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ABSTRACT  

 
This paper concerned with the simulation of two phase fluid flows in two 
dimensions using lattice Boltzmann method. The original free energy lattice 
Boltzmann model is reviewed in some detail. Which was then developed into a new 
free energy model based on the isotropy approach and The Gallilean invariance is 
also considered. Some simulation results, which have been performed elsewhere, 
are repeated to test the validity of this model. 
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1.0 INTRODUCTION 
 
The importance of understanding fluid flow with a change in phase arises from the 
fact that many industrial processes rely on these phenomena for materials 
processing or for energy transfer, e.g. petroleum processing, paper-pulping, power 
plants and boiling water reactor. There are many common examples of multiphase 
flow not only in industrial processes but also everyday life. Thus the 
understanding of multiphase flow is essential for both fundamental research and 
engineering applications. However, due to the complex nature of multiphase flow, 
theoretical solutions are generally limited to relatively simple cases. Meanwhile, 
the experimental approaches for multiphase flow are very expensive if not 
impossible, depending on the scale and/or fluid composition. Therefore, it is 
reasonable to say that numerical simulations are primarily useful in studying the 
underlying physics of multiphase flow and providing information about the details 
of processes that are difficult to obtain by theoretical analysis or by experiments. 
 Recently, simulating multiphase flow with Lattice Boltzmann Method (LBM) 
has attracted much attention. Microscopically, the phase segregation and surface 
tension in multiphase flow are because of the interparticle forces/interactions. Due 
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to its kinetic nature, the LBM is capable of incorporating these interparticle 
interactions, which are difficult to implement in traditional methods. 
 In general there are three types of lattice Boltzmann models have been 
advanced to simulate multiphase flow systems. The first type is the so-called 
colored model for immiscible two-phase flow proposed by Gunstensen et al. [1]. 
Gunstensen et al used colored particles to distinguish between phases. The color 
model was further developed by later studies [2], but it has serious limitations. 
One of the most significant problems is that the model is not rigorously based 
upon thermodynamics, so it is difficult to incorporate microscopic physics into the 
model [3]. 
 The second type of lattice Boltzmann (LB) approach to model multi-
component fluids was derived by Shan and Chen (SC model) [4]. In the SC model, 
a non-local interaction force between particles at neighboring lattice sites is 
introduced. The net momentum, modified by interparticle forces, is not conserved 
by the collision operator at each local lattice node, yet the system’s global 
momentum conservation is exactly satisfied when boundary effects are excluded 
[5]. The main drawback of the SC model, however, is that it is not well-
established thermodynamically. One can not introduce temperature since the 
existence of any energy-like quantity is not known [6]. 
 The third type of LB model for multiphase flow is based on the free-energy 
(FE) approach, developed by Swift et al. [7], who imposed an additional constraint 
on the equilibrium distribution functions. The FE model conserves mass and 
momentum locally and globally, and it is formulated to account for equilibrium 
thermodynamics of nonideal fluids, allowing for the introduction of well defined 
temperature and thermodynamics. The major drawback of the FE approach is the 
unphysical non-Galilean invariance for the viscous terms in the macroscopic 
Navier-Stokes equation. Efforts have been made to restore the Galilean invariance 
to second-order accuracy by incorporating the density gradient terms into the 
pressure tensor [8, 9]. 
 In the present work, the free energy approach of multiphase lattice Boltzmann 
scheme proposed by Yonetsu [9] is used to simulate two-phase flow phenomena. 
Yonetsu has shown that his model could predict well the bubble shear phenomena 
and obtained a very good agreement with analytical result for the Laplace`s law 
pressure of droplet-gas system. As extension to their works, we include the 
external force in the governing equation and simulate the bubble rises 
phenomenon.  
 This paper is organized as follows. In Section 2, a brief overview of lattice 
Boltzmann method along with theory of free-energy multiphase lattice Boltzmann 
is discussed. The isotherms P vs V graph from Van-Der Waals fluid equation is 
plotted in order to find the value of density for both liquid and gas phases at 
certain pressure and temperature. In Section 3 two-phase at initially non-
equilibrium condition, bubbles rise and coalesce phenomena were simulated to 
show capability of the two-phase lattice Boltzmann model. The final section 
concludes this study.  
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2.0 MULTIPHASE LATTICE BOLTZMANN METHOD 
 
The starting points for lattice Boltzmann simulations is the evolution equation, 
discrete in space and time, for a set of distribution functions f i.  If a two-
dimension nine-velocity model (D2Q9) is used, then the evolution equation for a 
given f i take the form 
 

