LONG-TERM RAIN ATTENUATION PROBABILITY AND SITE DIVERSITY GAIN PREDICTION FORMULAS

KUSAY FAISAL A. AL-TABATABAIE

A thesis submitted in partly fulfillment of the requirements for the word of the degree of Master of Engineering (Electrical)

Faculty of Electrical Engineering Universiti Teknologi Malaysia

MAY 2007

DEDICATIONS

To My beloved parents and brothers for their unwavering love, sacrifice and inspiration.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my utmost gratitude to my supervisor, Associate Professor Dr. Jafri bin Din for being a dedicated mentor as well as for his valuable and constructive suggestions that enabled this project to run smoothly.

Also, not forgetting my friends and classmates, I convey my full appreciation for their on-going support and contributions toward this project, whether directly or indirectly.

Last but not least, I am forever indebted to all my family members for their constant support throughout the entire duration of this project. Their words of encouragement never failed to keep me going even through the hardest of times and it is here that I express my sincerest gratitude to them.

ABSTRACT

The increasing growth of wireless communication systems has caused the usage of higher frequencies in order to have wider bands. However the increase of frequency will lead to the degradation of satellite communication performance. Rain attenuation is one of the most fundamental reasons of the degrading quality of services. Thus fade mitigation techniques will be used in order to compensate for excessive attenuation such as diversity protection schemes, power control and adaptive processing techniques. Among these techniques the most efficient is site diversity (SD). The aim of this project is to determine the effect of SD under the rain conditions, combine both categories for the estimation of slant path rain attenuation and SD gain. It includes the designing of algorithm flow which incorporated into MATLAB programming software. Also, the SD gain calculation in Skudai – Malaysia is included too. It is hoped that with the availability of data, the design process of fade mitigation techniques is greatly simplified. The ITU-R study Group 3 database is used in this project.

ABSTRAK

Pembangunan dalam teknologi sistem komunikasi tanpa talian telah menyebabkan penggunaan frekuensi yang lebih tinggi supaya lebar jalur yang lebih besar dapat diperolehi. Namun demikian, peningkatan frekuensi ini telah membawa kepada kemerosotan dalam prestasi komunikasi satelit. Pengecilan hujan merupakan salah satu faktor terpenting yang mengakibatkan berlakunya fenomena ini. Justeru itu, teknik mitigasi pemudaran seperti skema perlindungan kepelbagaian, kawalan kuasa, dan teknik pemprosesan penyesuaian digunakan untuk mengimbangi kelemahan tersebut. Di antara teknik-teknik tesebut, teknik yang paling berkesan adalah kepelbagaian tempat (SD). Objektif utama projek ini adalah untuk menentukan kesan SD dalam keadaaan hujan, menggabungkan kedua-dua kategori untuk penganggaran pengecilan hujan laluan condong dan penggandaan SD. Ini termasuklah mereka aliran algoritma yang dimasukkan ke dalam perisian program MATLAB. Pengiraan peningkatan SD juga dilakukan di Skudai, Malaysia. Dengan tersedianya data tersebut, proses mereka teknik mitigasi pemudaran belaku dengan lebih mudah. Pangkalan data kajian kumpulan 3 ITU-R digunakan dalam projek ini.

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

DECLARATIONS	iii
DEDICATIONS	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii
LIST OF APPENDICES	xix

1. INTRODUCTION

1

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of work	3
1.5	Methodology	4
1.6	Thesis Outline	6

2.

SATELLITE COMMNICATION AND RAIN

		ATTENUATION EFFECT	7
2.1	Introd	uction	7
2.2	Satelli	te Communications	8
2.3	Satelli	ite System Fundamentals	9
2.4	Freque	ency Spectrum	9
2.5	Rainfa	all Impact on Satellite Link	10
2.6	Rainfa	all Structure and Types	12
	2.6.1	Principal Sources of Rainfall Data	13
	2.6.2	Malaysia Climate and Rainfall Distribution	13
		2.6.2.1 ITU-R Rainfall Rate Model	14
2.7	Rain V	Vertical Profile	15
2.8	Devel	opment of Rain Attenuation Studies	15
2.9	Specif	fic Attenuation	20
	2.9.1	ITU-R Model for Specific Attenuation	21
2.10	Effect	ive Path Length	22
	2.10.1	Effective Terrestrial Path	23
	2.10.2	Slant path prediction models	24
		2.10.2.1 ITU-R prediction model	24
2.11	Summ	nery	27

