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Summary

There is an increasing need to translate genomic information into commercial products
through protein expression and production. Formation of the protein as solid inclusion
bodies in E. coli is advantageous as it enables good initial purification, provided that
acceptable refolding yields can be achieved. However, the recovery of active
recombinant protein from complex biological mixtures via the route of IB-formation
involves a series of complicated recovery steps, each of which can compromise the
purity and yield of the desired product. Purification of IBs using traditional methods of
homogenisation and centrifugation are difficult to automate for high-throughput

applications, and are costly to scale.

Process intensification by minimising the number of unit operations without a loss of
product purity is desirable to improve yield and reduce production cost. Such a process
should ideally be generic, scalable, easily automated to facilitate continuous processing,
and should result in an improved refolding yield. Based on these criteria, an intensified
unit operation termed an integrated Membrane Oscillatory Refolding (MOR) is
introduced. The integrated MOR unit consists of an oscillatory flow reactor (OFR) that
is integrated with a hollow ceramic membrane for cross-flow microfiltration operation.
The key is the use of innovative chemical extraction technology in a non-solubilising
mode for IB release, coupled with the MOR unit that acts as a novel microfiltration unit
for IB purification and protein refolding. The technologies rely only on chemical

reagents and on microfiltration that can be easily scaled and automated.

The objective of this study is to establish and research the three key process steps
essential to realise the integrated MOR unit: a non-solubilising chemical extraction
method; a cross-flow microfiltration for IB recovery; and protein refolding via the
hollow ceramic membrane in a novel reactor. Three of these process steps, validated
using granulocyte macrophage-colony stimulating factor (GM-CSF) IBs, are

successfully demonstrated and ready for integration into a single unit of MOR.
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CHAPTER 1

INTRODUCTION

There is an increasing need to express and purify proteins to add value to the human
genome sequencing effort, and to speed up the commercialisation of new
biopharmaceutical products. The bacterium E. coli is a widely used expression
system as it offers advantages including high-level expression, known molecular
biology and simple culturing procedures (Cleland, 1993). It therefore has a key role
in supporting post-genomic efforts in both academic and industrial laboratories.
However protein over-expressed in E. coli is often sequestered into biologically
inactive and insoluble aggregates, known as inclusion bodies (IBs) (Marston, 1986;
Mitraki et al., 1991). Despite the disadvantage of expression in an inactive form,
which requires efficient in vitro refolding to give the bioactive product, the insoluble
state facilitates primary recovery and enrichment using solid/liquid separation unit
operations (e.g., centrifugation/filtration), as the target protein usually represents more
than 50% of the total polypeptide content in IBs (Clark and Georgiou, 1991).
Expression as an IB offers other advantages including protection against proteolytic
degradation (Valax and Georgiou, 1993; Marston, 1986; Shortle and Meeker, 1989)

and prevention against host cell toxicity (Clark and Georgiou, 1991).

Production of recombinant protein as an IB represents a competitive way to introduce
new commercial products compared with other expression routes (e.g., soluble protein
expression using mammalian cells) that are inherently more complex in terms of
product expression and recovery. The ‘first to market’ priority means that
unoptimised moderate refolding yields may be tolerated (Middelberg, 2002), although
a very low refolding yield can render this expression route economically infeasible
(for instance, refolding yield of < 3% reported for tissue plasminogen activator (tPA)
at 2.5 mg L") (Datar et al., 1993). Nevertheless, production via IBs becomes very

competitive whenever reasonable refolding yields can be achieved. For instance, a



range of modified tPAs are now expressed as IBs in E. coli, e.g., Retaplase,

Once an adequate refolding method has been established, the immediate focus
becomes rapid scale-up to commercial production (Middelberg, 2002). Ideally, the
process should use technology that is approximately scale-invariant, easily automated
for high-throughput processing, generic for a broad range of proteins, and economical
(Middelberg, 2002). However, the conventional IB processing strategy involves a
series of processing steps which, for tPA, accounts for 50-70% of production cost
(Datar et al., 1993). Additionally the steps may compromise product yield and thus
economic feasibility (Datar, 1986). For example, a large number of downstream
processing steps coupled with poor refolding yield in the tPA IB flowsheet accounted
for 88% of the entire production costs (Datar et al., 1993), thereby making the IB

route unfavourable.