 ( ) ( ) ( ) ( )[ ] Ftftftftttf eq
iiiii +−=−∆+∆+ ,,1,, xxxex

τ
 (1) 

 
where ∆t is the time step, e is the particle’s velocity, τ is the relaxation time for the 
collision, F is the external force and i = 0, 1,…, 8. Noted that the first term in the 
right hand side of Equation 1 is the collision term where the BGK approximation 
[10] has been applied. The discrete velocity is expressed as ei = (0, 0) for i = 0, ei 
= (cos (i – 1)π/4, sin (i – 1)π/4) for i = 1, 3, 5, 7 and ei = 21/2(cos (i – 1)π/4, sin (i – 
1)π/4) for i = 2, 4, 6, 8. fi

 eq is an equilibrium distribution function, the choice of 
which determines the physics inherent in the simulation. 
 The updating of the lattice consists of basically two steps: a streaming process, 
where the particle densities are shifted in discrete time steps through the lattice 
along the connection lines in direction ei to their next neighboring nodes and a 
collision step, where locally a new particle distribution is computed by evaluating 
the right hand side of Equation 1.  
 In free-energy two-phase lattice Boltzmann model, the equilibrium distribution 
determines the physics inherent in the simulation. A power series in the local 
velocity is assumed [11] 
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where the summation over repeated Cartesion indices is understood. The 
coefficients A, B, C , D and Gαβ  are determined by placing constraint on the 
moments of fi

 eq. In order that the collision term conserves mass and momentum, 
the first moments of fi

 eq are constrained by 
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The next moment of fi

 eq is chosen such that the continuum macroscopic equations 
approximated by evolution equation correctly describe the hydrodynamics of a 
one-component, non-ideal fluid. This gives 
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where υ = c2(τ - 1/2)∆t/3is the kinematic shear viscosity and Pαβ  is the pressure 
tensor. In order to fully contrain the coefficients A, B , C , D and Gαβ , a fourth 
condition is needed, which is  
 

 ( )αβγαγββγαγβα δδδρ uuucfeee
i

eq
iiii ++=∑ 3

2

,,,
 (6) 

 
The values of the coefficients can be determined by a well established procedure. 
For the constraints (Equations 3-6) one possible choice of coefficients is:  
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 αβαβ 21 4GG =  for all βα ,  (15) 
 
The analysis of Holdych et al. [8] shows that the evolution scheme, Equation 1 
approximates the continuity equations 
 
 ( ) 0=∂+∂ αα ρρ ut  (16) 
 
and the following Navier-Stokes level equation: 
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 (17) 
 
The top line is the compressible Navier-Stokes equation while the subsequent 
lines are error terms. We have, then, described a framework for a one component 
free energy lattice Boltzmann. 
 The theory of Van-Der Waals fluid is very close related to the multiphase 
phenomena. The Van Der Waals equation of state is can be written as 
 

 ( ) nRT
V

anp =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ nb-V2

2
 (18) 

 
where n is the mole number, a  and b are constant characteristic of a particular gas 
and R is the gas constant. p, V and T are as usual the pressure, volume and 
temperature. Equation 18 can be rewritten in terms of the following ‘reduced’ 
quantities 
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Figure 1 shows plot of isotherms on a Vp ~~ − diagram for various T~ . For 1~
>T , the 

graph looks very much like the ideal gas isotherms. However, for 1~ <T , a ‘loop’ 
(minimum and maximum) in p~  is occur. At this condition, the system separates 
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into two phases, a gas of volume VG and a liquid of volume VL. The two coexisting 
phases both have the same pressure denoted by PLG. The value of VG and VL can be 
determined by recalling that at equilibrium condition, the chemical potentials of 
the two phases must be equal. As a result we come out with the situation that they 
can be found geometrically by the so called ‘Maxwell equal area construction’ as 
shown in the Figure 1. For Example, for the value of T = 0.55, the value of VG and 
VL are 0.4523 (or density ρG = 2.221), and 0.2043 (or density ρL = 4.895) 
respectively. 

 
 

Figure 1: Isotherms plot of Vp ~~ −  
 
 The thermodynamics of the fluid enters the lattice Boltzmann simulation via 
pressure tensor Pαβ . The equilibrium properties of a system with no surface (i.e 
periodic boundaries) can be described by a Landau free energy functional 
 

 ( ) ( )∫ ⎥⎦
⎤

⎢⎣
⎡ ∂+=Ψ 2

2
, ρκρψ αTdV  (22) 

 
subject to the constraint 
 

 ∫= ρdVM  (23) 
 
where ψ(ρ, T)is the free energy density of bulk phase, κ is a constant related to the 
surface tension, M is the total mass of fluid and the integrations are over all space. 
The second term in Equation 22 gives the free energy contribution from density 
gradients in an inhomogeneous system. For Van-Der Waals fluid, free energy 
density of bulk phase can be written in the form 
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Introducing a constant Lagrange multiplier,µ, we can minimise Equation 22, 
giving a condition for equilibrium as 
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By multiplying Equation 25 by ∂ρ/∂x and integrating once with respect to x, we 
obtain the first integral 
 

