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Metal foams are materials of recent development and application
that show interesting combinations of physical and mechanical
properties. Many applications are envisaged for such materials, par-
ticularly in equipments of passive safety, because of their high ca-
pacity of energy absorption under impact conditions. The damage
analysis in metallic foams is a complex problem and must be per-
formed in a finite strain context. Considering that compression is
the dominant loading in impact situations, a finite deformation si-
mulation including damage effects of a compression test on a cel-
lular metal sample is shown in this work. The main objective of the
paper is to compare simulations considering periodic boundary con-

ditions, by means of a representative volume element (RVE) ap-
proach, with results obtained using full meshes. It is shown that,
when the imposed deformation is high, the use of RVE does not
describe in a proper manner the deformation that occurs at the walls
of cells. This characteristic of RVE approach results in a too stiff
behavior when considering load-displacement relations. A compar-
ison with experimental results is also presented.
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1 Introduction

This work continues the research on the simulation of me-
tallic foams behavior that was presented in earlier papers [1, 2,
3].

We understand by metal foam a material composed by a
metallic matrix with internal voids (Fig. 1). Metallic foams
are increasingly considered by the automotive industry, par-
ticularly as recourse of passive safety. In that case, they act to
absorb impact energy.

Metallic foams show mechanical behavior and physical
properties that strongly differ from those of solid materials
and show interesting combinations of properties. For example,
high stiffness combined with low specific weight, or perme-
ability to gas flow combined with high thermal conductivity,
offering possibilities of use in aerospace and automotive in-
dustries. The schematic stress-strain curve for a metallic foam
in compression (Fig. 2), shows a large area in the plateau re-
gion corresponding to high energy absorption at constant
stress.

In order to employ these materials as a main component in
protection structures, it is necessary to have reliable numerical
methods and constitutive relations, developed and validated
using experimental procedures that take into account the vari-
ety of mechanical, geometrical and physical properties of the
foam and the base material.

2 Gurson damage model

The Gurson damage model was developed to describe the
mechanical effect of high plastic deformations in ductile me-
tals. The loss of resistance is governed by the porosity level.
The (isotropic) damage variable employed is the volumetric
void fraction, represented by f and defined by f = Vv / V, where
Vv is the volume of voids in a representative small volume V,
corrected for effects as stress concentration, etc.; f is defined at
each point of the continuum. The presence of voids alters the
elastoplastic constitutive relations. The equations usually em-
ployed in computational damage analyses, the Gurson-Tver-
gaard model [5, 6], considers a yield surface defined by
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Fig. 1. Aluminum foam with open cell (DUOCELJ), [3].

Abb. 1. Offenzelliger Aluminium-Schaum (DUOCELJ), [3].
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and rij are the Cauchy stresses, ry the yield stress in simple
tension. ai are material parameters. The parameter fU = 1/a1 is
the maximum volumetric void fraction admissible before rup-
ture in the absence of pressure. Another possible interpretation
for the a1 and a2 parameters is that they work as multipliers
acting on porosity f and pressure p, respectively.

In Fig. 3, yield surfaces for different levels of void content
are shown, in a plot of normalized deviatoric stress versus nor-
malized pressure.

It can be seen that the plastic domain depends on the hy-
drostatic pressure. When the volumetric void fraction f de-
creases, decreases the influence of pressure, leading to a larger
elastic domain. For f = 0, the model reduces to the von Mises
model, which is independent of hydrostatic pressure. It should
be noted here that in the absence of hydrostatic pressure, the
coefficient x reduces to

x ¼ 1� a1f ¼ 1� f

fU
ð5Þ

The plastic strain rate tensor is given by,
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and the equivalent plastic strain rate is defined by
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The basic mechanisms of damage evolution are nucleation,
growth and coalescence of voids. Nucleation occurs mainly
due to material defects, in the presence of tension. Growth
occurs when the voids (preexistent or nucleated) change their
size according to the volume change in the continuum.
Coalescence is related to the fast rupture process that occurs

after that the volumetric void fraction reaches a limit, indi-
cated by fC. Coalescence consists in the union of neighbor
voids due to the rupture of a ligament.
The equations that govern damage evolution are modeled in

a simplified form as follows. First, it is assumed that total void
rate is given by