3. Fading duration effect

28

3.1	Introduction	28
3.2	Fade Durations in Tropical Climates	30
3.3	Number of Events and Fade Duration Statistics	30
3.4	Fade Duration Modeling	31
3.5	Importance of Fade Duration Information	34
3.6	Overview of Fade Mitigation Technique	35
	3.6.1 Power Control	36

	3.6.2	Adaptive Waveform	36
	3.6.3	Diversity	37
3.7	Accun	nulative Distribution Functions	37
3.8	Summ	lery	38

4. SITE DIVERSITY EQUATIONS 39

4.1	Introdu	iction	39
4.2	Diversity improvement factor		40
4.3	Site Di	versity Attenuation	41
	4.3.1	Single site attenuation	41
	4.3.2	Diversity time percentages	41
4.4	Site Di	versity Gain	42
4.5	Summe	ery	44

5. THE METHODOLOGY AND RESULTS 45

5.1	Introduction		45
5.2	The o	verall Project Methodology	46
5.3	ITU-R	Study group Three Data Bank	47
5.4	Rainfa	ll rate data	48
	5.4.1	Rainfall Rate Data at UTM-Skudai site	48
	5.4.2	Rainfall Rate Data Various Locations in	50
		Malaysia	50
5.5	Slant F	Path Calculations	51
5.6	Attenuation versos single site time percentage		53
5.7	Fade d	uration statistics calculations	56
	5.7.1	Data Collection	57
	5.7.2	Designing the Algorithm Flow	57
	5.7.3	The Program Development for Fade Duration	50
		Statistic	39

	5.7.3.1	Loading the data into MATLAB	59
		5.7.3.1.1 Sub-Program in MATLAB	60
	5.7.3.2	Conversion of Voltage to dBm	61
		5.7.3.2.1 Sub-Program in MATLAB	62
	5.7.3.3	Analyzing the Database	62
		5.7.3.3.1 Sub-Program in MATLAB	63
	5.7.3.4	Obtaining the Fade Duration	63
	5.7.3.5	Compiling the Number of Fade	66
		Events	00
		5.7.3.5.1 Sub-Program of MATLAB	67
		5.7.3.5.2 Graph of Number of	
		Events and fade duration	68
		statistics	
	5.7.3.6	Comparison of the ITU-R model and	70
		the obtain result	70
5.8	Attenuation verse	os diversity time percentage	71
5.9	Site Diversity Ga	ain	75
5.9.1	Without diversity	y at A0.01	75
5.9.2	With 10 Km dist	ance diversity at A0.01	75
5.10	Summary		76

