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ABSTRACT 

 
 
 
 

A wide variety of face detection techniques have been proposed over the past 

decades. Generally, a large number of features are required to be selected for training 

purposes. Often some of these features are irrelevant and do not contribute directly to 

the face detection techniques. This creates unnecessary computation and usage of 

large memory space. In this thesis, features search space has been enlarged by 

enriching it with seven additional new feature types. With these new feature types 

and larger search space, Genetic Algorithm (GA) is used within the Adaboost 

framework, to find sets of features which can provide a better cascade of boosted 

classifiers with a shorter training time. This technique is referred to as GABoost for 

this training part of a face detection system. The GA carries out an evolutionary 

search to select features which results in a higher number of feature types and sets 

selected in less time. Experiments on a set of images from BioID face database 

proved that by using GA to search on a large number of feature types and sets, the 

proposed technique referred to as GABoost was able to obtain the cascades of 

boosted classifiers for the face detection system that can give higher detection rates 

(94.25%), lower false positive rates (55.94%) and less training time (6.68 hours). 
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ABSTRAK 

 
 
 
 

Pelbagai teknik pengesanan muka telah diperkenalkan sejak beberapa dekad 

lalu. Secara umumnya, sejumlah yang besar ciri-ciri diperlukan, bagi tujuan 

pemilihan untuk kegunaan latihan. Kebiasaannya, sebahagian dari ciri-ciri tersebut 

adalah tidak berkaitan dan tidak menyumbang secara langsung kepada teknik 

pengesanan muka. Keadaan ini mengakibatkan pengiraan mesin yang tidak 

sepatutnya dan penggunaan ruang ingatan mesin yang besar. Di dalam tesis ini, 

ruang carian bagi ciri-ciri telah diperluaskan dengan cara memperkayakannya dengan 

penambahan tujuh jenis ciri-ciri yang baru. Dengan adanya penambahan baru jenis 

ciri-ciri ini, dan ruang carian yang lebih luas, Algoritma Genetik (GA) telah 

digunakan di dalam lingkungan rangka kerja Adaboost, untuk mencari kumpulan 

ciri-ciri yang boleh memberi pengkelas teruja melata dengan waktu latihan yang 

lebih singkat. Teknik ini yang dikenali sebagai GABoost untuk bahagian latihan bagi 

sistem pengesanan muka. GA menjalankan pencarian secara evolusi untuk memilih 

ciri-ciri yang membawa kepada keputusan yang merangkumi bilangan ciri-ciri yang 

lebih tinggi dan meletakkan pilihan dalam waktu yang lebih singkat. Ujikaji pada set 

gambar-gambar daripada pangkalan data muka BioID telah membuktikan bahawa 

dengan menggunakan GA untuk pencarian jenis-jenis dan kumpulan-kumpulan ciri-

ciri dalam bilangan yang besar, teknik yang dikenali sebagai GABoost ini mampu 

menghasilkan pengkelas teruja melata untuk sistem pengesanan muka yang boleh 

memberi kadar pengesanan muka yang lebih tinggi (94.25%), kadar ketidakbenaran 

positif yang lebih rendah (55.94%) dan jumlah pengunaan masa latihan yang kurang 

(6.68 jam). 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Introduction 

 
 

Since the dawn of modern time, humans have been interested in how nature 

functions, including themselves. This understanding has allowed mankind to 

reproduce certain forms of nature functions and to extend human limitation. An 

impressive example is escaping gravitation; (in other words: flying), and now the 

human race is increasingly interested in reproducing one of the most impressive 

features of nature: intelligence. Researchers are trying to build intelligent machines 

that have different capabilities. Building machines or robot with the faculty of vision 

is probably one of the most challenging problems humans are trying to solve. The 

computer vision community started to pay attention to face processing about three 

decades ago, and it has been widely investigated recently [1 -16] and the list is very 

far from exhaustive. 

 
 

For the past decades, many projects have started with the purpose of teaching 

the machine to recognize human faces and facial expressions. Computer vision has 

become one of the most challenging fields of study nowadays. The need to extract 

information from images is enormous. Face detection and extraction as computer-

vision tasks have many applications and have direct relevance to the face-recognition 

and facial expression recognition problem. Face detection is the first stage towards 

automatic face recognition. Potential application of face detection and extraction are 

in human-computer interfaces, surveillance systems, census systems and many more. 

