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ABSTRACT

The effect of Pd on electrical properties of Tin (IV) oxide (SnO;) as an element
for CH, detection is investigated for samples prepared from a mixture of powders of
(100-x)Sn0,.xPd (0 < x wt % < 15) which were pressed into pellets and sintered at
various temperatures ranging from 600°C to 1100°C. In order to achieve the objectives
of the study, a Gas Sensor Characterization System (GSCS) was built. The main
component of the GSCS is an airtight gas sensor test chamber with a volume of about
405 cm’. The conductance of a sample is monitored in this chamber at various operating
temperatures, flow rate of carrier gas (synthetic air) and applied voltages when the
sample was exposed to small concentrations (in ppm) of CHa in air. The GSCS is
interfaced, via an ADC card, with a computer for data acquisition, storage and analysis.
Results show that SnO, without Pd cannot detect CH, in air up to an operating
temperature of 400°C. However, the modification of SnO; by the addition of Pd
significantly enhances its sensitivity to CHs with the highest sensitivity occurring at
around 400°C. The general trend is a sharp increase in sensitivity of SnO; up to about 3
wt% Pd and thereafter a gentle decrease up to 15 wt% Pd. Fifty percent (50 %) response
time of about 20 seconds and recovery time of 7.27 minutes were calculated for samples
with 3 wt% Pd sintered at 900°C. The relationship between sensitivity and the
concentration of CH, in air at the operating temperature of 400°C can be approximated
by the logarithmic function. Results on the effect of sintering temperature show that the
sensitivity of SnO, with Pd as additive is higher for samples sintered at lower
temperatures. The flow rate of the carrier gas was found to significantly affect the
sensitivity of samples sintered at lower temperatures. The response and recovery times
generally decreased with increasing flow rate of the carrier gas. This effect is attributed
to increase in the oxygen partial pressure of the carrier gas in the test chamber with
increasing flow rate. On the other hand, it was observed that the sensitivity depends on
the applied voltage especially for samples sintered at lower temperatures. Measurements
on ethane (C,Hg) and hydrogen sulfide (H,S) in air were carried out in order to test the
selectivity of some samples to other gases. It was found that sensitivity to C;Hs 1s higher
than sensitivity to CH, but in the same operating temperature range with a selectivity of
about 1.69 at 400°C. H,S was detectable in air with the highest sensitivity at 100°C and
decreased to a minimum at 200°C. SEM micrographs of the samples indicate that the
SnO; crystallites are of sub-micron sizes. The Pd concentration in SnO; determined by
AAS was shown to increase with increasing nominal composition of Pd added to SnO,.
It was possible to detect Pd in samples with 15 wt% Pd using EDAX but not for samples

with nominal composition of < 10 wt% Pd.
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ABSTRAK

Kesan palladium (Pd) terhadap sifat elektrik Stanum (IV) oksida (Sn0Oz) sebagai
elemen pengesan gas metana (CH.,) yang disediakan daripada campuran serbuk
berdasarkan komposisi (100-x)SnO.xPd, dengan peratus berat x dalam julat 0% hingga
15% telah dijalankan. Sampel elemen pengesan berbentuk pelet disediakan dengan
pencetak tekanan dan disinter pada suhu antara 600°C hingga 1100°C. Untuk mencapai
objektif kajian, satu sistem peralatan dinamai sistem pencirian pengesan gas (Gas Sensor
Characterization System —GSCS) telah direkabina. Komponen utama GSCS ialah
sebuah kebuk kedap udara berisipadu 405 cm’, dipanggil “gas sensor test chamber”.