Research is clearly needed to generate economic generic processes for protein
production via the IB route. However, the generation of an optimal process is
challenging as the number of alternatives and parameters that can be investigated are
large (Petrides et al., 1989). A range of research strategies is available, including
intensification of the downstream process to improve yield (Fish and Lilly, 1984;
Koltermann et al., 1997), molecular manipulation such as fusion technology to
simplify downstream processing (Steffens, 2000), use of bioprocess simulation tools
to evaluate process economics based on laboratory and pilot plant data (Petrides et al.,
1989), and optimisation of key unit operations (e.g., centrifugation optimisation as
reported by Wong et al. (1996), and improved refolding reactor strategies as reported
by Kotlarski et al. (1997)).

In this study, process intensification is employed as a key research strategy to improve

current technology for IB purification and protein refolding.
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1.1 Process Intensification

Process intensification by minimising the number of unit operations without a loss of
product purity is desirable to improve yield and reduce production cost. Such a
process should ideally be generic, scalable, easily automated to facilitate continuous
processing, and should result in an improved refolding yield. Based on these criteria,
a novel unit operation, termed an integrated Membrane Oscillatory Reactor (MOR) is

introduced in this thesis (Figure 1-1).
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Figure 1-1 The novel Membrane Oscillatory Reactor (MOR)
developed based on integration of an oscillatory flow
reactor and a hollow ceramic membrane. The
enlarged cross sectional view of the reactor and the
efficient mixing pattern generated within the reactor
are also illustrated.

The MOR unit consists of an oscillatory flow reactor (OFR) that is integrated with a
hollow ceramic membrane for microfiltration and perfusive refolding. For IB
intensification, the key is the use of innovative chemical extraction technology in a

non-solubilising mode for IB release, coupled with a MOR unit that acts as a novel

Multiple orifices baffles
(Eight holes surround a
single hole in the middle)

Hollow membrane



microfiltration unit, initially for IB purification and then protein refolding. The
technology relies only on the use of chemical reagents and microfiltration, and can

therefore be easily scaled and automated.

The concept of the MOR system is simple. Fermentation broth is first added to the
holding-tank of the unit, and chemical extraction reagents are then added to disrupt
the celkand release the insoluble IBs. Alternatively, chemical extraction can also be
conducted in the fermenter (as described in this study), and then charged into the
holding-tank for subsequent microfiltration. In both cases, soluble contaminants are
then removed by operating the unit as a microfiltration unit in diafiltration mode,
giving cleaned insoluble IB suspension as the retentate. The retentate is collected in
the holding tank, and chemical reagents are then added to solubilise the IBs. The
denatured protein from the solubilised IBs is subsequently perfused through the
ceramic membrane into refolding buffer that is mixed efficiently by intense
oscillation; concomitant removal of the gel-like contaminant (in the retentate), formed
from residual cell debris, is achieved. By using the same membrane for
microfiltration and protein perfusion, only two unit operations are required to produce

substantially pure refolded protein: a fermenter and the MOR system.

The potential advantages of the MOR unit include:

i) process intensification, as the cumbersome steps of repetitive homogenisation
and centrifugation are eliminated. IB loss, due to repetitive washing steps, can
be minimised;

i1) reduced validation costs due to fewer process steps;

iii) a potentially efficient and scalable mixing device for protein refolding;

iv) easy scale-up, to facilitate continuous and automated operation at both
laboratory and process scale, as these technologies rely only on chemical
reagents and liquid-handling;

V) minimum risk of proteolytic degradation, as the protective IB state is

preserved until most of the soluble contaminants have been removed.



1.2 Research Objective and Scope

To enable the development of the integrated unit, three enabling process steps are
identified and developed individually. The steps are:

(i) an efficient non-solubilising chemical extraction method suitable for interfacing
with microfiltration;

(ii) an efficient microfiltration method to recover IBs from the chemical extract in a
commercial cross-flow microfiltration unit;

(iii) a novel refolding step in the MOR unit. Provided that the membrane used for
refolding in the MOR is the same as that selected for microfiltration, process steps(ii)

and (iii) can be integrated in a single MOR unit.

