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Abstract. In this paper, a new algorithm in the class of the AGE
method based on the Brian variant (AGEB) of the ADI is developed
to solve the heat equation in 3 space dimensions. The method is it-
erative, convergent, stable and second order accurate with respect to
space and time. It is inherently explicit and is therefore well suited for
parallel implementation on the PVM where data decomposition is run
asynchronously and concurrently at every time level. Its performance is
assessed in terms of speed-up, efficiency and effectiveness.

1 Introduction

The ADI method deals with two-dimensional parabolic (and elliptic) problems.
Since the method has no analogue for the one-dimensional case, in [I] the al-
ternating group explicit method which offers its users many advantages was
developed. It is shown to be extremely powerful and flexible. It employs the
fractional splitting strategy of Yanenko [2] which is applied alternately at each
intermediate time step on tridiagonal systems of difference schemes. Its imple-
mentation was then extended to two space dimensions [3]. In this paper, we
present the formulation of AGEB for the solution of the heat equation in three
space dimensions and then describe its parallel implementation on the PVM on
a model problem.

2 Formulation of the AGEB Method

Consider the following heat equation,

ou 02U N 0*U N 02U
ot oz Oy 022

+ h(z,y,2,t), (z,y,2,t)€ Rx(0,7] , (1)
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subject to the initial condition
U(z,y,2,0) = F(z,y,2), (z,y,2,t) € Rx {0}, (2)
and the boundary conditions
U(z,y,2,t) = G(z,y,2,t), (x,y,2,t) € ORx (0,T] (3)

where R is the cube 0 < x,y,z < 1 and OR its boundary. A generalised approx-
imation to (1) at the point (x4, y;, 2k, tn4+1/2) is given by (with 0 < 6 < 1),
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leading to the seven-point formula,
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By considering our approximations as sweeps parallel to the zy-plane of the
cube R, (B) can be written in matrix form as,

AuVT —f (6)
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By splitting A into the sum of its constituent symmetric and positive definite
matrices G, Go, Gz, G4, G5 and Gg we have

A=G  +G2+G3+Gy+ G5+ Gg (7)

with these matrices taking block banded structures as shown in Fig. [Tl
Using the well-known fact of the parabolic-elliptic correspondence and em-
ploying the fractional splitting of Brian [4], the AGEB scheme takes the form,
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Fig.1. (a) A, (b) G1+ Gz, (¢) G3+ Gy, and (d) G5+ Gg. Note that diag(G1+ Gz) =
diag(A)/3, diag(Gs + Ga4) = diag(A)/3, diag(Gs + Ge) = diag(A)/3. All are of order
(m3 x m?).
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The approximations at the first and the second intermediate levels are com-
puted directly by inverting (rI4+Gy) and (rI+Gs). The computational formulae
for the third and fourth intermediate levels are derived by taking our approxi-
mations as sweeps parallel to the yz-plane. Here, the u values are evaluated at
points lying on planes which are parallel to the yz-plane and on each of these
planes, the points are reordered row-wise (parallel to the y-axis). Finally, by
considering our approximations as sweeps parallel to the xz-plane followed by a
reordering of the points column-wise (parallel to the z-axis) enable us to deter-
mine the AGEB equations at the fifth and sixth intermediate levels. Note that
all solutions at each iterate are generated rather than stored. Hence the actual
inverse is not used by the algorithm. The AGEB sweeps involve tridiagonal sys-
tems which in turn entails at each stage the solution of (2 x 2) block systems.
The iterative procedure is continued until convergence is reached.

3 Parallel Implementation of the AGEB Algorithm

One must ensure that an effective parallel implementation of the algorithm leads
to a substantial increase in the computational count per data exchange, major
reduction in synchronisation frequency and subsequent decrease in communica-
tion sessions.

A typical parallel implementation involves the assignment of a block of grids
to each task to a surface so that each task only communicates with its limited
nearest neighbours. Only the top, bottom, left and right surfaces of the block
need to be exchanged between neighbouring tasks. As an example, Fig. [ illus-
trates the pattern of communication with 4 tasks (p = 4) on a linear system of
order m = 32.