Di dalam kebuk ini sampel ditempatkan dan dipantau perubahan konduktans sampel
terhadap subu pemanasan, kadar aliran gas pembawa (udara sintetik) dan voltan kenaan
apabila didedahkan kepada kepekatan rendah (ppm — part per million) gas CH, di udara.
Kad ADC digunakan untuk mengantaramukakan GSCS dengan komputer yang boleh
mengambil, menyimpan dan menganalisa data. Hasil kajian menunjukkan sampel SnO;
tanpa Pd tidak dapat mengesan CH; di udara waiaupun suhu operasi dinaikkan sehingga
400°C. Tetapi apabila Pd dicampurkan kepada Sn0,, sampel menjadi sangat peka
kepada kehadiran gas CH. di udara dan kepekaan tertinggi dicapai pada suhu operasi
disekitar 400°C. Umumnya, kepekaan terhadap gas CHs meningkat tinggi sehingga
komposisi 3% berat Pd dan kemudian turun dengan perlahan sehingga ke 15% berat Pd.
Masa respons 50% sekitar 20 saat dan masa pemulihan 7.27 minit diperolehi untuk
sampel 3% berat Pd yang disinter pada suhu 900°C. Hubungan antara kepekaan dan
kepekatan CH, pada suhu operasi 400°C adalah bersifat logaritma. Umumnya kepekaan
adalah tinggi bagi sampel yang disinter pada suhu rendah. Kepekaan sampel yang
disinter pada suhu rendah sangat bergantung kepada kadar aliran gas pembawa. Kesan
ini adalah disebabkan oleh penambahan tekanan separa oksigen dalam kebuk “gas
sensor test chamber”. Kepekaan bergantung juga kepada voltan kenaan terutama sekali
bagi sampel-sampel yang disinter pada suhu rendah. Untuk menguji kepilihan
(selectivity) terhadap beberapa gas lain, pengukuran kepekaan terhadap gas etana (C;Hs)
dan gas hidrogen sulfida (H,S) di udara telah dibuat. Keputusan menunjukkan kepekaan
kepada gas C,Hs adalah lebih tinggi daripada gas CH, tetapi pada julat suhu operasi
yang sama dengan nilai kepilihan 1.69 pada subu 400°C. Gas H,S juga dapat dikesan di
udara dengan kepekazan tertinggi pada suhu 100°C dan menurun ke nilai minimum pada
200°C. Analisis SEM menunjukkan saiz butiran sampel seramik yang dihasilkan
berukuran sub-mikron. Analisis AAS menunjukkan kepekatan Pd dalam SnO,
meningkat sejajar dengan pertambahan nominal Pd kepada SnO,. Dengan menggunakan
EDAX, unsur Pd hanya dapat dikesan dalam sampel SnO; dengan 15% berat Pd.
Dengan kaedah yang sama, Pd tidak dapat dikesan untuk sampel-sampel dengan

< 10% berat Pd kerana kepekatan Pd adalah dibawah had pengesan EDAX.
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CHAPTER 1

INTRODUCTION

1.1  General Background

Development of gas sensors have proceeded rapidly during the last decade, in
response, primarily, to a large R & D expenditure commitment in order to enable
environmental legislation to be satisfied [1]. There are two significant factors that will
stimulate future gas-sensor device development. Firstly, there is the concern to monitor
environmental pollution as well as safety in homes and industrial complexes [2].

* Secondly, there is a desire for sensors to monitor process and product performance [1].

The utilization of solid state gas sensor devices in practical applications have
resulted in dramatic improvements in industrial process control, in the functioning and
facilities of domestic devices, and in the control of environmental pollution through, for
example, vehicle exhaust emission controls [3]. However, notwithstanding their success
for improved environmental protection, improved process operation or improved
product performance, these sensors have not been generally considered sufficiently
reliabie or durable for industrial flammable gas monitoring [1]. Without developing

inexpensive but reliable and durable gas sensors, significant advances in control and



instrumentation, which may bring large commercial opportunities and environmental
benefits, will not be possible. Unlike the control electronics, the sensor interacts with,

and often is exposed to, the environment [4].

A semiconductor chemical sensor may be defined as an electronic device
designed to monitor the content of particles of a certain gas in surrounding medium [5].
In a broader sense, chemical sensing involves recording the concentration of particles
such as atoms, molecules or ions in gases or liquids using an electric signal [4]. The term
‘sensor’ and ‘transducer’ are often used synonymously. According to Ihokura and
Watson 6] a ‘transducer’ is a device that converts one form of energy into another, and
a ‘sensor’ is a form of transducer that converts a physical or chemical quantity into an
electrical quantity for purposes of measurement. Terminologically, the active part of a
complete gas sensor assembly is called the sensor element, whilst a complete instrument
incorporating such a sensor can take fhe form of a gas monitor, gas detector or gas

alarm.

The operational principle of a gas sensor is based on transformation of the value
of adsorption of a gas on the surface of the semiconductor directly into an electrical
signal [3]. This signal corresponds to the amount of particles adsorbed from surrounding
medium or deposited on the surface of operational element of the sensor due to
heterogeneous chemical reaction. The high sensitivity of the electrophysical
characteristics of these semiconductor materials to adsorption of various gases as well as
the capability to control it makes these materials attractive for manufacturing gas
sensitive electronic transducers. Gas sensor science and technology draws on various
diverse academic fields such as materials science [3], ceramic fabrication [7], solid state
physics and surface chemistry [8], electrochemistry [9], catalysis and gas dynamics [8],
and solid state ionics {10]. Therefore, the science of chemical sensors generally requires
multidisciplinary approach: choosing the physical detection mechanism and the
matertals; understanding the physical and chemical properties of the interfaces; selecting

device technology and eventually studying signal processing.