 ( ) =∂−− 2
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At equilibrium condition, the chemical potential and pressure of both phases are 
given by 
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respectively. We now define W(ρ, T) = ψ - µρ + p, meaning that Equation 25 and 
Equation 26 can be rewritten as 
 

 ρκ
ρ

2∇=
∂
∂W  (29) 

 

 ( )2

2
ρκ

α∂=W  (30) 

 
By solving Equation 30, we are able to determine the density profile at the 
interface for different values of κ as shown in Figure 2. Noted that fourth order 
Rungge-Kutta scheme is used to solve Equation 30 and temperature is set at T = 
0.55. As can be seen from the graph, the value of κ is related to the density 
gradient at the interface and also affects the width of interface. 
 

 
 

Figure 2: Density gradient at the interface for various value of κ 
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3.0 SIMULATION RESULTS 
 
3.1 Phase Separation 
In this section, the phase separation which is based from the thermodynamic 
instability of the Van-Der Waals fluid is simulated. As discussed in Section 2.0, if 
the initial state is set to an isothermal unstable region, according to the equation of 
state, the system will automatically separates to the liquid phase and the vapor 
phase and then achieve equilibrium condition. 
 

   
          (a)               (b)        (c) 

   
         (d)     (e)        (f) 

 
Figure 3: Snapshot of phase separation 

 
 The transient behavior of phase separation was done in order to examine the 
validity of Yonetsu’s model. The D2Q9 model with 101 × 101 lattice is used and 
the simulation was done at T = 0.55. Other parameters are presented in the Table 1. 
 

Table 1: Parameters used for the simulation of phase separation 
∆ x ∆ y ∆ t τ κ 
0.05 0.05 0.01 1.00 0.0001 

 
Figure 3 shows the domain morphology at time steps of 200, 800, 2400, 2700, 
3300 and 8000 separately. Although the initial bubble nuclei are small, the mass 
densities inside the droplets are close to their equilibrium value, as illustrated in 
Figure 3(a). The small bubbles are coalescing and form larger and larger bubbles 
as the time evolves. Figure 3(b) contains coalescing bubbles in the view field. A 
spherical bubble at equilibrium state is illustrated in Figure 3(f). The interface 
during the system evolution is clear and of the same thickness. 
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3.2 Bubble Rise 
In this section, the two-dimensional single bubble rising under buoyancy is 
simulated. The density of each phase are taken as ρL = 4.895and ρG = 2.221. The 
periodic boundary condition is employed at all boundaries. Initially, it is located at 
the lower region (one sixth of the height) of computational domain of 481 × 161. 
The dimensionless parameters (Eotvos, Morton number and Reynolds) are defined 
as 

  
σ
ρ 2dgEo ∆

=  (31) 

 

 
3

4

σ
ρυρ ∆

= LgMo  (32) 

 

  
υ

Ud
=Re  (33) 

 
where g is the gravitational force, ∆ρ is the density difference for two phase 
system, ρL is the fluid density, U is the velocity of the bubble at equilibrium state, 
d is the radius of bubble and σ is the surface tension coefficient. 
 

 
 

Figure 4: Time evolution of bubble rise phenomenon at Eo = 10 
 

 Simulations have been done for Eo of 10 and 20. Due to buoyancy force, the 
bubble will move upward. In the meantime, the middle part of the bubble will 
encounter a large deformation due to the hit of surrounding water. Equation 31 
indicates that the increase of Eo is equivalent to the decrease of the surface tension 
coefficient σ. It is well known that the surface tension force is to resist the 
deformation of the bubble. In other words, the decrease of σ enhances the 
deformation of the bubble. This phenomenon is clearly revealed in Figure 4 and 
Figure 5 which display the bubble shape of the two cases. The bubble of case one 
is close to the original shape. As the Eo is increased, the bubble shape deformed. 
For the case of Eo = 10, the shape of the bubble does not change too much. This is 
because for this case, the surface tension force is strong, trying to keep its initial 
configuration. At Eo = 20, (Eo is increased and surface tension force decrease), 
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the bubble move up faster and the bubble’s shape change. For all the cases, the 
bubble is always kept symmetrically. 
 

