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ABSTRACT

A wide variety of face detection techniques havenbgroposed over the past
decades. Generally, a large number of featuresegrered to be selected for training
purposes. Often some of these features are irmel@val do not contribute directly to
the face detection techniques. This creates unsagesomputation and usage of
large memory space. In this thesis, features sespelte has been enlarged by
enriching it with seven additional new feature typ@/ith these new feature types
and larger search space, Genetic Algorithm (GAused within the Adaboost
framework, to find sets of features which can ptdeva better cascade of boosted
classifiers with a shorter training time. This teitfue is referred to as GABoost for
this training part of a face detection system. T3®& carries out an evolutionary
search to select features which results in a higlenber of feature types and sets
selected in less time. Experiments on a set of @ndgom BiolD face database
proved that by using GA to search on a large nurobéeature types and sets, the
proposed technique referred to as GABoost was #blebtain the cascades of
boosted classifiers for the face detection systesh ¢an give higher detection rates
(94.25%), lower false positive rates (55.94%) ass ltraining time (6.68 hours).
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ABSTRAK

Pelbagai teknik pengesanan muka telah diperkena&pmk beberapa dekad
lalu. Secara umumnya, sejumlah yang besar ciri-digerlukan, bagi tujuan
pemilihan untuk kegunaan latihan. Kebiasaannyaalssjian dari ciri-ciri tersebut
adalah tidak berkaitan dan tidak menyumbang setmwmgsung kepada teknik
pengesanan muka. Keadaan ini mengakibatkan pengimaasin yang tidak
sepatutnya dan penggunaan ruang ingatan mesin yesay. Di dalam tesis ini,
ruang carian bagi ciri-ciri telah diperluaskan demgara memperkayakannya dengan
penambahan tujuh jenis ciri-ciri yang baru. Dengdanya penambahan baru jenis
ciri-ciri ini, dan ruang carian yang lebih luas, gatitma Genetik (GA) telah
digunakan di dalam lingkungan rangka kerja Adahoostuk mencari kumpulan
ciri-ciri yang boleh memberi pengkelas teruja nmeeldengan waktu latihan yang
lebih singkat. Teknik ini yang dikenali sebagai G#Bt untuk bahagian latihan bagi
sistem pengesanan muka. GA menjalankan pencar@@nasevolusi untuk memilih
ciri-ciri yang membawa kepada keputusan yang méxangbilangan ciri-ciri yang
lebih tinggi dan meletakkan pilihan dalam waktu gdebih singkat. Ujikaji pada set
gambar-gambar daripada pangkalan data muka Biddh temembuktikan bahawa
dengan menggunakan GA untuk pencarian jenis-jeanskdmpulan-kumpulan ciri-
ciri dalam bilangan yang besar, teknik yang dikeeabagai GABoost ini mampu
menghasilkan pengkelas teruja melata untuk sistenggsanan muka yang boleh
memberi kadar pengesanan muka yang lebih tinggk%94), kadar ketidakbenaran
positif yang lebih rendah (55.94%) dan jumlah peragun masa latihan yang kurang
(6.68 jam).
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Since the dawn of modern time, humans have beenrested in how nature
functions, including themselves. This understandimgs allowed mankind to
reproduce certain forms of nature functions andextend human limitation. An
impressive example is escaping gravitation; (ineotwords: flying), and now the
human race is increasingly interested in reprodu@ne of the most impressive
features of naturantelligence Researchers are trying to build intelligent maeki
that have different capabilities. Building machimegobot with the faculty o¥ision
is probably one of the most challenging problemséws are trying to solve. The
computer vision community started to pay attentiorface processing about three
decades ago, and it has been widely investigatahtly [1 -16] and the list is very

far from exhaustive.

For the past decades, many projects have startbdive purpose of teaching
the machine to recognize human faces and facialesgns. Computer vision has
become one of the most challenging fields of stndwadays. The need to extract
information from images is enormous. Face detecéind extraction as computer-
vision tasks have many applications and have dieetance to the face-recognition
and facial expression recognition problem. Facedmn is the first stage towards
automatic face recognition. Potential applicatibriage detection and extraction are
in human-computer interfaces, surveillance systeessus systems and many more.
The importance of face detection can be rectifigdhe issues of public securities

such as 9/11 World Trade Center Attack, London Balil bombings. In major cities



like London or Paris for example, monitoring of pkp especially in the public
places is done by closed-circuit cameras (CCTV) t@helisions, which are linked
via cables and some other devices (see Figure $dme specific software and
applications are also integrated into these CCT3fesys. These systems can also be
found in highly monitored location such as casinoanks and high access level
laboratories or buildings.