The Principal types of solid state gas sensors commercially available today are
the galvanic oxygen sensors, the catalytic gas detectors and semiconductor oxide
sensors [1]. The galvanic and catalytic gas detectors incorporate noble metals such as
palladium (Pd) into the device for sensing purposes. Pd is also used as an additive in
metal oxide based semiconductor gas sensors in order to improve its sensitivity
especially to hydrocarbons. Pd is an element that resists corrosion, dissolves in acids and
fused alkalis, readily absorbs hydrogeﬁ gas and has a melting point of 1552°C [11].
Semiconductor gas sensors are usnally based on the surface properties of the oxides of
tin or zinc (SnO; or ZnO) [12,13]. These semiconducting oxides could be used for the
detection of combustible and toxic gases in air [14]. Their advantages are high
sensitivity, simple design, low weight and cost, while, on the other hand, selectivity and
stability limit the range of applications. An improvement of these properties cannot be
achieved simply by trial and error, but requires a better understanding of the surface
processes connected with the conductance changes. In many ways it would be an
advantage if the initial studies of the material could be carried out with it in sensor
device form [15]. This is not, however, always practicable, since overcoming sensor
fabrication problems can be very time consuming. The initial studies, therefore, often
involve an investigation of the material properties. Having established the potential of
the material as the basis of a gas sensor, device fabrication can then be undertaken in

order to establish its feasibility. This is the approached followed in this study,

Tin (IV) oxide (SnO>) based sensor materials are dominant in research and
applications [14,16,17]. Sintered layers and thin films are in practical use. In addition,
the surfaces of single crystals are also studied under well-defined conditions to try to
achieve a better separation of parameters influencing the properties of gas sensors. Some
of the physical properties studied include bulk properties, grain boundary properties and
surface properties [18]. In this study, therefore, polycrystalline SnO; with Pd as a
sensitizing additive is selected as the base material and its electrical properties are

analyzed and evaluated with respect to its sensing characteristics to the flammable gas

CH, in atr.



1.2  Scope of the study

Semiconductor gas sensors based on SnO; and other metal oxides have not yet
attained their projected utility [19]. Although present day sensors respond to part per
million (ppm) levels of reducing gases, irreproducibility, drift, and poor selectivity
characterize their response. Realizing that any improvement in the gas detection
characteristics of metal oxide based semiconductor materials depend on our knowledge
of the operating principles of these devices, we embark on an investigation of the
characteristics of these devices under controlled environment. In general, the
investigation of the sensing properties of metal oxide based semiconductor elements and
devices have been of two types. The first, are those researches embracing a wide range
of diverse phenomena, and the second are those limited to a thorough study of a
particular observation. The flexibility of the first approach prevents the systematic study
necessary for a quantitative description of gas sensing characteristics of the materials.
The later approach is generally so rigorously limited that it loses sight of the complexity
of behavior found in each catalytic material. As a result, there is an insufficient body of
quantitative and systematic information concerning the sensing characteristics of metal
oxide based semiconductor gas sensors. The scarcity of well-measured electrical
response of semiconductor materials to target gases is also another bottleneck limiting

the development of descriptive theories of device behavior,

A major concern of this study is, therefore, to acquire a qualitative and
quantitative description of the diverse operating characteristic of SnQO,, with Pd as a
sensitizing additive, in the detection of CH, in air. These operating characteristics
include the sintering temperature, operating temperature and the composition of the
samples. SnO; is chosen as the base material in this study for its proven sensitivity as a
gas detector and its chemical stability and durability [13,20]. The behavior of sensor
elements and devices based on SnO, is characteristic of many sintered and thin film
metal oxide semiconductors [20]. What ever has been published in the literature cover
limited parameters of the performance of this material in CH, detection in a controlled

environment. Sensor elements composed only of SnO; have a limited sensitivity to



chemically stable gases such as CH, [13]. Because the gas sensitivity is closely related
to redox reactions of thé detected gases on the sensor surface, it is reasonable to suppose
that it could be improved by including additives which act as catalyst to these reactions.
Noble metals such as Pt, Pd, Rh and Ir are very active for oxidation reactions [8].
Therefore, Pd is used in this study as a sensitizing additive that is added as an impurity
to SnO; to enhance its sensitivity to CHs. The research will cover higher composition of
Pd (up to 15 wt%). Previous studies have concentrated on lower composition of Pd up to
about 5 wt% [6]. It is intended, as one of the major objectives of the study, to design a
gas sensor test chamber and build a testing rig by which the parameters of the study can

be controlled or varied as required.

