NON-LINEAR BEHAVIOUR OF ONE-BAY STEEL FRAMES WITH SEMI-RIGID CONNECTIONS

LIM PUI YAN

UNIVERSITI TEKNOLOGI MALAYSIA

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Ahmad Baharuddin b. Abd. Rahman for his guidance and help during the development of this project report. I am especially grateful for his assistance in providing me with ample reference materials at the start of this study.

I would also like to express my gratitude and thanks to my husband, Mr. Ho Kah Ming, for his constant encouragement and advice. This project report would not have been possible without his love and support.

ABSTRACT

This project studies the static non-linear behaviour of plane steel frames with semi-rigid connections. To describe the non-linear behaviour of the semi-rigid connections, the three-parameter power $M-\phi_r$ model is used. ANSYS software package is used for the non-linear analysis of the frames. Finite element models that include geometrical, material and connection non-linearities are considered in this study. Material and geometrical non-linearities are modeled by a bilinear defined stress-strain curve and specifying large displacement for the analysis. The influence of connection fixity on the force transfer mechanism and stability behaviour of semirigid steel plane frame structural system under uniformly distributed vertical loads and lateral loads are investigated. It can be concluded from the results that the connection flexibility has significant influence on the behaviour of the frames. The connection flexibility contributes to significant increase in the point displacements and change in the distribution of internal forces in the system. The influence of the geometric non-linearity increases with the loads. The influence is higher when semirigid type of connections are used than in the case of fully rigid connections. It is also observed that the critical load carrying capacity of the system significantly decreases with the increase in the flexibility of joints.

ABSTRAK

Projek in mengkaji kelakuan statik bukan-linear bagi kerangka keluli bersambungan separuh tegar. Model Kuasa $M-\phi_r$ Tiga-Parameter model telah digunakan untuk menerangkan sifat bukan-linear bagi sambungan separuh tegar. Perisian ANSYS telah digunakan untuk analisis bukan-linear bagai kerangka. Model elemen terhad yang mengrangkumi geometri, bahan and sambungan yang bersifat bukan-linear telah dipertimbangkan dalam kajian ini. Bahan dan geometri bukanlinear dimodelkan dengan menggunakan lengkung tekanan-regangan dwi-linear dan menetapkan unjuran yang besar bagi tujuan analisis ini. Pengaruh kekuatan sambungan ke atas mekanisma daya dalaman and kestabilan kerangka dibawah pengaruh daya tegak and ufuk telah dikaji. Keputusan analisis memberi kesimpulan bahawa kebolehlenturan sambungan memberi kesan yang ketara ke atas kelakuan kerangka. Ia menyebabkan pertambahan unjuran titik and perubahan daya dalaman. Kesan geometri bukan-linear bertambah dengan daya kenaan. Kesan ini adalah lebih tinggi jika sambungan separuh-tegar digunakan berbanding dengan sambungan Permerhatian menunjukkan bahawa daya kritikal yang boleh sepenuh-tegar. ditanggung oleh kerangka berkurangan apabila kekuatan sambungan rasuk dan tiang bertambah.

TABLE OF CONTENTS

CHAPTI	ER	TITLE	PAGE
]	DECLARATION	ii
	1	ACKNOWLEDGEMENT	iii
	1	ABSTRACT	iv
	1	ABSTRAK	v
	r	TABLE OF CONTENTS	vi
]	LIST OF TABLES	viii
]	LIST OF FIGURES	Х
]	LIST OF SYMBOLS	viii
]	LIST OF APPENDICES	xiv
1.	INT	RODUCTION	1
	1.1	Objectives and Scope of Study	3
2.	LIT	ERATURE REVIEW	5
3.	VEI	RIFICATION OF FINITE ELEMENT MODEL	16
	3.1	Introduction	16
	3.2	Verification Model	17
	3.3	Investigation Procedures for the Effects of Semi-Rigid	
		Connections to Sway Frame Stability	23
4.	ANA	ALYSIS STUDY	28
	4.1	Frame Configurations	28
	4.2	Material Properties	29
	4.3	Support Boundary Conditions	31

	4.4	Loadings	31
	4.5	Beam-to-Column Connection Fixity	32
	4.6	Analysis Options	34
	4.7	ANSYS Finite Element Models	35
5.	ANA	ALYSIS RESULTS AND DISCUSSION	43
	5.2	Study of Bending Moment at Base	46
	5.3	Frames Stability	47
	5.4	Moment-Rotation Results at Beam-to-Column Connections	53
6.	CO	NCLUSION AND RECOMMENDATIONS	58
REFI	EREN	CES	60
APPENDIX A : VERIFICATION MODEL INPUT FILE 62			62
APPENDIX B : FRAME1_1RIGID INPUT FILE 79			
APPENDIX C : FRAME1_2SEMIRIGID INPUT FILE 84			
APPENDIX D : FRAME1_3FLEXIBLE INPUT FILE 89			
APPENDIX E : FRAME2_1RIGID INPUT FILE 94			
APPENDIX F : FRAME2_2SEMIRIGID INPUT FILE 98			
APPI	ENDI	X G : FRAME2_3FLEXIBLE INPUT FILE	106