6. CONCLUSION AND RECOMMENDATIONS 77 6.1 Conclusion 77 6.2 Future of work and recommendations 79

REFERENCES	81
APPENDICES A – X	85

LIST OF TABLES

TABLE

TITLE

2.1	Satellite frequency spectrum	10
2.2	ITU-R Annual rain rate cumulative distributions for region P	15
3.1	38 GHz Links Under Examination in the MilliProp Countries	38
5.1	Rainfall measurement specifications at UTM-Skudai	49
5.2	The average one year cumulative distribution at UTM-Skudai	50
5.3	Rainfall measurements at various sites at Malaysia	51
5.4	The specific rain and reduction factor results according to ITU-R data for MEASAT1 at 12 GHz	52
5.5	The specific rain and reduction factor results according to experimental data for MEASAT1 at 12 GHz	53
5.6	The estimated attenuation to be exceeded for percentage of an	54
	average year for Skudai according to ITUR	
5.7	The estimated attenuation to be exceeded for percentage of an	54
	average year for Johor Bahru according to ITUR	
5.8	The estimated attenuation to be exceeded for percentage of an	55
	average year for Skudai according to data collected in WCC	
5.9	The Investigated 38 GHz Links Connected to Measuring Nodes	57
	Located in WCC, UTM, Malaysia	
5.10	Example of Converting Time Given to Accumulate Time	63
5.11	Average Fade Durations	65
5.12	Number of Fade Events Exceeding Duration Thresholds	68
5.13	Percentage of time for two sites (P2) in Horizontal with different	72
	distance for Skudai experimental using diversity formulas	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	The methodology diagram of overall project	4
2.1	Hydrometeor effects over the satellite path	11
2.2	The climatic zones and rainfall rate (ITU-R, 1997)	14
2.3	The three rain height terms	16
2.4	Volume of spherical, uniformly distributed Raindrops	18
2.5	Shows this phenomenon using the three drop size	20
2.6	Shows this phenomenon using the three drop size distributions	25
3.1	Features characterizing the dynamics of fade events	29
3.2	Fade Duration on Link HU01 2004	31
3.3	Graph of Probability of Fade Events versus Duration	33
3.4	Graph of Fraction of Time versus Duration	33
4.1	Two earth terminals to provide path diversity	40
4.2	Geometrical configuration of a site diversity scheme	44
5.1	Screen shoot of the user graphical interface window of DBSG5.exe program	45
5.2	The rainfall and rain attention data conducted at UTM companied using computer program	49
5.3	Several years measurement of rainfall rate at UTM-Skudai	50
5.4	Cumulative distribution for horizontal coefficient at 12GHz	55
5.5	Cumulative distribution for vertical coefficient at 12GHz	56
5.6	Ericsson Microwave Link at 38 GHz in Wireless	57
	Communication Centre (WCC) University Technology of	
	Malaysia M. Karim (2000)	

5.7	Example of Data Collected	60
5.8	Graph of dBm versus Voltage	61
5.9	Graph of Attenuation Threshold (dB) versus Time (hour)	62
5.10	Illustration for Lagrange Method	64
5.11	Graph Model of Number of Events above a Given Attenuation	65
	Threshold and Longer than a Given Fade Duration	
5.12	Illustration of How the Number of Events Longer than a	66
	Given Fade Duration is Compiled	
5.13	Graph of Number of Events above a Given Attenuation	69
	Threshold and Longer than a Given Fade Duration	
5.14	Comparison of Fade Duration Statistics for Obtained Results	70
	and Model	
5.15	Relationship between percentages of time with and without	71
	diversity for the same attenuation according to improvement	
	factor formula	
5.16	The relationship between attenuation and percentage of time	73
	for two sites in different distance according to improvement	
	factor and site diversity formulas	
5.17	An practical example for Cumulative distribution at 11.198	74

GHz

LIST OF SYMBOLS

A	Attenuation
$A_{0.01}$	Attenuation at 0.01% of time
A_m	Measured attenuation
A_p	Predicted attenuation
dB	Decibel unite
d f	Separation (km) between the two sites Frequency
GHz	Giga Hertz
ho	Rain freezing height
H _R	Rain height (km)
H _s	Height above mean sea level of the earth station (km).
k, α	Regression coefficients
km	Kilometer
Leff	Effective Path length
LG	Horizontal projection of the slant path
Lo	Rain cell diameter
L	path length
m	Meter
mm	Millimeter
P P (%)	Probability Percentage in time of the year
P1	percentages of time for an average year with no site diversity
P2	percentages of time for an average year with site diversity
$R_{(p)}$	Rain rate at percentage in time of the year
r(P)	Horizontal reduction factor of percentage in time of the year
r _{0.01}	Horizontal reduction factor for 0.01% time of the year
R _{0.01}	Rain rate at 0.01% of time of the year
V0.01	Vertical reduction factor for 0.01% time of the year
γr	Specific attenuation

- θ Elevation Angle
- ψ baseline-dependent angle
- Φ Latitude of the earth station