Transfer of Transfer of
recordings recordings
Cameras (faces atc ) (faces efc.) i
- —
e 4 - servers
: Workstations in
T = g the control/
monitoring
- station
> —

Figure 1.1 Structure of Closed-Circuit Television (CCTV) werk

The set-up of CCTV is very simple. Some camerastetd capture the images
including faces of people as they pass througlicalitocations. Other cameras are
able to detect a threat. Usually, the software twedapplications in CCTV system
will play their roles in detecting any kind of tlte In the case of the authorities who
would like to monitor the presence of any suspeatedsidual, CCTV, through its
applications will act with a similar principle asface detection and recognition
system. First, a face is detected. Then, it catrdiked to enable important features
to be extracted for analysis. The type of featerdsacted depends strongly on what
the system wants to achieve. Features can be edtéon either the recognition of a
face (identification) or the recognition of an erafexpression. Face identification
Is relevant in retrieving a person’s identity antho#ion recognition has its
contribution in the prevention of crime and calaesitfor instance. In the latter it

concerns aggression detection, unusual or nervelbavioral detection. That is also



why extraction and recognition of facial expressi@ve been a hot topic in the last
decade. It is important to note that face detectiod facial expression recognition
are distinct subjects. In face detection the défiferexpressions are considered as
noise, whereas in facial expression recognitionidleatity is considered as noise.
The latter implies that different persons haveeaddéht neutral faces with different
feature shapes (big/small eyes, big/small mouth).et

This research is mainly interested in the facediete problem, which means
how to find, based on visual information, all thecarrences of faces regardless of
who the person is. Face detection is one of thet mballenging problems in
computer vision and no solution has been achievidd performance comparable to
humans both in precision and speed. High precisiarow technically achieved by
building systems which learn from a lot of datatire training set in order to
minimize errors on the test sets. In most casesntirease in precision is achieved at
the expense of degradation in run-time performajeocenputational time) and, in
major applications, high precision is demanded, laante dealing with computation

to reduce processing time is now a problem witll ltanstraints.

Finally, the problem of detecting a face is welhdigd by the intelligence of
human beings without us realizing it. This reseanttich is dedicated to discover
the magnificent human intelligence is really ingtieg and will be useful to be
implemented for further research in this countriisTis because our country is now

building towards a more knowledgeable society.



1.2  Objectives of the Thesis

The main objective of this research is to enhamckimprove the selection of
features from a large feature solutions sets imitrg of cascade of boosted
classifiers for face detection system by using aaliionary Algorithm (EA) with
the characteristic of Genetic Algorithm (GA). Theoma specific objectives are

described in the following:

1. To investigate various techniques that are abldetect and recognize
human faces in images.

2. To investigate and review different techniques sashHaar-based
Features, Adaboost algorithm, Neural Networks, $uppvector
Machines (SVM), Eigenfaces and GA in face detectand face
recognition applications.

3. To investigate and explore the existing Face DetecBystem using
Haar-based Features and Adaboost algorithm spatyfian Intel
OpenCV software.

4. To implement GA inside the Adaboost framework tleskefeatures in
building cascade of boosted classifiers.

5. To add seven new feature types in order to increébsequality of
feature solutions thus enlarging feature searchespa

6. To programme C/C++ source-codes of Intel OpenCMwsoE to
implement GA

7. To prepare the database for training and testingppgses of the
cascades of boosted classifiers.

8. To analyze and compare the performances of theadascof boosted
classifiers built using GA with the cascade of sifasrs built

exhaustively.



1.3

1.4

Scope Of The Thesis

The scope of this research is described as follows:

. The system is developed for human face detectiahtla@ tracking is

based on the technique of Haar-features classiierd Adaboost

algorithm.

. The system’s primary concern is to train a cascddmosted classifiers

by using GA technique in the training part. For thetection part, the
system will use this cascade of boosted classifiees was created

previously.

