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ABSTRACT 

 

 

 

 

Low-cost and easily-installed RAPs grew rapidly in popularity in the early 

2000s. These devices offered a way to avoid the tangled messes of category 5 cable 

associated with typical Ethernet networks of the day. Whereas wiring a business, 

home, or school often requires stringing many cables through walls and ceilings, 

wireless networking offers the ability to reduce - or eliminate entirely - the stringing 

of cables. One IEEE 802.11 RAP can typically communicate with 30 client systems 

located within a radius of 100 m. However, the actual range of communication can 

vary significantly, depending on such variables as indoor or outdoor placement, 

height above ground, nearby obstructions, other electronic devices that might actively 

interfere with the signal by broadcasting on the same frequency, type of antenna, the 

current weather, operating radio frequency, and the power output of devices. Network 

designers can extend the range of RAPs through the use of repeaters and reflectors, 

which can bounce or amplify radio signals that ordinarily would go un-received. In 

experimental conditions, wireless networking has operated over distances of several 

kilometers. The purpose of this study is to design and simulate a Front-end design of 

low power radio access point for radio over fiber technology. Many simulations were 

performed using Microwave Office. The mean components were Power Amplifier PA 

and Band-pass Filter BPF. These two components were designed and simulated on 

frequency of 2.4 GHz.  
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ABSTRAK 

 

 

 

 

Kos rendah dan kaedah pemasangan yang mudah  berkenaan Titik Akses 

Radio (RAPs) berkembang dengan pesat dan popular pada awal tahun 2000. Peranti-

peranti ini menawarkan suatu cara untuk mengelakkan kekusutan terhadap kabel 

kategori 5 yang disambungkan kepada jaringan Ethernet yang biasa masa kini. 

Manakala pendawaian sebuah syarikat, rumah, atau sekolah sering memerlukan 

pemasangan kabel-kabel melalui dinding-dinding dan siling-siling yang tidak kemas, 

rangkaian wayarles berupaya mengurangkan atau menghapuskan seluruh pemasangan 

kabel-kabel yang berserabut itu. Satu IEEE 802.11 RAP lazimnya boleh 

berkomunikasi kepada 30 sistem pelanggan yang terletak di dalam radius 100m. 

Bagaimanapun, julat sebenar komunikasi boleh berubah sama sekali, bergantung 

kepada faktor pembolehubah seperti penempatan tertutup atau terbuka, ketinggian di 

atas tanah, halangan-halangan berdekatan, peranti-peranti elektronik lain yang 

berkemungkinan secara aktif menggangu isyarat yang dihantar pada frekuensi yang 

sama, jenis antena, cuaca, frekuensi operasi radio dan  kuasa keluaran peranti tersebut. 

Pereka jaringan boleh memanjangkan julat RAPs melalui penggunaan pengulang dan 

pemantul, di mana ia boleh memantulkan atau membesarkan isyarat radio yang 

biasanya tidak boleh diterima. Dalam keadaan ini, rangkaian wayarles telah 

beroperasi sejauh beberapa kilometer. Tujuan kajian ini adalah untuk mereka bentuk 

dan menjalankan simulasi satu rekaan bahagian depan titik akses radio berkuasa 

rendah pada teknologi gentian. Banyak simulasi telah diusahakan menggunakan 

Microwave Office. Komponen-komponen utama adalah Penguat Tenaga (PA) dan 

Turas Jalur Laluan (BPF). Kedua komponen ini telah direkabentuk dan disimulasi 

pada frekuensi 2.4 GHz. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

For the future provision of broadband, interactive and multimedia services 

over wireless media, current trends in cellular networks to reduce cell size to 

accommodate more users and to operate in the microwave/millimeter wave (mm-

wave) frequency band to avoid spectral congestion in lower frequency bands. It 

demands a large number of radio access points to cover service area and cost-

effective RAP is a key to success in the market. This requirement has led to the 

development of system architecture where such as signal routing/processing, 

handover and frequency functions allocation are carried out at a radio base station 

(RBS), rather than at the radio access point (RAP). Furthermore, such a centralized 

configuration allows sensitive equipment to be located in safer environment and 

enables the cost of expensive components to be shared among several RAPs. An 

attractive alternative for linking a RBS with RAPs in such a radio network is via an 

optical fiber network, since fiber has low loss, is immune to EMI and has broad 

bandwidth. The transmission of radio signals over fiber, with simple optical-to-
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electrical conversion, followed by radiation at remote antennas, which are connected 

to a central RBS, has been proposed as a method of minimizing costs. The reduction 

in cost can be brought about in two ways. Firstly, the remote antenna RAP or radio 

distribution point needs to perform only simple functions and it is small in size and 

low in cost. Secondly, the resources provided by the RBS can be shared among many 

antenna RAPs. This technique of modulating the radio frequency (RF) subcarrier 

onto an optical carrier for distribution over a fiber network is known as “Radio over 

Fiber” (RoF) technology. 