The key objective of this study is fo research and establish these three enabling
process steps for subsequent integration into a single MOR unit operation for IB

purification and protein refolding.

An investigation into the potential of the MOR to act as an efficient dispersion device
for protein refolding represents a secondary objective of the study. This is done by
proving that efficient dispersion is necessary for efficient refolding, using lysozyme as
a model protein in an ordinary oscillatory flow reactor (without integration of the
central membrane). Experiments are conducted in parallel with control experiments
using a conventional fed-batch mode stirred-tank reactor, and show that efficient
dispersion is necessary. The OFR characteristic of the MOR system may thus offer

significant process advantage, but this remains to be proven.



1.3 Thesis Outline

This dissertation consists of seven chapters. Chapter 2 reviews background
knowledge and case studies pertinent to the development of the three enabling
process steps for the integrated unit. The conventional process for IB recovery and
protein refolding, and the corresponding key issues, are described. The review
facilitates selection of experimental design for each process step while minimising the

need for extensive optimisation.

Chapter 3 reports the development of a non-solubilising chemical extraction method.
Extraction protocols are first screened and developed in a small-scale experiment and

then validated at larger scale in a fermenter.

The successful chemical extraction method developed in Chapter 3 is coupled with a
microfiltration unit for IB purification. Microfiltration protocols are developed using
a commercial cross-flow microfiltration unit fitted with a hollow ceramic membrane.

The microfiltration tests are reported in Chapter 4.

Prior to characterisation of the MOR unit for protein refolding in Chapter 6, Chapter 5
characterises the OFR basic reactor for protein refolding. To investigate the MOR as
an improved mixing reactor in Chapter 6, the effect of mixing on refolding is also

investigated in the OFR and in a stirred-tank reactor.

Chapter 6 validates the MOR as a refolding reactor using lysozyme and granulocyte
macrophage-colony stimulating factor as model proteins. The potential of the MOR

to constitute an improved mixing reactor for refolding is also investigated.

Chapter 7 discusses the integration of the three enabling process steps into a single
MOR unit, with special focus on the potential of the integrated unit. Future work and

overall conclusions for this study are then presented.



CHAPTER 2

INTENSIFICATION OF INCLUSION BODY PURIFICATION
AND PROTEIN REFOLDING

2.1 Introduction

This chapter reviews background knowledge and case studies pertinent to the
development of the three key process steps needed for an integrated unit: non-solubilising

chemical extraction, cross-flow microfiltration, and protein refolding in a novel reactor.

The conventional process for recombinant protein production via the route of inclusion
bodies (IBs) is first described. Due to the inefficiency of inclusion body (IB) recovery
steps in the conventional approach, a combined chemical extraction and microfiltration
method is presented to intensify the process steps. Common chemical reagents used for
IB washing and cell permeabilisation (non-denaturing condition) are reviewed for their

potential to constitute a disruptive but non-solubilising extraction protocol to release IBs.

Various key parameters, advantages and issues for microfiltration, and previous
microfiltration studies for IB recovery, are then reviewed. The review facilitates the

selection of key parameters applicable for current microfiltration operations.

Protein refolding and the key issues pertinent to this study are then reviewed. The key
issue of protein aggregation during refolding and the likelihood of mixing effects on
protein refolding are discussed. Several workers have proposed different reactor designs
to improve mixing characteristics with the aim of increasing the refolding yield. In all
cases the exact mechanism leading to mixing effects being observed are not clearly
elucidated. Nevertheless, these studies confirm reactor mixing efficiency to be an

important parameter requiring further research, especially upon scale-up.



A novel refolding reactor, the Membrane Oscillatory Reactor (Section 1.1, Chpater 1),

potentially having effective and scalable mixing characteristics, is introduced.

Background studies on protein refolding, including protein denaturation and refolding

protocols and analytical methods, are reviewed to facilitate the selection of the

corresponding protocols for validating the novel refolding reactor.