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Three parameters for proposed classification system	
	by Rafiq Hasan, Norimitsu Kishi, Wai-Fah Chen (1998)	9
2.2	Optimum Design Results for A Ten-Storey, One-Bay	
	Steel Frame (Linear Frame Analysis by E.S. Kameshki)	11
2.3	Optimum Design Results for A Ten-Storey, One-Bay	
	Steel Frame (Non-Linear Frame Analysis by	
	E.S. Kameshki)	11
2.4	Main Assumptions/Behaviour Features Incorporated	
	in Frame Analyses	12
2.5	Simple portal frame with vertical load, $P = 450$ kN on	
	2 columns and horizontal load, $H = 0.005P$ at upper	
	left corner (Miodrag Sekulovic, 2001)	15
2.6	Two-storey simple bay frame with vertical load,	
	P = 1000 kN on 2 columns and horizontal load,	
	H = 0.005P at upper left corner	
	(Miodrag Sekulovic, 2001)	15
3.1	Horizontal Displacements (mm) for Morteza's Model	
	and ANSYS Verification Model	18
4.1	Section Properties	30
4.2	Load Configurations	31

TABLE NO.	TITLE	PAGE
5.1	Analysis Results for Frame 1	43
5.2	Analysis Results for Frame 2	44

5.3	Joints Rotation at Critical Loads for Semi-Rigid and	
	Flexible Frames	54

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	M- ϕ_r Relationship	2
2.1	Rotational Deformation of A Connection	6
2.2	Connection Moment-Rotation Curves	7
2.3	EC3 Classification System	8
2.4	$M-\phi_r$ Curve for Proposed Classification System by Rafiq	
	Hasan, Norimitsu Kishi, Wai-Fah Chen (1998)	10
3.1	Verification Model	18
3.2	Element Divisions	19
3.3	Comparison of Deflection at Upper Left Corner for	
	Morteza's Model and ANSYS Model	20
3.4	Deflected Shape	21
3.5	Vertical Reaction Load, R and Displacement Curve for	
	the Deflection, D, at Upper Left Corner	22
3.6	Flow Chart for Investigation Procedures	25
4.1	Frame 1	28
4.2	Frame 2	29
4.3	Material Model for A36	30

FIGURE NO	. TITLE	PAGE
4.4	Linearized Moment-Rotation Curves Used in Analysis of Frames	33
4.5	Illustration of COMBIN39	34
4.6	Frame1 - Rigid Model with Element Numbers	35
4.7	Frame1 - Semi-Rigid Model with Element Numbers	36
4.8	Frame1 - Flexible Model with Element Numbers	36
4.9	Frame2 - Rigid Model with Element Numbers	37
4.10	Frame2 - Semi-Rigid Model with Element Numbers	37
4.11	Frame2 - Flexible Model with Element Numbers	38
4.12	Frame1 - Rigid Model with Node Numbers	39
4.13	Frame1 - Semi-Rigid Model with Node Numbers	40
4.14	Frame1 - Flexible Model with Node Numbers	40
4.15	Frame2 - Rigid Model with Node Numbers	41
4.16	Frame2 - Semi-Rigid Model with Node Numbers	41
4.17	Frame2 - Flexible Model with Node Numbers	42
5.1	Force and Displacement Curve for Frame 1 and Frame 2	44
5.2	Force and Displacement Curve for Frame 1 with Connection Fixities	45
5.3	Force and Displacement Curve for Frame 2 with Connection Fixities	45

FIGURE NO.

TITLE

PAGE

5.4	Comparison of Moment at Base Support against Connection Fixities	46
5.5	Comparison of Horizontal Displacement with Connection Fixities	48
5.6	Frame 1 – Rigid Model Deflected Shape at Critical Loads	48
5.7	Frame 1 – Semi-Rigid Model Deflected Shape at Critical Loads	49
5.8	Frame 1 – Flexible Model Deflected Shape at Critical Loads	49
5.9	Frame 2 – Rigid Model Deflected Shape at Critical Loads	50
5.10	Frame 2 – Semi-Rigid Model Deflected Shape at Critical Loads	50
5.11	Frame 2 – Flexible Model Deflected Shape at Critical Loads	51
5.12	Comparison of Critical Loads against Connection Fixities	52
5.13	Moment and Rotation Curve for Frame 1 Semi-Rigid Connections	54
5.14	Moment and Rotation Curve for Frame 2 Semi-Rigid Connections	55
5.15	Moment and Rotation Curve for Frame 1 Flexible Connections	56
5.16	Moment and Rotation Curve for Frame 2 Flexible Connections	57