To be specific, the RoF network typically comprises a central RBS, where all 

switching, routing, medium access control (MAC) and frequency management 

functions are performed, and an optical fiber network, which interconnects a large 

number of functionally simple and compact antenna RAPs for wireless signal 

distribution. Since RoF technology was first demonstrated for cordless or mobile 

telephone service in 1990, a lot of research efforts have been made to investigate its 

limitation and develop new, high performance RoF technologies. Their target 

applications range from mobile cellular networks, wireless local area network 

(WLAN) at mm-wave bands, and broadband wireless access networks to road 

vehicle communication (RVC) networks for intelligent transportation system .Due to 

the simple RBS structure, system cost for deploying infrastructure can be 

dramatically reduced compared to other wireline alternatives. In addition to the 

advantage of potential low cost, RoF technology has the further a benefit of 

transferring the RF signal to and from a RBS that can allow flexible network 

resource management and rapid response to variations in traffic demand due to its 

centralized network architecture. 

 

 In summary, some of its important characteristics are described below: 

 

i. The system control functions, such as frequency allocation, modulation and 

demodulation scheme, are located within the RBS, simplifying the design of 

the RAP. The primary functions of the RBSs are optical/RF conversion, RF 

amplification, and RF/optical conversion. 

  



                                                                                                                                                           3 

ii. Due to simple RAP structure, its reliability is higher and system maintenance 

becomes simple. 

 

iii. In principle, optical fiber in RoF is transparent to radio interface format 

(modulation, radio frequency, bit rate and so on) and protocol. Thus, multiple 

services on a single fiber can be supported at the same time. 

 

iv. Large distances between the RBS and the RAP are possible. 

 

On the other hand, to meet the explosive demands of high-capacity and 

broadband wireless access, millimeter-wave (mm-wave) radio links (26-100 GHz) 

are being considered to overcome bandwidth congestion in microwave bands such as 

2.4 or 5 GHz for application in broadband micro/picocellular systems, fixed wireless 

access, WLANs, and ITSs.  

 

The larger RF propagation losses at these bands reduce the cell size covered by a 

single RBS and allow an increased frequency reuse factor to improve the spectrum 

utilization efficiency. Recently, considerable attention has been paid in order to 

merge RoF technologies with mm-wave band signal distribution. The system has a 

great potential to support cost-effective and high capacity wireless access. The 

distribution of radio signals to and from RBSs can be either mm-wave modulated 

optical signals (RF-over-fiber), or lower frequency subcarriers (IF-over-fiber). Signal 

distribution as RF-over-fiber has the advantage of a simplified RAP design but is 

susceptible to fiber chromatic dispersion that severely limits the transmission 

distance. In contrast, the effect of fiber chromatic dispersion on the distribution of 

intermediate-frequency (IF) signals is much less pronounced, although antenna RBSs 

implemented for RoF system incorporating IF-over-fiber transport require additional 

electronic hardware such as a mm-wave frequency local oscillator (LO) for 

frequency up- and downconversion. These research activities fueled by rapid 

developments in both photonic and mm-wave technologies suggest simple BSs based 

on RoF technologies will be available in the near future. However, while great 

efforts have been made in the physical layer, little attention has been paid to upper 

layer architecture. Specifically, centralized architecture of RoF networks implies the 
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possibility that resource management issues in conventional wireless networks could 

be efficiently addressed. As a result, it is required to reconsider conventional 

resource management schemes in the context of RoF networks. 

 

 

 

1.2 Objective 

 

The objective of this project is to design and simulate a front-end design of 

low power radio access point for radio over fiber technology. It is important to 

study and identify all the objectives to carry out the study. 

 

 

1.3 Scope of the work 

 

In this report, the main concerned is RoF architecture and to do this will follow 

these steps: 

 

i. Design and simulate the Power Amplifier 

ii. Design and simulate the Band-Pass Filter  

iii. Simulation using Microwave Office  

 

 

1.4 Thesis outline 

 

The remaining part of this report is divided into four chapters as detailed as 

follow: 

 

Chapter 2 gives an overview of Radio over Fiber (RoF) technology. It also 

gives an introduction about the importance of RoF. 

 

Chapter 3 will talk about Radio Access Point (RAP) and its main components 

and will focus on two parts which are the Band-pass Filter (BPF) and the Power 

Amplifier (PA) 
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Chapter 4 describes the methodology and project implementation of this 

report. Simulation results are presented and discussed in this chapter. 

 

Chapter 5 contains the conclusion and will go through some ideas that will 

improve the project in future work. 

 