There are other factors that may influence the sensitivity of gas sensor elements,
Some of these factors include the flow rate of the carrier gas and the applied voltage to
the sensor elements. The characterization system for this study was designed in such a
way that these variables could be controlled or varied as required. Since changes in the
partial pressure of oxygen in the carrier gas passing over the sensor element affects its
sensitivity [6,8,9,13], it is reasonable to postulate that the flow rate of the carrier gas
may affect the oxygen partial pressure and thereby influence the sensitivity of the sensor
element. The sensitivity of a sensor element can also be affected by the magnitude of the
applied electric ficld to the sensor element that causes the energy barriers between

adjacent grains in the polycrystalline SnO; based sensor element to decrease [7].

Another factor that is important in the qualitative and quantitative analysis of gas
detection by SnO; based sensor elements is the mechanisms underlying the detection of
traces of flammable or toxic gases in air. In order to understand these mechanisms it is
important to observe the microstructure of the sensor elements. Based on these observed
microstructures, it is possible to suggest the most probable mechanisms in the detection
process. It is also important to utilize other high precision instruments in determining
actual composition of the samples with the view of making samples that are

reproducible.



1.3  Statement of hypotheses
The following statements are presented as the major hypotheses of the study:

» The presence of Pd as impurity element in SnO; will reduce the temperature at
which SnOj; is operated in order to detect the presence of small quantities of CH, (in
ppm) in air. Pd is a hydrogen-dissociating catalyst and therefore its presence on the
surface of SnO; crystallites will lead to the dissociation of CH,4 molecules at lower
temperatures compared to pure SnO; thus leading to an increased sensitivity to CH,
in air at these lower temperatures. It is also expected that the temperatures at which
the samples are sintered will significantly influence the sensitivity of the sensor

elements to CHy, in air.

e The amount of Pd that is added to SnQO;, in wt% would have a significant influence
on its sensitivity to CHy in air up to a certain composition level, the optimum
composition. However, above the optimum Pd composition in SnQ,, it is expected
that the sensitivity to CHy in air will drop as a result the hindrance of the gas phase
reactions on the SnO, semiconductor support by Pd particles. It is further
hypothesized that the amount of Pd present will not influence the position of the

optimum operating temperature in the detection of CHy in air.

1.4  Objectives of the study

e To design and construct an experimental setup for the characterization of the

electrical properties of SnO; in gas detection.

¢ To determine the range of operating temperature over which SnQ, with Pd as

additive could detection CHy in air and identify the optimum operating temperature,



o To determine the optimum composition of Pd added to SnO; in the detection of CH;
in air and to analyze the effect of sintering temperature of the samples on their

sensitivity to CH, in air,

¢ To analyze the sensitivity verses concentration characteristics of SnOQ; with Pd as

additive in the detection of CH, in air.

1.5  Thesis plan

Following the brief introduction presented in this chapter, a general review of
metal oxides is given in Chapter II. This includes a review of the preparation of ceramic
materials and the structure and electrical properties of these materials. Chapter I1I deals
with the theory of gas detection using metal oxides. It begins with a review of the
quantum mechanical bases of the reactivity of surface state of semiconductor materials
in ambient environment. This is followed by an analysis of the theoretical bases of gas
detection by metal oxides, and finally the effects of additives on the gas sensing
properties of SnQ; is discussed. Details of the sample preparation, design and
construction of the experimental arrangement and the measurement techniques
employed are outlined in Chapter IV. Results and discussion of the experimental work
carried out on the composition, sintering and operating temperatures on sensitivity,
response and recovery times of SnO, with Pd as additive in CH, detection is presented in
Chapter V. The results on the relationship between sensitivity of SnO, and the
concentration of CHy in air (sensitivity-concentration characteristics), cross-sensitivity
studies and a comparison of the sensitivity of the sensor elements prepared in this study
with those of a commercial gas sensor are given in Chapter VI. Chapter VII is devoted to
the evaluation of the results on the microstructural and compositional analysis using
SEM, AAS and EDAX. Finally, Chapter VIII presents the major conclusions of the

research and suggestions for future studies.