_ff

�
_ffn þ _ffg f � fC
_ffc f > fC

ð8Þ

where _ffn is the void nucleation rate, _ffg is the void growth
rate and fC is the void coalescence rate. Thus, as long as f is
smaller than a characteristic value fC, only nucleation and
growth develop. Above fC, only coalescence takes place.
The nucleation rate is proportional to the rate of equivalent

plastic strain

_ffn ¼ AðepÞ _eep ð9Þ

For AðepÞ _eep Chu and Needleman [7] propose the statistical
distribution

AðepÞ ¼ fN

SN
ffiffiffiffiffiffi
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where fN, is the nucleation void volumetric fraction, eN is
the plastic strain value for nucleation and SN is the standard
deviation for the distribution. Sometimes it is assumed that
nucleation takes place only in tension [8,9], what implies that

AðepÞ ¼ 0 if p < 0 ð11Þ

Growth rate of voids is controlled by mass conservation
through the expression

Fig. 2. Stress-strain curve for a metallic foam showing large capa-
city of energy absorption at constant stress, [4].

Abb. 2. Spannungs-Dehnungs-Kurve eines metallischen Schaums
mit hohem Energieabsorptionsvermögen bei konstanter Spannung,
[4].

Fig. 3. Yield surface for a porous material: influence of volumetric
void fraction.

Abb. 3. Fließfläche eines porösen Materials: Einfluss des volume-
trischen Porenanteils.
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_ffg ¼ ð1� fÞDp
ii ð12Þ

Voids increase or decrease their volume according to the
volume variation in the continuum. Coalescence is governed
[10] by the relation

_ffc ¼
fU � fC

De
_eep ð13Þ

or in an alternative way [8, 11] employing in Eq. (2) a cor-
rected volumetric void fraction given by

f� ¼
�

f f < fC
fC þ ð1:0�fCÞ

ðfF�fCÞ ðf � fCÞ f > fC
ð14Þ

In this case, only nucleation and growth are considered in
Eq. (8).

The commercial finite element code ABAQUS is used in
this work and the Gurson damage model is one of the available
constitutive relationships.

3 Modeling considerations for metallic
foams

Metal foam properties can change along the production pro-
cess, particularly according to the cell being open or closed
and the relative density of the foam in relation to the base ma-
terial.

Moreover, foams show (Fig. 1) a fairly randomstructure. It is
possible to determine the exact geometry using CT-scan (com-
puter tomography) and model it with a dense mesh of finite
elements, as inFig. 4a.A different approach towards the under-
standing andmodeling of thesematerials, adopted in thiswork,
is an idealization as a cellularmaterialwith regular structure, as
in Fig. 4b. In this case, modeling aRVE (representative volume
element, Fig. 4c) and still considering the existent symmetries,
good results can be obtained with fewer elements. Then, speci-
menswith regular structuremaybe tested tovalidate results and
determine material parameters. These homogenization proce-
dures have been used with success in other areas of continuum

mechanics.Figure 5 shows a specimen of a cellularmetalmade
to represent a foam.

3.1 Application of boundary conditions

One important aspect to take into account when modeling
cells as those described above are the boundary conditions,
that must represent the average behavior of the foam.
When a vertical displacement is applied to the top side
(Fig. 6) the vertical faces must continue vertical while the dis-
tance between them may change.
This behavior can be computationally imposed using mul-

tiple point constraints (MPC). The used FE code (ABAQUS)
offers the possibility to realize such a boundary condition
where all nodes on a certain surface have the same x-displa-
cement: uxi = … = uxj . The effect of differing boundary con-
ditions on the deformation is shown in Fig. 6.

4 Simulation of a compression test on a
cube of cellular metal

A cube of a cellular metal as shown in Fig. 5 is considered
in the following. The cube contains 3mm diameter holes with
distance of 4mm among them. The presence of holes simu-
lates a cellular metal with relative density of 0.2712.
The matrix material properties are E = 72.7 GPa, m = 0.34,

initial yield value r0
y MPa = 250MPa and final yield value r1

y
MPa = 410 MPa. Hardening is taken into account by the re-

Fig. 4. Meshes used to represent a cellular metal, [3].

Abb. 4. Netze zur Darstellung eines zellularen Metalls, [3].

Fig. 5. Cube of cellular metal.

