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Abstract: We consider three level difference replacements of parabolic equations focusing on the 
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the scheme qualifies as an alternating direction implicit (ADI) method. Using the well known fact 
of the parabolic-elliptic correspondence, we shall derive a two stage iterative procedure 
employing a fractional splitting strategy applied alternately at each intermediate time step to the 
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1 Introduction 

Consider the heat equation, 
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t x
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 (1) 

subject to given initial and Dirichlet boundary conditions 
over a rectangular domain with a uniformly spaced network 
whose mesh points are xi = i∆x, tj = j∆t. Its corresponding 
equation in two space is given by, 
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Following (Mitchell and Griffiths, 1980), a stable and (4,2) 
accurate three level difference replacement of equation (2) 
is given by, 
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where δ is the usual central difference operator and 
λ = ∆t/(∆x)2 =∆t/(∆y)2, the mesh ratio for equidistance 
spacing. The difference scheme equation (3) can be split as 
follows, to qualify as an alternating direction implicit (ADI) 
scheme, 
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and 
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As the temperature reaches steady state over time,  
U → constant and (∂U/∂t) → 0 and the parabolic equation 
(5) reduces to the elliptic equation (Laplace’s equation), 
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 (6) 

whose numerical solution can be solved iteratively using the 
same ADI technique, 
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and 
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where r is the acceleration parameter. 

2 The iterative alternating decomposition explicit 
(IADE) method 

Note from the composite formula equation (3) that the 
iterative procedure converges if  

ui,j,k–1 = ui,j,k = ui,j,k+1 = ui,j 

for k sufficiently large, leading to 
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which represents a nine point difference replacement of the 
Laplace’s equation (6). Hence we are motivated by this well 
known fact of the parabolic-elliptic correspondence (Varga, 
1962; Wachspress, 1966; Yanenko, 1971) to develop a new 
iterative scheme for the solution of equation (1) by 
considering the following two step iterates corresponding to 
equations (7) and (8), 
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and 

(I + αG2)u(p+1) = u(p+1/2) + αG2u(p) (10) 

where 
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1 2 1 2 2ˆ, ,
12 3 12 3 3

r r rα ω ω= − = + =   

with r > 0 being the acceleration parameter of the iterative 
process. 

Noting that u(p+1) = u(p) as p → ∞, we have, 

at the (p + 1/2) iterate, 

(I + αG2)u(p+1/2) = (I + (α + 2r)G1)(I + (2rG2)  
+ βG1G2) u(p) – 2rf (11) 

and at the (p + 1) iterate, 

(I + αG2)u(p+1) = u(p+1/2) + αG2u(p) (12) 

where β = 2r(3α – 2r)/3, and G1 and G2 are lower and upper 
bidiagonal matrices given by, 
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Elimination of u(p+1/2) from equations (11) and (12) leads to 
the single composite formula, 

(I + αG1)(I + αG2)u(p+1)  
= ((I + (α + 2r)G1)(I + 2rG2) + βG1G2)u(p)  
– 2rf +α(I + αG1) + G2u)(p). 

As p → ∞, u(p), u(p+1) → u resulting in 

1 2 1 2
1
6

= + +A G G G G  (15) 

and 

Au = f (16) 

A is a tridiagonal matrix which arises from the difference 
method used to approximate the parabolic equation (1). For 
example, if the familiar weighted approximation, 
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is used with order of accuracy of (1,2), (2,2), (2,4) and (1,2) 
when θ = 1, 1/2, (1/2 – 1/12λ) and 0 respectively, then its 
totality can be displayed in matrix form equation (16) as, 
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Using equations (11) and (12), we have, 

u(p+1/2) = (I + αG1)–1((I + (α + 2r)G1)(I + (2rG2)  
+ βG1G2)u(p) – 2rf) (18) 

and 

u(p+1) = (I + αG2)–1(u(p+1/2) + α + G2u(p)) (19) 

giving us the following computational formulae at each of 
the half-iterates,  

at the (p + 1/2) iterate, 
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at the (p + 1) iterate, 
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The two-step iterative procedure of equations (20) and (21) 
corresponds to sweeping through the mesh, involving at  
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each iterate, the solution of an explicit equation. This is 
continued until convergence is reached, that is, when the 
convergence requirement ||u(p+1) – u(p)||∞ ≤ ε is met where ε 
is the convergence criterion. 

3 Numerical results 

In this experiment we attempted to solve the following heat 
conduction problem (Saulev, 1964), 

2

2 0 1U U x
t x
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 (22) 

subject to the initial condition 

U(x, 0) = 4x(1 – x)      0 ≤ x ≤ 1 

and the boundary conditions 

U(0, t) = U(1, t) = 0 t ≥ 0. 