It is also important to maintain load balancing in the distribution of m
grids to tasks Pi, P, ..., P,. The data decomposition of the AGEB algorithm is
run asynchronously and simultaneously at every time level, where each task is
allocated m/p grids. It proceeds for every task at each time level until the local
error and the approximate solution are computed at the last time level. These
tasks then send the local errors to the master, which in turn processes the global
erTor.

On the PVM, parallel implementation of AGEB is based on one master and
many tasks. The master program is responsible in constructing the m grid sizes,
computing the initial values, portioning the grid into blocks of surface, assigning
these blocks to the p task modules, distributing the task to different processors
and receiving local errors from the tasks. Each block that is assigned to a task
module is composed of m/p blocks.

A task process starts computations after it receives a work assignment. A
task module ¢(¢ < P) performs the AGEB iterations on the grid points of the
assigned block which is composed of surfaces with indices between

mg=1 and SURq(end):@—l ,
p p

where SUR refers to the surface. The task ¢ will transmit

SUR,(start) =
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Fig. 2. Communication of data exchange between 4 tasks and 32 grids

i. to its upper neighbour (task ¢ — 1), SUR,(start) and receive from it
SUR,(start) — 1 = SUR,_1(end)

ii. to its lower neighbours (task ¢ + 1), SUR,(end) and receive from it
SURy(end) + 1 = SUR,1(start) .

Since multiple copies of the same task code run simultaneously, the tasks will
exchange data with their neighbours at different times. At this point, the barrier
function is called by the PVM library routine for synchronisation. The tasks will
repeat the above procedure, until the local convergence criterion is met. The
definition of the residual computed in the task ¢ is as follows,

rli][j][k]) = max {

uy\;;” — uy;’]k . (i,5,k) € q}

The tasks will return all its local errors to the master module. After receiving
the locally converged blocks from the tasks, the master module checks whether
the global convergence is satisfied,

rlillk] <€ Vi g kel0,m],

where r[i][][k] = max { [uf 1V~ ulSL|. k) € af.
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This procedure is repeated and the system terminates if a global convergence
is reached. Otherwise the master repartitions the blocks and reassigns them to
the p tasks.

4 Numerical Results and Discussion

The following problem is solved using the AGEB algorithm,

ou  9*U  0°U  0*U
= 922 + a7 + 522 + h(z,y,2,t), 0<uzuyzt<1l, t>0,
with
h(x,y,2,t) = (372 — 1)e 'sinTasinmysinmz |
subject to the initial condition,
U(z,y,z,0) =sinmesinmysinmz |
and boundary conditions

U(O’ y? Z’ t) = U(17y’ Z7t) = U(':I;’O7 Z’ t) = U(x7 y’ 07 t) = U(JU7 y? 17t) = 0 )

Our PVM platform consists of a cluster of 9 SUN Sparc Classic II work-
stations each running at a speed of 70 MHz and configured with 32 Mbytes
of system memory. The workstations are connected by a 100/10 base T/3com
Hub, Super stack II via a Baseline Dual Speed Hub 12 port network. The PVM
software only resides in the master processor.

As measures of performance of our algorithm, the following definitions are
used:

Speed-up ratio Sy, =T1/T, 9)
Efficiency E,=5,/p (10)
Effectiveness F,=S5,/C, (11)

where C), = pT},, T} the execution time on a serial machine and 7T}, the computing
time on a parallel machine with p processors.

Figure [B shows the speedup factor plotted against the number of processors
p. It indicates that high speedups are obtained only for large values of m. An
impressive gain in the speedups can be expected for even larger problems. Pos-
sible reasons for this are: the relatively high communication time for passing
data between the master and slaves compared with the computation time of the
AGEB method; wasteful idle time at a barrier synchronisation point before pro-
ceeding with the next iteration; the contribution from parallel processing which
is less than the number of processors and the contribution from the distributed
memory hierarchy, which reduces the time consuming access to virtual memory
for large linear equations. However, we are constrained by the relatively small
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memory of the system. The speedup starts to degrade when more than 5 pro-
cessors are used. It must also be noted that the timing for message passing is
relatively slow for inter-processor communication using Ethernet Card 10-based
network.