Abb. 5. Würfel eines zellularen Metalls.

Fig. 6. Results of different boundary conditions applied to the right
face, [3].

Abb. 6. Ergebnisse verschiedener Randbedingungen, die an der
rechten Seite angewandt wurden, [3].
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lation ry ¼ r0
y þ ðr1

y � r0
yÞ½1� expð�kepÞ�, with k ¼ 25.

The Gurson model ABAQUS code is used and the parameters
considered are 5% of initial porosity, a1 = 1.5 and a2 = 1.0.
The material parameters are obtained fitting experimental re-
sults [3, 12].

Load is applied as a vertical displacement on the top surface
of the cube.

The objective of this analysis is to compare numerical re-
sults with experimental results available from a cellular metal
cube compression tests, and to check if MPC boundary con-
dition works properly in compression as in tension situations
[1, 3].

Five models are used to simulate the problem, beginning
with a single cell as shown in Fig. 7a, and varying the number
of cells in each direction and the boundary conditions. The
single cell model of Fig. 7a is studied with and without
MPC boundary condition (see Fig. 6). With 2 cells in each

direction the model called 2-cells (Fig. 7b) is obtained, repre-
senting a cube with a hole. Employing 5 or 7 cells in each
direction the models called 5-cells (Fig. 7c) and 7-cells
(Fig. 7d) are obtained.
Figure 8 shows a comparison among macroscopic stress

and strain plots for the five models used in the analysis.
The macroscopic stress is the relation between the resultant
forces and the original solid surface area. The macroscopic
strain is the ratio between change of length and original
length. It can be seen that a unit cell (Fig. 7a) with MPC over-
estimates the stiffness of the model. Using MPC, due to the
nature of the restriction (see section 3.1), the walls remain ver-
tical. This effect is more significant after 2.5% macroscopic
strain, when buckling occurs in the walls between the holes
(Fig. 9). Figure 10 shows the von Mises stress distribution
for the unit cell with MPC at an applied macroscopic strain
of 25%.
The 2-cells model (Fig. 7b) and a unit cell withoutMPC that

represents an eighth of the 2-cells model, underestimate the
stiffness of the cube because in this case all the walls suffer
strong buckling effects, that in the actual behavior of the real
specimen (Fig. 5) is restricted (at this loading level) to the
slenderer external walls. Figure 11 shows the von Mises stress
distribution for the unit cell without MPC and Fig. 12 and 13,
for the 2-cells model. In both cases for an applied macroscopic
strain of 25%. In the figures the axe is 3 defines the load di-
rection.

Fig. 7. Meshes used to study the cube. a) unit cell b) 2-cells c) 5-
cells d) 7-cells.

Abb. 7. Netze zur Untersuchung des Würfels. a) Einheitszelle b) 2
Zellen c) 5 Zellen d) 7 Zellen.

Fig. 8. Stress strain plots for the five models used in the
analyses.

Abb. 8. Spannungs-Dehnungs-Diagramme der fünf
verwendeten Modelle.

Fig. 9. Picture showing buckling process at the walls between
holes.

Abb. 9. Darstellung des Beulverhaltens der Zellwände zwischen
den Löchern.
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It can be observed in Fig. 8 that for macroscopic strains
larger than 12% there is a divergence in the unit cell and
the 2-cells model plots, that can be explained by the fact
that the 2-cells model presents a shear strain global effect
(Fig. 12 and 13) not found in the one eighth model (unit
cell without MPC).
For the 7-cells and the 5-cells models, that represent more

appropriately the effect of the buckling at the walls between
holes, numerical results are closer to experimental results. The
7-cells model results are obtained only until an applied strain
of 17.85%, due time-machine limitations and to avoid inter-
penetrations, since self-contact is not being considered. The
mesh for this model has 253820 elements. The results to 5-
cells model, with a 92500 elements, are obtained until an ap-
plied strain of 25%, Fig. 8.
Figures 14 and 15 show von Mises stress distribution to the

7-cells model at an applied strain of 17.85% and Fig. 16 and
17, for the 5-cells model at an applied strain of 25%. It is pos-

Fig. 10. Distribution of von Mises stress (MPa) for a unit cell with
MPC for an applied macroscopic strain of 25%.