The exact solution is given by 
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Tables 1–3 provide a comparison of the accuracy of the 
methods under consideration in terms of the absolute errors 
as well as the root mean square error at the appropriate grid 
points for mesh ratios λ = 0.1, λ = 0.5 and λ = 1.0 at time 
levels of t = 0.05, t = 0.25 and t = 0.5. The results in these 
tables amply demonstrate that this new variant of the IADE 
(NVIADE) method has comparable accuracy with the 
highly accurate AGE method of the Peaceman-Rachford 
(Tien and Chawla, 1989) variant as well as the IADE 
scheme using the Mitchell-Fairweather variant (Sahimi  
et al., 1993). This is even more apparent when the (2,4) 
accurate Douglas finite difference approximation is used to 
approximate the parabolic equation (1). As the basis of 
derivation is the unconditionally stable (4,2) accurate ADI 
scheme, the NVIADE method is convergent and 
computationally stable and its accuracy compares well with 
the (4,2) accurate IADE-MF and (2,2) accurate AGE. 

Table 1 Absolute errors of numerical solutions λ = 0.1, t = 0.05, ∆t = 0.001, ∆x = 0.1, eps = 10–4 

X 
method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Average 
of all 

absolute 
errors 

Root mean 
square 
error 

Number 
of 

iterations 

Age 

IMP 1.47 × 10–3 2.63 × 10–3 3.34 × 10–3 3.67 × 10–3 3.76 × 10–3 3.67 × 10–3 3.35 × 10–3 2.63 × 10–3 1.47 × 10–3 2.89 × 10–3 9.07 × 10–6 2 

CN 9.15 × 10–4 1.64 × 10–3 2.09 × 10–3 2.30 × 10–3 2.36 × 10–3 2.30 × 10–3 2.09 × 10–3 1.64 × 10–3 9.15 × 10–4 1.81 × 10–3 3.56 × 10–6 2 

DG 1.67 × 10–6 5.49 × 10–6 1.15 × 10–5 1.72 × 10–5 1.97 × 10–5 1.73 × 10–5 1.15 × 10–5 5.52 × 10–6 1.60 × 10–6 1.01 × 10–5 1.46 × 10–10 2 

NVIADE 

IMP 1.49 × 10–3 2.64 × 10–3 3.35 × 10–3 3.67 × 10–3 3.75 × 10–3 3.67 × 10–3 3.35 × 10–3 2.64 × 10–3 1.47 × 10–3 2.89 × 10–3 9.08 × 10–6 2 

CN 9.17 × 10–4 1.64 × 10–3 2.10 × 10–3 2.31 × 10–3 2.36 × 10–3 2.31 × 10–3 2.10 × 10–3 1.64 × 10–3 9.14 × 10–4 1.81 × 10–3 3.57 × 10–6 2 

DG 2.47 × 10–6 1.50 × 10–7 1.33 × 10–6 4.09 × 10–6 4.32 × 10–7 1.23 × 10–7 3.30 × 10–7 5.89 × 10–7 4.12 × 10–6 4.13 × 10–6 1.22 × 10–11 2 

IADE-MF 

IMP 1.07 × 10–3 1.88 × 10–3 2.74 × 10–3 3.19 × 10–3 3.36 × 10–3 3.34 × 10–3 3.11 × 10–3 2.59 × 10–3 1.65 × 10–3 2.55 × 10–3 9.07 × 10–6 4 

CN 7.94 × 10–4 1.43 × 10–3 1.86 × 10–3 2.07 × 10–3 2.14 × 10–3 2.11 × 10–3 1.95 × 10–3 1.55 × 10–4 8.71 × 10–4 1.64 × 10–3 3.53 × 10–7 3 

DG 5.84 × 10–6 8.46 × 10–6 3.74 × 10–7 8.94 × 10–6 1.38 × 10–5 1.35 × 10–5 9.28 × 10–6 4.48 × 10–6 1.39 × 10–6 7.34 × 10–6 1.35 × 10–10 3 

Exact 
solution 

0.1950648 0.3707705 0.5098716 0.5989617 0.6296137 0.5989617 0.5098716 0.3707705 0.1950648 – – – 

Table 2 Absolute errors of numerical solutions λ = 0.5, t = 0.25, ∆t = 0.005, ∆x = 0.1, eps = 10–4 

X 
method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Average 
of all 

absolute 
errors 

Root 
mean 

square 
error 

Number 
of 

iterations 

Age 

IMP 2.18 × 10–3 4.15 × 10–3 5.69 × 10–3 6.70 × 10–3 7.04 × 10–3 6.69 × 10–3 5.71 × 10–3 4.14 × 10–3 2.19 × 10–3 4.94 × 10–3 2.76 × 10–5 2 

CN 5.32 × 10–4 1.02 × 10–3 1.39 × 10–3 1.64 × 10–3 1.72 × 10–3 1.64 × 10–3 1.40 × 10–3 1.01 × 10–3 5.43 × 10–4 1.21 × 10–3 1.65 × 10–6 2 

DG 7.38 × 10–6 2.05 × 10–5 3.06 × 10–5 3.77 × 10–5 4.11 × 10–5 4.53 × 10–5 3.62 × 10–5 2.76 × 10–5 1.17 × 10–5 3.23 × 10–5 1.20 × 10–9 2 

NVIADE 

IMP 2.23 × 10–3 4.19 × 10–3 5.76 × 10–3 6.77 × 10–3 7.11 × 10–3 6.77 × 10–3 5.75 × 10–3 4.18 × 10–3 2.19 × 10–3 5.00 × 10–3 2.82 × 10–5 2 

