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Abstract.   We consider three-level difference replacements of  parabolic equations focussing on the 
heat equation in two- space dimensions.  Through a judicious splitting of the approximation, the 
scheme qualifies as an ADI method.  Using the well-known fact of the parabolic-elliptic 
correspondence, we shall derive a two-stage iterative procedure employing a fractional splitting 
strategy applied alternately at each intermediate time step.  

 
 
1. Introduction 
 
Consider the heat equation, 
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subject to given initial and Dirichlet boundary conditions over a rectangular domain with 
a uniformly spaced network whose mesh points are  ,xixi Δ=  .tjt j Δ=   If we 
approximate the temporal derivative by a central first difference and the space derivative 
by a second central difference centred at ),( ji tx  we obtain the classic Richardson 

formula which is unconditionally unstable for all mesh ratios 2)( x
t

Δ
Δ=λ .  However, a 

replacement of the space derivative by the average of second central differences centred 
at ),(),,( 1 jiji txtx −  and ),( 1+ji tx  leads to the following stable and (2,2) accurate 
method, 
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where δ  is the central difference operator defined by 2/12/1 −+ −= iii uuuδ . 
As all derivatives can be expressed as an infinite series of differences, adding the next 
fourth-order term to (2) gives us the following stable, )2,4(  accurate difference formula, 
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The two-dimensional equivalent of (3) and (4) to approximate the heat equation in            
two-space, 
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is given respectively by, 
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and 
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The difference scheme (7) can be split as follows to qualify as an alternating direction 
implicit (ADI) scheme, 
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2. Other difference replacement and parabolic-elliptic correspondence 
 

Another stable and )2,4( accurate difference replacement of  (5) is  
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whose ADI analogue is given by, 
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and 
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As the temperature reaches steady state over time, →U  constant and 0→∂

∂
t

U  and the 
parabolic equation  (5) reduces to the elliptic equation (Laplace’s equation ), 
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whose numerical solution can be obtained iteratively using the same ADI technique, 
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where r is the acceleration parameter.  
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Note from the composite formula (10) that the iterative procedure converges if  
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for k sufficiently large leading to 
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which represents a nine-point difference replacement of the Laplace’s equation (13). 
Hence we are motivated by this well-known fact of the parabolic-elliptic correspondence 

]4,3[  to develop a new iterative scheme for the solution of (1) by considering the 
following two-step iterates corresponding to (14) and (15), 
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parameter of the iterative process. 
Noting that )()1( pp uu =+  as ∞→p , we have, at the )2/1( +p  iterate, 
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and 1G  and  2G  are lower and upper bidiagonal matrices given by, 
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Elimination of  )2/1( +pu   from (18) and (19) leads to the single composite formula, 
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A ia a tridiagonal matrix which arises from the difference method used to approximate 
the parabolic equation (1).  For example, if the familiar weighted approximation, 
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is used with order of accuracy of )4,2(),2,2(),2,1( and )2,1(  when λθ 12
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and 0  respectively, then  its totality can be displayed in matrix form (23) as, 
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Using (18) and (19), we have, 
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giving us the following computational formulae at each of the half-iterates, at the 
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The two-step iterative procedure of (27) and (28) corresponds to sweeping through the 
mesh involving at each iterate the solution of an explicit equation.  This is continued until 
convergence is reached, that is when the convergence requirement ε≤−

∞

+ )()1( pp uu  

is met where ε is the convergence criterion. 
 
 
3. Conclusion 
 
This paper renders a computational treatise of the derivation of a numerical scheme in the 
class of iterative and explicit two-steps methods to solve one-dimensional heat equations.  
As the basis of derivation is the unconditionally stable )2,4(  accurate ADI scheme, this 
method is convergent, computationally stable and highly accurate.  Some of the well-
known schemes in this class are reported in [2].  However, the Alternating Group Explicit 
method employing the Douglas and Peaceman-Rachford variant, AGE-DR and AGE-PR 
is only )1,2(  and )2,2(  accurate respectively.  In a separate paper will be reported 
results of some sample problems involving the one-dimensional heat equation 
demonstrating the convergence, high accuracy and unconditional stability of the above 
scheme. 
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