Abb. 10. Verteilung der von Mises Spannung (MPa) in einer Ein-
heitszelle mit MPC bei einer makroskopischen Dehnung von 25%.

Fig. 11. Distribution of von Mises stress (MPa) for a unit cell with-
out MPC for an applied macroscopic strain of 25%.

Abb. 11. Verteilung der von Mises Spannung (MPa) in einer Ein-
heitszelle ohne MPC bei einer makroskopischen Dehnung von
25%.

Fig. 12. Distribution of von Mises stress (MPa) for the 2-cells
model for an applied macroscopic strain of 25% - panoramic view.

Abb. 12. Verteilung der von Mises Spannung (MPa) in einem Mo-
dell mit zwei Zellen bei einer makroskopischen Dehnung von 25%
- Panoramaansicht.

Fig. 13. Distribution of von Mises stress (MPa) for the 2-cells
model for an applied macroscopic strain of 25% - top view.

Abb. 13. Verteilung der von Mises Spannung (MPa) in einem Mo-
dell mit zwei Zellen bei einer makroskopischen Dehnung von 25%
- Draufsicht.

Fig. 14. Distribution of von Mises stress (MPa) for the 7-cells
model for an applied macroscopic strain of 17.85% - panoramic
view.

Abb. 14. Verteilung der von Mises Spannung (MPa) in einem Mo-
dell mit sieben Zellen bei einer makroskopischen Dehnung von
17,85% - Panoramaansicht.

Mat.-wiss. u. Werkstofftech. 2008, 39, No. 2 Comparison between RVE and full mesh approaches for the simulation 137



sible to observe there that the buckling of the external walls is
properly represented.

The experimental curve in Fig. 8 indicates how complex the
real behavior is. After 12.8% of the macroscopic strain there
is a partial rupture with stiff decrease in load until a new equi-
librium situation achieved by contact of the fragmented parts.
This process repeats itself until the final failure.

5 Final comments

This paper presents some new results from a research in
development ([1, 2]).

It is shown that MPC fails to represent the real behavior of
the specimen in compression for large macroscopic strains
(larger than 2.5% in the present case), mainly due to buckling
effects that are important at this strain level. The use of more
complex models gives a good approximation of experimental
results, up to a point close to postcritical softening (12.8% in
the present case). To represent the real behavior at much larger
deformations, the introduction of self contact effects should be

needed. The research will continue looking for better models
and damage parameters adjustment.
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4. A.Öchsner,W.Winter,G.Kuhn,Arch.Appl.Mech.2003,73,261.
5. A.L. Gurson, J. Eng. Mater.- T. ASME 1977, 99, 2.
6. V. Tvergaard, Int. J. Fracture 1981, 17, 389.
7. C.C. Chu, A. Needleman, J. Eng. Mater.- T. ASME 1980, 102,

249.
8. ABAQUS, Theory Manual v. 5.2, Providence, USA: Hibbit,

Karlsson & Sorensen, Inc., 1992.
9. L.A.B. Cunda, G.J. Creus, Comput. Model. Simul. Eng. 1999,

4, 300.
10. V. Tvergaard, Int. J. Solids Struct. 1982, 18, 659.
11. V. Tvergaard, Int. J. Fracture 1981, 17, 389.
12. P. A. Munoz-Rojas, T. Fiedler, L.A.B. Cunda, A. Öchsner, G.J.
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Fig. 15. Distribution of von Mises stress (MPa) for the 7-cells
model for an applied macroscopic strain of 17.85% - side view.

Abb. 15. Verteilung der von Mises Spannung (MPa) in einem Mo-
dell mit sieben Zellen bei einer makroskopischen Dehnung von
17,85% - Seitenansicht.

Fig. 16. Distribution of von Mises stress (MPa) for the 5-cells
model for an applied macroscopic strain of 25% - panoramic view.

Abb. 16. Verteilung der von Mises Spannung (MPa) in einem Mo-
dell mit fünf Zellen bei einer makroskopischen Dehnung von 25% -
Panoramaansicht.

Fig. 17. Distribution of von Mises stress (MPa) for the 5-cells
model for an applied macroscopic strain of 25% - side view.

Abb. 17. Verteilung der von Mises Spannung (MPa) in einem Mo-
dell mit fünf Zellen bei einer makroskopischen Dehnung von 25% -
Seitenansicht.
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