2.2 The Conventional Process for Inclusion Body Processing

Figure 2-1 shows the general process route to obtain active purified protein from IBs.

Figure 2-1
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Figure 2-1 captures mainly the laboratory approach for IB processing, refolding and
purification to produce pure bioactive protein. Several modifications are usually
introduced at process scale due to economic considerations (Middelberg and O’Neill,
1998). For a given protein, variation in unit operation optimisation is likely to occur and
is a function of the composition of the starting material and the characteristics of the IB
(Clark and Georgiou, 1991).

Initial IB recovery

Cells containing the desired IB product are first recovered or concentrated following
fermentation by means of a centrifugation or filtration step, though this step may be
optional. The primary recovery of IBs employs repeated cycles of mechanical disruption,
followed by repeated cycles of enzymatic and chemical treatment interspersed with
centrifugal washing (Clark, 2001; Middelberg, 2002).

Cell disruption is usually repeated to micronise cell debris so that separation from the
denser IBs can be facilitated using differential centrifugation (Fischer et al., 1993;
Thatcher and Hitchcock, 1994; Middelberg and O’Neill, 1998). Repetitive centrifugal
washing, usually with low concentrations of chaotropic reagents (e.g., 2 M urea, 1 M
guanidine hydrochloride) or detergent (e.g., 0.1-5% Triton X-100) (Fischer et al., 1993),
aim to remove most of the soluble contaminants (soluble cell proteins, nucleic acids,
lipids and membrane vesicles) and insoluble fragments of the cell wall (e.g.,
peptidoglycan and associated cell-wall proteins and lipids) to provide substantially clean
IB paste (Middelberg and O'Neill, 1998; Clark, 2001).

IB washing with intensive use of chemical reagents is costly both in terms of reagent and
waste disposal at process-scale. Therefore, optimisation of centrifugation parameters
such as feed-rate and multiple centrifuge passes without intensive use of chemical
reagents will be a better strategy to improve IB purity (Wong et al., 1996). The strategy
successfully improved the purity of Gly-IGF-II IBs, that were susceptible to proteolytic
degradation during IB dissolution, and resulted in a net improvement in the overall

protein yield following dissolution (Wong et al., 1996).



However, good fractionation of cell debris from IB sediment in the laboratory is often
difficult to achieve, depending on the ease of pellet re-suspension (Middelberg, 2002).
At process scale, the cumbersome and costly IB washing steps are usually simplified,
resulting in reduced IB purity (Middelberg, 2002).

Dissolution and refolding

Dissolution of IBs is typically achieved using high concentrations of denaturing reagents
such as urea or guanidine hydrochloride. Addition of reducing agents such as
dithiothreitol or P-mercaptoethanol may be required if IB contains disulphide bonds
(Rudolph and Lilie, 1996; Thatcher and Hitchcock, 1994) though reduction may not be
essential for some disulphide-bonded IBs (e.g., recombinant bovine growth hormone
stored in a completely reduced form (Langley et al., 1987)). The solubilised protein is
then refolded to gain the native 3D structure, by lowering the denaturant concentration.
Refolding can be achieved using different methods such as dilution of the protein into a
large volume of refolding buffer (Rudolph, 1990; Galliher, 1991; Fischer et al, 1993) or
by buffer exchange using dialysis (Kelly and Price, 1992; Fischer et al., 1993).

High-resolution purification and pre-treatment

A single step of high-resolution purification prior to refolding may be necessary to
remove residual contaminants (from the denatured protein) that can induce aggregation
during refolding (Maachupalli-Reddy et al., 1997). Typically this step can be achieved
using high-resolution (HR) separation methods such as ion exchange, size-exclusion,
metal affinity, hydrophobic or reversed-phase chromatography (Clark and Georgiou,
1991).

A pre-treatment step prior to HR purification is also generally essential to avoid excessive
fouling of column resin due to the presence of residual insoluble contaminants (Clark,
1998; Middelberg and O’Neill, 1998). Separation of these impurities from the target
protein dissolved in highly concentrated and viscous solution of chaotrope can be tedious

(Middelberg, 2002). This can be achieved using ultracentrifugation or filtration at
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