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Abstract. We consider three-level difference replacements of parabolic equations focussing on the
heat equation in two- space dimensions. Through a judicious splitting of the approximation, the
scheme qualifies as an ADI method. Using the well-known fact of the parabolic-elliptic
correspondence, we shall derive a two-stage iterative procedure employing a fractional splitting
strategy applied alternately at each intermediate time step.

1. Introduction

Consider the heat equation,
= )

subject to given initial and Dirichlet boundary conditions over a rectangular domain with
a uniformly spaced network whose mesh points are x; =iAx, t; = jAt. If we

approximate the temporal derivative by a central first difference and the space derivative
by a second central difference centred at (x;,t;) we obtain the classic Richardson
formula which is unconditionally unstable for all mesh ratios A = (AAX‘)Z . However, a
replacement of the space derivative by the average of second central differences centred
at (X, tj_1), (x;,t;) and (x, tj,;) leads to the following stable and (2,2) accurate

method,
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or (1—%155%,“1 = %/wfui,j + (1+§/153jui,j_l ()

where ¢ is the central difference operator defined by du; = Uj 1/ —Uj_1/2 -

As all derivatives can be expressed as an infinite series of differences, adding the next
fourth-order term to (2) gives us the following stable, (4,2) accurate difference formula,

(4)
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The two-dimensional equivalent of (3) and (4) to approximate the heat equation in
two-space,

2 2
ou _ o°U N o°U (5)
is given respectively by,

2 2 2
(1—5/1(55 + 5§)Jui,j,k+1 = 5/1(53 + 55)ui,j,k +(1+§/1(55 + 5y2)jui,j,k—1 ()
and
2 2 4
(1_ E;L((gxz N 5§)jui,j,k+1 _ (5,1(55 +52)+ gﬁzaé‘fé‘yzjui]j’k
+(1+§i(5xz +55)+gﬂzﬂ5x25§jui,j,k—1 (7)

The difference scheme (7) can be split as follows to qualify as an alternating direction
implicit (ADI) scheme,

2 2 2
(l_gﬂ’gf)ui,j,k#—llz = 5155 [aui,j,k + ﬂui,j,k—l + 51(5)3 + é‘}%)uirj:k

+(1+§,1(5X2 +5§)Dui,j,k_1 ®)
and
2 2 o2
1—5/15y Ui jk+r = Ui jkear2 —5/15y (au; jk + BU; jx-1) 9)
At At

where o + S =1and A = = .
/ (A% (ay)?
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2. Other difference replacement and parabolic-elliptic correspondence

Another stable and (4, 2) accurate difference replacement of (5) is

(1+(%-éﬁj@zj(“(%—éﬁjﬁj”i,j,m = %,1(53 + 6] +%5f5§ju”,k

2
1 2 12
+ (1+ (E+ 5/1)(53 + 5§)jui,j,k_1 + (E —gzj 85262 (20 — Ui ;) (10)

whose ADI analogue is given by,

1 2 1 2
(1+ (E - 5/1)5x2jui,j,k+1/z = _(E - 51)55 (Zui,j,k - ui,j,k—l)

+ %ﬂ(éf +87 + %5X2§y2jui’j’k + (1+ (é + %ﬂj(éf + 55))ui'j’k_l (12)

and

1 2 1 2
(l"r (E —EﬂJgijui,j,k+l = Ui’j’kJrl/Z + (E —Eljé‘i (2ui’jyk — ui,j,kfl) (12)

As the temperature reaches steady state over time, U — constant and % — 0 and the
parabolic equation (5) reduces to the elliptic equation (Laplace’s equation ),

U U

v, + o 0 (13)

whose numerical solution can be obtained iteratively using the same ADI technique,
1 2 * 1 2 2 1
(14’ (E—gr)é‘fjui’j = (—(E—Erjé‘i +§r(5f + 55 + E&fé‘ij

1 2
+ (1 + (E +3 rj (62 + ai)D u® (14)

(1 + (é - % rJ 55) Ui(,‘}“’ = U+ (é - % rj 5y2Ui(,F}) (15)

where r is the acceleration parameter.

and
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Note from the composite formula (10) that the iterative procedure converges if

Ui j k-1 = Ui jk = Ui jksr = Ui

for k sufficiently large leading to

2 2 1 oo
(5)( +5y+66x5yjui’j =0

which represents a nine-point difference replacement of the Laplace’s equation (13).
Hence we are motivated by this well-known fact of the parabolic-elliptic correspondence
[3,4] to develop a new iterative scheme for the solution of (1) by considering the
following two-step iterates corresponding to (14) and (15),

(1 + aG)uP+? — (—an +a3(Gl +G, +%GlGZJ+ |

+0(Gy + G,))uP —2rf (16)
and

(1 +aG)ulP™D = yP*/2) 4 4G u(P) (17)
where a:%—%r, a):%+%r, c?):%r with

r >0 being the acceleration
parameter of the iterative process.