. The research also concentrates on writing and ryiadithe program’s

source codes with the implementation of GA in tlaeef detection
system training part.

. The research focuses on the improvement of thetgmis of features

or weak classifiers which later form cascade ofdted classifiers using
GA

. The research also compares and analyzes the restitis performance

of the trained cascades of boosted classifiers thigdse two different

techniques: Evolutionary search with GA and exhaestearch.

. The research will also analyze the performanceshef seven new

feature types proposed in the cascade of boosasdifiérs training.

Thesis Contributions

This thesis is expected to make a lot of contrdm# which can be

categorized as below:

1. The main contribution of this thesis is the impletation of GA inside
Adaboost framework to select features from largarsh space to build

cascade of boosted classifiers. The module cammipdemented in the
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training part of face detection system. The feat#lections will be done
by GA from a large search space with low computatictime as a
replacement to the exhaustive features search #nomll search space
with high computational time. Face detection expents on a single
image are conducted to assess the performancerms tef hit rates,
missed rates, false positive rates and the traitiing of different cascade
of boosted classifiers built using GA and exhawstiechniques. The

results are compared and analyzed.

. The second contribution is the seven newly propdsetlre types to

enrich features solutions set with more qualitysiae features or weak
classifiers. The performance of these seven newtureatypes
contributions toward the trained cascades of bdost@ssifiers are

compared and analyzed.

. Other contributions relate to providing a comprednem review of

existing face detection techniques for gray saaleges applications. This
is first done by describing the different challesg#nen by presenting the
most significant work after dividing the field infour categories.

. The final contribution relates to the GA, by projpgsand developing

programs related to its structure, operators ananpeters.

Thesis Outline

This thesis is divided into five chapters. Chagtgrovides the Introduction.

Chapter 2 presents some examples of real worldcapipins of face detection and

face recognition systems in four different appimas$ categories. The four different

categories of these applications describe therdiftefunctions of the systems used

for face detection system and face recognitionesysin various requirements,

situations and environments. Also present in tiiapter is a full review of the



various issues in face detection with four existicefegories of face detection
techniques, as well as some review of the resesrthat involve usage of
Evolutionary Algorithm in face detection. The fotategories: 1Knowledge-based
methodsare presented first, and they include rule-basethads which encode
human knowledge on what should constitute a tygamze. Usually, the rules capture
the relationships between facial features. FBature-invariant approachesre
algorithms that aim to find structural featuresttlist even when the pose,
viewpoint or lighting conditions vary, and then ubese to locate faces. 3) Then,
template-matching methodsill be described. These usually consist of several
standard facial patterns, which are stored to desdhe face as a whole or as
separate facial features. The correlation betweaerinput image and the stored
patterns are computed for detection. 4) The foarid last category consists of
appearance-based methods contrast to template matching, the models (or
templates) used here are learned from a set ofifgpimages that are meant to
capture the representative variability of facialp@grance. Then, these learned
models are used for image detection. The use ofuBwpary Algorithms in face
detection especially the ones involve the appeariased methods is also
described.

Chapter 3 presents a thorough description of Ggetect features in building
cascade of boosted classifiers. The descriptioludies the structure of population
and chromosomes, initial parameters, selectionmebg crossover and mutations
rates, termination criteria and the number of gatnems of GA. Two types of
selection schemes, Ranking Scheme and Roulette [VAtheme are explained in
detail as both of them are used in this researcteview of the selections of weak
classifiers or features to form a set of strongsiféers in various training stages or
layers by Adaboost is also presented. Furtherntbeeproposed seven new feature
types to enrich the quality of feature solutions aliso presented in this chapter.

Chapter 4 is dedicated to the experiments donasdesa the performance of
the trained cascade of boosted classifiers. Then f@ius of this chapter is to
compare and analyze the performance between casoad®osted classifiers built
by using two different selection schemes of GA, IRagm Scheme and Roulette



Wheel Scheme, with large feature solutions set Gastade of boosted classifiers
built exhaustively from small feature solutions. §dte results of these three different
techniques used are shown and analyzed.

Finally, Chapter 5 concludes the thesis with a samynof the work that has
been accomplished, a review of the objectivesy thafillment, and a glimpse at
future work to improve the proposed techniques.