 
 

Figure 5: Time evolution of bubble rise phenomenon at Eo = 20 
 
3.3 Bubbles Coalesce 
 

 
      (a)   (b)            (c) 

 
    (d)   (e)            (f) 

 
Figure 6: Snapshot of bubbles’ coalesce 

 
 The bubble coalesces have been study in details by Zheng et al. [12]. Zheng 
found that for the two stationary bubbles without collision, it was found that the 
distance (gap) between the bubbles and the interface width (w) are the major 
factors to decide whether the two bubbles will coalesce or not. When the gap of 
the two bubbles is larger than 2w, the two bubbles will not coalesce. Otherwise, 
they will coalesce. 
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 To study the effect of the width of interface layer on the numerical results, two 
stationary bubbles without collision is considered as shown in Figure 6. The 
computational domain is taken as 100 × 100. Initially, two circular bubbles with 
the radius R are located horizontally with a gap of d. The periodic boundary 
condition is employed at all boundaries. The density ratio is set as 2.214. The 
parameters are chosen as R = 15 lattice units and τ = 1.00. The gap of the two 
bubbles (d) is taken as 0.8, while the width of the interface (w) is 1.8 lattice units. 
 Numerical results are shown in Figure 6. It can be easily observed that for the 
case where the gap of two bubbles is less than 2w, the two bubbles coalesce 
eventually without collision and are in agreement with other researcher’s results. 
 
4.0 CONCLUSIONS 
 
This paper has shown the capabilities of lattice Boltzmann method in solving the 
two-phase system. The advantages of multiphase lattice Boltzmann approach are 
not only capable of incorporating interface deformation and interaction but also 
the interparticle interactions, which are difficult to implement in traditional 
methods. Two-phase flow benchmark tests showed the relaxation process of the 
bubble/droplet, which is in agreement with other researchers. It is demonstrated 
that the free energy two-phase LBE model has the ability to simulate phase 
separation, bubble rise and droplets coalesce. The phase separation phenomenon 
has been correctly predicted where the value of density or volume for both phases 
at equilibrium state are in good agreement with the isothermal p − V graph. The 
numerical results of bubble rise and droplet coalesce indicate that the two-phase 
lattice Boltzmann schemes may be applicable for simulating interfacial dynamics 
in immiscible phases. 
 

ACKNOWLEDGEMENTS 
 

The authors would like to acknowledge Universiti Teknologi Malaysia, Keio 
University and Malaysia Government for supporting this research. 
 

REFERENCES 
 
1. Gunstensen, A.K., Rothman, D.H., Zaleski, G., 1991. Lattice Boltzmann 

Model for Immiscible Fluids, Physics Review A 43, 4320-4327. 
2. Grunau, D., Chen, S., Lookman, T., Lapedes, A.S., 1993. Domain Growth, 

Wetting and Scaling in Porous Media, Physical Review Letters 71, 4198-4202. 
3. Boghosian, B.M., Coveney, P.V., 2000. Particulate Basis for an Immiscible 

Lattice-gas Model, Computer Physic Communication 129, 46-55. 
4. Shan, X., Chen, H., 1993. Lattice Boltzmann Model for Simulating Flows 

with Multiple Phases and Components, Physical Review E 47, 1815-1820. 
5. Martys, N.S., Douglas, J.F., 2001. Critical Properties and Phase Separation in 

Lattice Boltzmann Fluid Mixtures, Physical Review E 63, 031205/1-
031205/18. 

6. Hazi, G., Imre, A.R., Mayer, G., Farkas, I., 2002. Lattice Boltzmann Method 
for Two-Phase Flow Modelling, Annals of Nuclear Energy 29, 1421-1453. 



 
 

Jurnal Mekanikal, December 2007 

79 

7. Swift, M.R., Osborn, W.R., Yeoman, J.M., 1995. Lattice Boltzmann 
Simulation of Nonidela Fluids, Physical Review Letters 75, 830-833. 

8. Holdych, D.J., Geogiadis, J.G., Buckius, R.O., 2001. Migration of a Van Der 
Waals Bubbles: Lattice Boltzmann Formulation, Physics of Fluids 13, 817-
825. 

9. Yonetsu, H., 2003. 2-Dimensional Simulation of Two-Phase Flow using 
Discrete Boltzmann Equation, MSc Thesis, Keio University, Japan. 

10. Bhatnagar, P.L., Gross, E.P., Krook, M., 1954. A Model for Collision Proces 
in Gasses, Physical Review 94, 511-525. 

11. Yang, Z.L., Dinh, T.N., Nourgeliev, R.R., Sehgal, B.R., 2001. Numerical 
Investigation of Boiling Regime Transition Mechanism by a Lattice 
Boltzmann Model, Nuclear Engineering and Design 204, 143-153. 

12. Zheng, H.W., Shu, C., Chew, Y.T., 2005. Lattice Boltzmann Interface 
Capturing Method for Incompressible Flows, Physical Review E 72, 056705-
056715. 