CHAPTER 11

GENERAL REVIEW OF METAL OXIDES

2.1 Introduction

This chapter reviews the structure and electrical properties of the oxide of metals.
The definition and formation of a ceramic body is discussed in section 2.2. In section
2.3, a discussion on the structure and electrical properties of metal oxides, the influence
of impurities and doping impuritics, and electrical conductivity and other transport
phenomena in ceramic semiconductors is presented. Section 2.4 briefly reviews the
structurc and properties of SnO;, which is the base material used in the study. Finally, in

scction 2.5, a brief summary on the chapter is given.

2.2 The formation of a ceramic body

The word ‘ceramics’ is not clearly defined but can be taken roughly to mean a
substance which is refractory, 1.e., resistant to heat and corrosion [21]. It consists of one
or more metals (or an element such as silicon) in combination with non-metallic
element-usually oxygen. According to Hench and Dove [22], a ceramic crystal could be
defined simply as a binary compound of metallic atom with oxygen. Koller [7] defines

ceramics as inorganic nonmetallic materials with polycrystalline structure,



prepared by sintering at elevated temperatures. These definitions give a general
description of the character of ceramic substances from the viewpoint of traditional
approaches to products prepared by ceramics technology. Until recently, it was thought
that ceramics are both thermally and electrically nonconductive and that they must
necessarily be made of natural raw materials that are subjected to simple treatment,
formed and then strengthened by firing. However, as time progressed, ceramics
technology began to utilize not only chemically prepared raw materials, but also metal

powders (metal ceramics) and powdered glass.

In the production of ceramics from chemically prepared raw materials, the heat
treatment is usually divided into two parts. In the first stage, the raw materials are heat
treated so that they become suitable for shaping; in the second stage, following the
creation of the product, the actual sintering occurs. In the first stage of heat treatment,
the raw material is fired to achieve a particular crystal size required for some subsequent
shaping operation or, most often, to ensure that chemical reactions and processes occur
that would otherwise complicate the subsequent compaction process of sintering during
the second firing. The heat treatment of the raw materials is accompanied by the
decomposition of carbonates (and thus the first firing stage become known as
calcination), dehydration, dehydroxylation and the reaction of oxides to form
compounds with higher specific weight. The reactions occur primarily in the solid phase

and these reactions are thermally activated.

The second firing in the solid phase then mostly involves only those physical
processes that are typical for ceramics technology, denoted as sintering. These processes
are typically thermally activated and occur in ovens at high temperatures. The sharp
firing involves compaction and strengthening in the process known as sintering. The
changes occurring in the ceramics are usually physical in nature, the porosity changes, a
glassy phase can be formed, and a mechanically strong, variously dense ceramic body is
created. The driving force in sintering is the tendency of the system to attain the state
with the lowest free enthalpy. The initial powdered material has a large surface area and

1s thus also characterized by a large surface energy. During sintering, the surface area of
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the system decreases, decreasing the overall surface energy. A growth in the crystal size

and a decrease in the overall energy of the boundary surfaces accompany sintering,

Although the production of ceramics is an ancient craft, it was not until the last
few decades that theoretical explanations were given for the processes occurring during
sintering. On the basis of current knowledge on the sintering of ceramics, four main
types of sintering can be distinguished: sintering in the absence of a liquid phase;
sintering in the presence of a liquid phase; reactive sintering; and pressure sintering.
Here mention is only made of sintering in the absence of a liquid phase, which is
relevant to the present study. The mechanism of sintering in the absence of a liquid
phase is explained on the basis of a model of two spheres of the same size and identical
composition maintained at a constant temperature. This is an ideal model, as such
conditions cannot be achieved in practice. In this instance sintering can be theoretically
divided into three phases although the individual processes overlap. In the first phase, a
neck is formed between the spheres and the material is partly compacted and shrinks by
about 5%. The second stage in sintering occurs during compacting of the body down to
5% porosity, where it is assumed that the original matcrial had about 30% porosity.
Recrystallization and the growth of larger grains at the expense of smaller ones

characterize the final stage of sintering.

2.3 The structure and electrical properties of metal oxides

Metal oxides are an important group of ceramics that are utilized in numerous
applications. From the point of view of applications, the electrical properties of metal
oxides can be considered from two points of view [7]. In the now traditional utilization
of the high electrical resistance of most ceramic materials for insulation of voltages or of
the dielectric properties in the construction of ceramic capacitors, materials with
practically zero electrical conductivity can be considered as ideal. A decrease in the

electrical resistance leads to a deterioration of the insulating or dielectric properties of





