nonetheless, offline system is only suitable for study carried out in laboratory. It is not practical for process control in industrial plant. This is due to real-time information of process is required for efficient control and system failure detection. Thus, an online mass flow rate measurement system needs to be developed.

Nevertheless, online mass flow measurement of particles in gas stream has been considered by researchers as technically challenging area. Intensive calculation to obtain mass flow rate from velocity profile and concentration profile is inevitable. In order to realize real-time measurement, research will be concentrated on minimizing data transfer time, graphic display time and data processing time. In depth understanding of data acquisition card KPCI-1802HC is necessary. Visual C++ 6.0 will be used to replace Visual Basic 6.0 for software programming. In addition to

programming language, decent program code optimization and adequate algorithms need to be studied and applied in the system.

1.3 Research Objectives

- 1. To build the hardware of the system and to investigate the performance and functions of the sensor circuit.
- To investigate the suitable algorithm that can be used in reconstruction of velocity profile, concentration profile and mass flow rate measurement. A comprehensive windows application will be developed using Visual C++ 6.0.

3. To develop a real-time mass flow rate measurement system that can measure and determine the mass flow rate of moving solids in pneumatic conveyors.

1.4 Research Scopes

The scopes of the research are:

- Design and build measurement system based on electrodynamic sensor for pneumatic conveyor.
 Measurement part will be built for optimum performance. Simulation of the circuit will be carried out using Protel 99SE.
- 2. Develop data capture and data logging system for measurement

section.

KPCI-1802HC PCI bus version data acquisition card is used in data capture system. It is important to learn the method to communicate with the interface card via device driver, DriverLINX.

To study and develop windows application program using Microsoft
 Visual C++ 6.0.

The program should provide functions such as data acquisition from hardware, data analysis, result display and data storage. DMA will be utilized for high performance data acquisition.

Measure and study pneumatically conveyed particle concentration and velocity profiles.

Offline program for concentration profile and velocity profile will be developed. An adequate algorithm will be applied to minimize calculation time.

- 5. Reconstruct velocity and concentration profile over the cross-section of the conveyor based on data from measurement section.
 This stage is necessary to collect data that will be used to investigate the performance of the software.
- 6. Determine the on-line solids mass flow rate in pneumatic conveyor using process tomography reconstruction techniques.
 This stage will test the software in real-time mode. It is crucial to verify the capability of the system to perform real-time measurement.
- 7. Verify the developed system

Results of the developed measurement system will be compared to the results calculated using MATLAB to ensure the correctness of the

mathematical algorithms applied in the system.

1.5 Thesis Organization

Chapter 1 introduces the overview of process tomography, problem statement, research objectives, research scopes and thesis organization.

Chapter 2 reviews the background of the research. Related works similar to this field are presented. Discussion in this chapter includes the tomography system and type of sensor used in tomography. This chapter also describes the modeling of electrostatic sensor used in the research, procedure to calculate concentration profile, how to obtain velocity using cross-correlation technique and image reconstruction algorithms and the calculation of mass flow rate.

Chapter 3 describes the hardware design and software development of the system, programming techniques, implementation of the image reconstruction algorithm and graphical user interface (GUI) design.

Chapter 4 presents the results obtained from the experiments. Results are

analyzed and discussed. The comparison and statistical analysis are also shown in this chapter.

Chapter 5 discusses the conclusion, contribution of this research and recommendations for the future research.