CN 5.47 × 10–4 1.03 × 10–3 1.41 × 10–3 1.65 × 10–3 1.74 × 10–3 1.65 × 10–3 1.40 × 10–3 1.02 × 10–3 5.32 × 10–4 1.22 × 10–3 1.68 × 10–6 2 

DG 7.38 × 10–6 2.05 × 10–6 3.06 × 10–5 3.77 × 10–5 4.11 × 10–6 4.04 × 10–5 3.57 × 10–5 2.74 × 10–5 1.63 × 10–5 2.85 × 10–5 9.37 × 10–10 2 

IADE-MF 

IMP 2.20 × 10–3 4.19 × 10–3 5.76 × 10–3 6.76 × 10–3 7.10 × 10–3 6.75 × 10–3 5.74 × 10–3 4.17 × 10–3 2.19 × 10–3 4.98 × 10–3 2.81 ×10–5 3 

CN 5.37 × 10–4 1.02 × 10–3 1.41 × 10–3 1.65 × 10–3 1.74 × 10–3 1.65 × 10–3 1.41 × 10–3 1.02 × 10–4 5.38 × 10–4 1.22 × 10–3 1.68 × 10–6 3 

DG 8.14 × 10–6 2.53 × 10–5 3.40 × 10–5 3.97 × 10–5 4.15 × 10–5 3.92 × 10–5 3.29 × 10–5 2.31 × 10–5 1.03 × 10–5 2.82 × 10–5 9.35 × 10–10 2 

Exact 
solution 

2.704606 
× 10–2 

5.144467 
× 10–2 

7.080751 
× 10–2 

8.323922 
× 10–2 

8.7522990
 × 10–2 

8.323922 
× 10–2 

7.080751 
× 10–2 

5.144467 
× 10–2 

2.704606 
× 10–2 

– – – 
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Table 3 Absolute errors of numerical solutions λ = 1.5, t = 0.5, ∆t = 0.01, ∆x = 0.1, eps = 10–4 

X 
method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Average 
of all 

absolute 
errors 

Root  
mean 

square 
error 

Number 
of 

iterations 

AGE 

IMP 6.28 × 10–4 1.25 × 10–3 1.64 × 10–3 1.96 × 10–3 2.04 × 10–3 1.93 × 10–3 1.69 × 10–3 1.20 × 10–3 6.98 × 10–4 1.45 × 10–3 2.76 × 10–6 2 

CN 7.28 × 10–5 1.46 × 10–4 1.90 × 10–4 2.27 × 10–4 2.36 × 10–4 2.24 × 10–4 1.97 × 10–4 1.39 × 10–4 8.12 × 10–5 1.21 × 10–3 1.65 × 10–6 2 

DG 1.64 × 10–5 2.73 × 10–5 4.33 × 10–5 4.90 × 10–5 5.29 × 10–5 5.10 × 10–5 3.97 × 10–5 3.11 × 10–5 1.17 × 10–5 3.58 × 10–5 1.49 × 10–9 2 

NVIADE 

IMP 7.01 × 10–4 1.32 × 10–3 1.82 × 10–3 2.14 × 10–3 2.25 × 10–3 2.14 × 10–3 1.82 × 10–3 1.33 × 10–3 7.03 × 10–4 1.58 × 10–3 2.82 × 10–6 2 

CN 9.17 × 10–4 1.64 × 10–3 2.09 × 10–3 2.30 × 10–3 2.36 × 10–3 2.31 × 10–3 2.10 × 10–3 1.64 × 10–3 9.14 × 10–4 1.81 × 10–3 3.56 × 10–6 2 

DG 6.74 × 10–6 1.52 × 10–5 2.13 × 10–5 2.52 × 10–5 2.65 × 10–6 2.53 × 10–6 2.17 × 10–5 1.59 × 10–5 8.68 × 10–6 1.85 × 10–5 3.90 × 10–10 2 

IADE–MF 

IMP 7.03 × 10–4 1.33 × 10–3 1.79 × 10–3 2.08 × 10–3 2.16 × 10–3 2.03 × 10–3 1.72 × 10–3 1.25 × 10–3 6.63 × 10–4 1.53 × 10–3 2.62 × 10–6 4 

CN 8.58 × 10–5 1.73 × 10–4 2.31 × 10–4 2.63 × 10–4 2.67 × 10–4 2.47 × 10–4 2.04 × 10–4 1.43 × 10–4 7.25 × 10–5 1.87 × 10–4 3.99 × 10–8 3 

DG 6.14 × 10–6 8.45 × 10–6 1.24 × 10–5 1.57 × 10–5 1.75 × 10–5 1.75 × 10–5 1.56 × 10–5 1.18 × 10–5 6.52 × 10–6 1.24 × 10–5 1.72 × 10–10 3 

Exact 
solution 

2.293641 
× 10–3 

4.362764 
× 10–3 

6.004829 
× 10–3 

7.059100 
× 10–3 

7.422377 
× 10–3 

7.059100 
× 10–3 

6.004829 
× 10–3 

4.362764 
× 10–3 

2.293641
 × 10–3 

– – – 
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