As expected, Fig. @ depicts that efficiency decreases with increasing p. It
deteriorates when more than 3 processors are used. This deterioration is a result
of poor load balancing attained when only the small block is spread across more
than 3 processors. Hence the high overhead cost due to synchronisation. From

®7m)7
Fy, = Sp/(pr) = Ep/T = EPSP/TI

which clearly shows that F}, is a measure both of speedup and efficiency. There-
fore, a parallel algorithm is said to be effective if it maximises F,, and hence
F,Ti(= S,E,). From Fig. 5 we see that F, T} has a maximum when p = 3 for
m = 39 which indicates that p = 3 is the optimal choice of number of processors.
Similarly, we can infer from m = 45 and 55 that the optimal choice of number of
processors is given respectively by p = 3 and p = 4 allowing for inconsistencies
due to load balancing.
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Fig. 5. Effectiveness vs Number of processors

As a general conclusion, the inherently explicit, stable and highly accurate
algorithm is found to be well suited for parallel implementation on the PVM
where data decomposition is run asynchronously and concurrently at every time
level.
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5 Conclusions

The stable and highly accurate AGEB algorithm is found to be well suited for
parallel implementation on the PVM where data decomposition is run asyn-
chronously and concurrently at every time level. The AGEB sweeps involve
tridiagonal systems which require the solution of (2 x 2) block systems. Ex-
isting parallel strategies could not be fully exploited to solve such systems. The
AGEB algorithm, however, is inherently explicit and the domain decomposition
strategy is efficiently utilised.

The PVM is favoured to MPI as the computing platform because of the
flexibility of the former to communicate across architectural boundaries. This is
especially relevant since this research project was initially undertaken with the
view of utilising readily available heterogeneous cluster of computing resources
in our laboratories. Furthermore, we have already noted that higher speedups
could be expected for larger problems. Coupled with this is the advantage that
the PVM has on its fault tolerant features. Hence, for large real field problems
which we hope to solve in the immediate future these features become more
important as the cluster gets larger.

Acknowledgments

The authors wish to express their gratitude and indebtedness to the Universiti
Kebangsaan Malaysia, Universiti Tenaga Nasional and the Malaysian govern-
ment for providing the moral and financial support under the IRPA grant for
the successful completion of this project.

References

1. Evans, D.J., Sahimi, M.S.: The Alternating Group Explicit Iterative Method
(AGE) to Solve Parabolic and Hyperbolic Partial Differential Equations. In: Tien,
C.L., Chawla, T.C. (eds.): Annual Review of Numerical Fluid Mechanics and
Heat Transfer, Vol. 2. Hemisphere Publication Corporation, New York Washington
Philadelphia London (1989)

2. Yanenko, N.N.: The Method of Fractional Steps. Springer-Verlag, Berlin Heidelberg
New York (1971)

3. Evans, D.J., Sahimi, M.S.: The Alternating Group Explicit(AGE) Iterative Method
for Solving Parabolic Equations I: 2-Dimensional Problems. Intern. J. Computer
Math. 24 (1988) 311-341

4. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier Sci-
entific Publishing Company, Amsterdam Oxford New York (1977)

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.,
PVM: Parallel Virtual Machine & User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, Mass (1994)

6. Hwang, K. and Xu, Z., Scalable Parallel Computing: Technology, Architecture,
Programming. McGraw Hill, (1998)

7. Lewis,T.G. and EL-Rewini,H., Distributed and Parallel Computing, Manning Pub-
lication, USA, (1998)



The AGEB Algorithm for Solving the Heat Equation 927

8. Quinn, .M.J., Parallel Computing Theory and Practice, McGraw Hill, (1994)

9. Wilkinson,.B. and Allen, M., Parallel Programming Techniques and Applications
Using Networked Workstations and Parallel Computers, Prentice Hall,Upper Sad-
dle River, New Jersey 07458 (1999)



	Introduction
	Formulation of the AGEB Method
	Parallel Implementation of the AGEB Algorithm
	Numerical Results and Discussion
	Conclusions