The importance of face detection can be rectified by the issues of public securities 

such as 9/11 World Trade Center Attack, London and Bali bombings. In major cities 



 2 

like London or Paris for example, monitoring of people especially in the public 

places is done by closed-circuit cameras (CCTV) and televisions, which are linked 

via cables and some other devices (see Figure 1.1). Some specific software and 

applications are also integrated into these CCTV systems. These systems can also be 

found in highly monitored location such as casinos, banks and high access level 

laboratories or buildings.  

 
 

 

 

Figure 1.1: Structure of Closed-Circuit Television (CCTV) network 

 
 
The set-up of CCTV is very simple. Some cameras exist to capture the images 

including faces of people as they pass through critical locations. Other cameras are 

able to detect a threat. Usually, the software and the applications in CCTV system 

will play their roles in detecting any kind of threat. In the case of the authorities who 

would like to monitor the presence of any suspected individual, CCTV, through its 

applications will act with a similar principle as a face detection and recognition 

system. First, a face is detected. Then, it can be tracked to enable important features 

to be extracted for analysis. The type of features extracted depends strongly on what 

the system wants to achieve. Features can be obtained for either the recognition of a 

face (identification) or the recognition of an emotion/expression. Face identification 

is relevant in retrieving a person’s identity and emotion recognition has its 

contribution in the prevention of crime and calamities for instance. In the latter it 

concerns aggression detection, unusual or nervous behavioral detection. That is also 
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why extraction and recognition of facial expression have been a hot topic in the last 

decade. It is important to note that face detection and facial expression recognition 

are distinct subjects. In face detection the different expressions are considered as 

noise, whereas in facial expression recognition the identity is considered as noise. 

The latter implies that different persons have different neutral faces with different 

feature shapes (big/small eyes, big/small mouth, etc.). 

 
 

This research is mainly interested in the face detection problem, which means 

how to find, based on visual information, all the occurrences of faces regardless of 

who the person is. Face detection is one of the most challenging problems in 

computer vision and no solution has been achieved with performance comparable to 

humans both in precision and speed. High precision is now technically achieved by 

building systems which learn from a lot of data in the training set in order to 

minimize errors on the test sets. In most cases, the increase in precision is achieved at 

the expense of degradation in run-time performance (computational time) and, in 

major applications, high precision is demanded, and hence dealing with computation 

to reduce processing time is now a problem with hard constraints.  

 
 

Finally, the problem of detecting a face is well handled by the intelligence of 

human beings without us realizing it. This research which is dedicated to discover 

the magnificent human intelligence is really interesting and will be useful to be 

implemented for further research in this country. This is because our country is now 

building towards a more knowledgeable society. 
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1.2 Objectives of the Thesis 

 
 

The main objective of this research is to enhance and improve the selection of 

features from a large feature solutions sets in training of cascade of boosted 

classifiers for face detection system by using an Evolutionary Algorithm (EA) with 

the characteristic of Genetic Algorithm (GA). The more specific objectives are 

described in the following: 

 
 

1. To investigate various techniques that are able to detect and recognize 

human faces in images. 

2. To investigate and review different techniques such as Haar-based 

Features, Adaboost algorithm, Neural Networks, Support Vector 

Machines (SVM), Eigenfaces and GA in face detection and face 

recognition applications. 

3. To investigate and explore the existing Face Detection System using 

Haar-based Features and Adaboost algorithm specifically in Intel 

OpenCV software. 

4. To implement GA inside the Adaboost framework to select features in 

building cascade of boosted classifiers. 

5. To add seven new feature types in order to increase the quality of 

feature solutions thus enlarging feature search space. 

6. To programme C/C++ source-codes of Intel OpenCV software to 

implement GA 

7. To prepare the database for training and testing purposes of the 

cascades of boosted classifiers. 

8. To analyze and compare the performances of the cascades of boosted 

classifiers built using GA with the cascade of classifiers built 

exhaustively. 
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1.3 Scope Of The Thesis 

 
 

The scope of this research is described as follows: 

 

1. The system is developed for human face detection and the tracking is 

based on the technique of Haar-features classifiers and Adaboost 

algorithm. 

2. The system’s primary concern is to train a cascade of boosted classifiers 

by using GA technique in the training part. For the detection part, the 

system will use this cascade of boosted classifiers that was created 

previously.  

3. The research also concentrates on writing and modifying the program’s 

source codes with the implementation of GA in the face detection 

system training part.  