Noting that u®*» = u(® as p — o, we have, atthe (p +1/2) iterate,

(1 +aG)uP™? = (1 + (a + 2r)G,)(I + 2rG,) + G;G,)uP — 2rf

(18)
and at the (p +1) iterate,

(+ an)U(p+1) = yP+/2) anu(p)

(19)
where ﬂ = M

3 ’

and G; and G, are lower and upper bidiagonal matrices given by,
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1
e
Gl = ' l . ’ (20)
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L Km-1 1] (mxm)
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e; h
G, = - (21)
€n1 N
L €m | (mxm)

Elimination of u®*}'2 from (18) and (19) leads to the single composite formula,

(1 +aGy)(1 +aG,)u®D = ((1 + (@ + 21)Gy ) (1 + 2G, ) + GG, )u” - 2rf
+a(l + aG;)G,uP

As p - oo, uP ulP*D 5 y resulting to
1
A=G+G,+ -GG, (22)

and Au=f (23)

A ia a tridiagonal matrix which arises from the difference method used to approximate
the parabolic equation (1). For example, if the familiar weighted approximation,

—AOU;_y i1 + L+ 2A0)Uj g — AOUj 4 g = AL - O)Uj_y

+H1- 240 - ) uy + AL - O)ujy
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is used with order of accuracy of (1,2),(2,2),(2,4)and (1,2) when 6 =1,1 7 2 ﬁ

and 0 respectively, then its totality can be displayed in matrix form (23) as,

ER U f,
c ab Q u, f,
c awb Us fa
= ' (24)
c a Up-1 1:m—l
L aj (mxm) L Un Jj+1 L fm g

Using (18) and (19), we have,
ulPD — (146G HA + (@ + 2r)G,)(1 + 2rG,) + BG,G,)uP —2rf)  (25)
and
u®d = (1 + aG,) T (UP2 4 oG LuP) (26)

giving us the following computational formulae at each of the half-iterates, at the
(p +1/2) iterate,

u{P2) - (si_lui(f’l) +viul® + 8ufP) —w_u P2 - fi)/A, i=12--,m (27)

with 5o = Vo =Wy =0 and A=1+&30 %0 atthe (p +1) iterate,
ur(71p++ll)| =( r(np++1—/|2) + dm+l Iur(n+)l i + aur(np+) i ur(np++21)|)/(1+ dm+1 |) (28)
with d; = 0 for i=12,.---,m and
r*=-2r, h=§b, a:1+8r’
7 12
r(?’“s_r), P=a-2r, f=rp,
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A:l.'.a’ elzw, ki:i’
7 6 + €
6 k;h .
g =—-la-—-1], i=23--m
i+1 7( 6 ]

Siq = Pkig +0Ki_16 4,i=12--m

Vi=1+l’*ei+P+g(hki_1+ei), Wi_]_:aki_l, di=aei, i=1,2,"',m

The two-step iterative procedure of (27) and (28) corresponds to sweeping through the
mesh involving at each iterate the solution of an explicit equation. This is continued until

convergence is reached, that is when the convergence requirement ”u(p*l) - u‘p)” <e
o0

is met where ¢ is the convergence criterion.

3. Conclusion

This paper renders a computational treatise of the derivation of a numerical scheme in the
class of iterative and explicit two-steps methods to solve one-dimensional heat equations.
As the basis of derivation is the unconditionally stable (4,2) accurate ADI scheme, this

method is convergent, computationally stable and highly accurate. Some of the well-
known schemes in this class are reported in [2]. However, the Alternating Group Explicit
method employing the Douglas and Peaceman-Rachford variant, AGE-DR and AGE-PR
is only (2,1) and (2,2) accurate respectively. In a separate paper will be reported

results of some sample problems involving the one-dimensional heat equation
demonstrating the convergence, high accuracy and unconditional stability of the above
scheme.
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