LIST OF SYMBOLS

Η	-	Defined horizontal force
W	-	Defined vertical distributed forces
М	-	Bending moment
ϕ_{r}	-	Relative rotation of point at beam and column connection
\mathbf{R}_{ki}	-	Initial connection stiffness
M_u	-	Ultimate moment capacity of connection
n	-	Shape parameter
IR	-	Interaction Ratio

LIST OF APPENDICES

APPENDIX TITLE PAGE Verification Model Input File А 62 В Frame1_1Rigid Input File 79 С Frame1_2SemiRigid Input File 84 D Frame1_3Flexible Input File 89 Frame2_1Rigid Input File 94 Е Frame2_2SemiRigid Input File F 98 Frame2_3Flexible Input File G 106

CHAPTER 1

INTRODUCTION

Steel frame system with beams and columns is the most conventional system in modern construction. In current practice of stability analysis of steel-framed building structures, the connections of beam and column are normally simplified as two idealized extremes of either fully-rigid behaviour or ideally-pinned behaviour.

In limit state design which warrants extensive studies on the response at ultimate loads, the beam-to-column connections stiffness play an important role of governing effect on the ultimate carrying capacity of a frame. The predicted response of the idealized structure may be quite unrealistic compared to that of the actual structure if connection stiffness is ignored in the analysis. Most connections used in current practice actually exhibit semi-rigid deformation behaviour that can contribute substantially to the stability of the structure or post-critical response as well as to the distribution of member force. Numerous experimental investigations on connection behaviour have clearly demonstrated that a pinned connection possesses certain amount of rotational stiffness, while a rigid connection possesses some degree of flexibility (D. A. Nethercot, T. Q. Li & B. Ahmad, 1998). Connections are mediums through which forces and moments from the beam are transferred to the column. A fully rigid connection implies that no relative rotation of the connection occurs and the end moment of the beam is completely transferred to the column. On the other hand, pinned connection implies no restraint for rotation of the connection exists and the connection moment is always zero. Neglecting realistic connection behaviour may lead to unrealistic predictions of the response and strength of structures. Therefore, extensive study had been carried out to classify beam-to-column connections in order to improve analysis accuracy of steel frames.

Beam-to-column connection fixities are normally classified into three categories as shown in Figure 1.1. The connection fixities are represented by the moment-rotation relation of a particular type of connection. Most experiments have shown that the M- ϕ_r curve is non-linear in the whole domain and for all types of connections. As a result, modeling of the nodal connection is vital for the design and accuracy in the frame structure analysis. There are several approaches on how to incorporate the flexibility of the nodal connections in the analysis. The most common and simplest is the linear model which will also be used in this study.

Figure 1.1 : $M-\theta_r$ Relationship

Apart from connection non-linearities, the effects of geometrical non-linearity and material non-linearity of the beams and columns are also of practical interest. Structural analysis that includes geometrical non-linearity is termed second-order analysis or P-delta (P- Δ) analysis. Geometrical non-linearities occur when members bend and the structure sways or deflects laterally under loading. The lateral displacement of the column results in second-order moment to the column which can be calculated from the applied load multiplied by the appropriate lateral displacement. As a result, the inclusion of second-order analysis will represent the appropriate behaviour of the frame.

With the advancement in computer technology, the non-linearity of material can be included with the appropriate material stress-strain curve. The material stress-strain relationship can be idealized as simple models of elastic, rigid-plastic and elastic-plastic. Compared to the linear stress-strain relationship in linear analysis, where the material never reaches its yield point, elastic-plastic model better represents the non-linear behaviour of structural system. In the elastic-plastic model, the material deforms elastically under increasing loads initially and when the yield stress is reached, the material becomes plastic. The stress remains constant with further increase in strain.

1.1 Objectives and Scope of Study

The objectives of this research are :

- i. To present finite element analysis and analytical results for semi-rigid structural frames that include the material, geometry and connection non-linearities.
- ii. To investigate the bending moment at the base of the frames at ultimate loads with fully fixed, semi-rigid and flexible beam-to-column connection.
- iii. To demonstrate, through a series of analysis under different structural frame configurations, loads and semi-rigid joint conditions, the influence of the semi-rigid beam-to-column connections to the load carrying capacity and stability of the steel frames. This enables a better understanding of the force transfer mechanism within the structural system.

The scope of study for this research includes :

- i. Non-linear behaviour of semi-rigid steel frame.
- ii. Two-dimensional plane frame.
- iii. The base supports of the frames are assumed to be fully restrained.

However, this research does not include the effects of eccentricity in the nodal connection of plane frames due to static loads.