4. The research focuses on the improvement of the selections of features 

or weak classifiers which later form cascade of boosted classifiers using 

GA 

5. The research also compares and analyzes the results of the performance 

of the trained cascades of boosted classifiers with these two different 

techniques: Evolutionary search with GA and exhaustive search. 

6. The research will also analyze the performances of the seven new 

feature types proposed in the cascade of boosted classifiers training. 

 
 
 
 
1.4 Thesis Contributions 

 
 

 This thesis is expected to make a lot of contributions which can be 

categorized as below: 

 
 

1. The main contribution of this thesis is the implementation of GA inside 

Adaboost framework to select features from larger search space to build 

cascade of boosted classifiers. The module can be implemented in the 
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training part of face detection system. The feature selections will be done 

by GA from a large search space with low computational time as a 

replacement to the exhaustive features search from small search space 

with high computational time. Face detection experiments on a single 

image are conducted to assess the performance in terms of hit rates, 

missed rates, false positive rates and the training time of different cascade 

of boosted classifiers built using GA and exhaustive techniques. The 

results are compared and analyzed. 

 

2. The second contribution is the seven newly proposed feature types to 

enrich features solutions set with more quality possible features or weak 

classifiers. The performance of these seven new feature types 

contributions toward the trained cascades of boosted classifiers are 

compared and analyzed. 

 
 
3. Other contributions relate to providing a comprehensive review of 

existing face detection techniques for gray scale images applications. This 

is first done by describing the different challenges, then by presenting the 

most significant work after dividing the field into four categories. 

 
 
4. The final contribution relates to the GA, by proposing and developing 

programs related to its structure, operators and parameters.  

 
 
 
 
1.5 Thesis Outline 

 
 

This thesis is divided into five chapters. Chapter 1 provides the Introduction. 

Chapter 2 presents some examples of real world applications of face detection and 

face recognition systems in four different applications categories. The four different 

categories of these applications describe the different functions of the systems used 

for face detection system and face recognition system in various requirements, 

situations and environments. Also present in this chapter is a full review of the 
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various issues in face detection with four existing categories of face detection 

techniques, as well as some review of the researches that involve usage of 

Evolutionary Algorithm in face detection. The four categories: 1) Knowledge-based 

methods are presented first, and they include rule-based methods which encode 

human knowledge on what should constitute a typical face. Usually, the rules capture 

the relationships between facial features. 2) Feature-invariant approaches are 

algorithms that aim to find structural features that exist even when the pose, 

viewpoint or lighting conditions vary, and then use these to locate faces. 3) Then, 

template-matching methods will be described. These usually consist of several 

standard facial patterns, which are stored to describe the face as a whole or as 

separate facial features. The correlation between an input image and the stored 

patterns are computed for detection. 4) The fourth and last category consists of 

appearance-based methods. In contrast to template matching, the models (or 

templates) used here are learned from a set of training images that are meant to 

capture the representative variability of facial appearance. Then, these learned 

models are used for image detection. The use of Evolutionary Algorithms in face 

detection especially the ones involve the appearance-based methods is also 

described. 

 
 

Chapter 3 presents a thorough description of GA to select features in building 

cascade of boosted classifiers. The description includes the structure of population 

and chromosomes, initial parameters, selection schemes, crossover and mutations 

rates, termination criteria and the number of generations of GA. Two types of 

selection schemes, Ranking Scheme and Roulette Wheel Scheme are explained in 

detail as both of them are used in this research. A review of the selections of weak 

classifiers or features to form a set of strong classifiers in various training stages or 

layers by Adaboost is also presented. Furthermore, the proposed seven new feature 

types to enrich the quality of feature solutions are also presented in this chapter.  

 
 

Chapter 4 is dedicated to the experiments done to assess the performance of 

the trained cascade of boosted classifiers. The main focus of this chapter is to 

compare and analyze the performance between cascades of boosted classifiers built 

by using two different selection schemes of GA, Ranking Scheme and Roulette 
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Wheel Scheme, with large feature solutions set and cascade of boosted classifiers 

built exhaustively from small feature solutions set. The results of these three different 

techniques used are shown and analyzed. 

 
 

Finally, Chapter 5 concludes the thesis with a summary of the work that has 

been accomplished, a review of the objectives, their fulfillment, and a glimpse at 

future work to improve the proposed techniques. 

 
 
 
 
 