LIST OF ABBREVIATIONS

AC	Adaptive Coding
AGCV	Automatic Gain Control Voltage
AM	Adaptive Modulation
С	Centigrade
dB	Decibel
dBm	Decibel mili watt
DBSG5	ITU-R Study Group Three Data Bank
DDR	Data Rate Reduction
DLPC	Down-Link Power Control
DTH	Direct to Home
EEPC	End-to-End Power Control
EHF	Extremely High Frequency
EIRP	Effective Isotropic Radiating Power
FMT	Fade Mitigation Technique
FSS	Fixed Satellite Service
G _d	gain contributed by the spatial separation
GEO	Geosynchronous Earth Orbit
G_{f}	frequency gain
GHz	Giga Hertz
G _{SD}	site diversity gain
GUI	Graphical User Interface
G_{θ}	gain term dependent on elevation angle
G_{ψ}	baseline-dependent gain
IEEE	Institute of Electrical and Electronic Engineering
ITU-R	International Telecommunication Union Radio-Broadcasting
LEO	Low Earth Orbit
MEO	Medium Earth Orbit

mm/h	milimetre per hour
MMS	Malaysia Metrological Services
OBBS	On-Board Beam Shaping
RF	Radio Frequency
RMS	Root Mean Square
S	second
SD	Site Diversity
SHF	Super High Frequency
TRMM	Tropical Rainfall Measuring Mission
ULPC	Uplink Power Control
U.S	United State of America
UTM	Universiti Teknologi Malaysia
VSAT	Very Small Aperture Terminal

LIST OF APPENDICES

APPENDIX	TITLE
Appendix A	Rain station with mean annual rainfall in Malaysia
Appendix B	The ITU-R specific attenuation parameters (ITU-R, P. 838-3)
Appendix C	The experimental specific attenuation parameters UTM-Skudai. Feb 2001-Feb2002
Appendix D	MATLAB Program for rain fall rate.
Appendix E	MATLAB Program for effective horizontal path.
Appendix F	Flow Chart to Calculate the Time
Appendix G	Flow Chart to Calculate the Fade Duration
Appendix H	Flow Charts to compile the Number of Events above a Given Duration
Appendix I	Sub-Program to Calculate Time
Appendix J	Sub-Program to Obtain the Fade Duration
Appendix K	Sub-Program to Calculate the Number of Fade Events

CHAPTER 1

INTRODUCTION

1.1 Introduction

The increasing growth of wireless communication system has caused the usage of higher frequencies in order to have wider band. However the increase of frequency will lead to the degradation of satellite communication performance. To combat rain attenuation, several fade mitigation techniques have been developed the most efficient one is the site diversity (SD) ESA Publication (2002).

Rain attenuation is one of the most fundamental limitations to the performance of satellite communication links, causing large variations in the received signal power. Although a lot of research has been conducted overseas to reduce the effect of rain fading such as investigation in fade duration statistics, these research efforts are really carried out in tropical countries, especially in the frequency 38GHz radio link communication.

Fade duration indicates the time length between two consecutive crossings of the received signal on the same attenuation threshold. This parameter is important for communications systems where length of time is a critical parameter. The fade duration is usually presented as statistics of the number of fade events at a given fade duration which is useful for the design of fade mitigation techniques. SD (Site Diversity) takes advantage of the spatial characteristics of the rainfall medium by using two earth stations to exploit the fact that the probability of attenuation due to rain occurring simultaneously on the alternative Earth-space paths is significantly less than the relevant probability occurring on either individual path. Though the cost effectiveness of SD remains questionable, the interest on SD has been renewed, due to the significant reduction of ground terminal antennas and other hardware sizes. Nowadays, terminals can be installed in customers' premises and the use of public terrestrial networks to carry out signaling seems possible ESA Publication (2002). Moreover, SD is considered for alternative feeder links of a satellite network.

1.2 Problem Statement

The problem statement of this project is stated in the following points:

- i- The incapability of the published prediction models to be sensitive of the available knowledge of rainfall on Malaysia climate.
- ii- The lakes in the dynamic fade information (fade duration, depth, slop and interfade).
- iii- The lack of satellite propagation studies in Malaysia, especially for higher frequency band.
- iv- A diversity control unit coordinating the signal flow and a signal processing unit must be incorporated at the master and the other earth station, respectively.
- v- There is no previous calculation for diversity gain in Malaysia.

1.3 Objective

The objectives of this project is to determine the effects of site diversity under the rain conditions and calculate the diversity gain. will be done by using experimental data as well as ITU-R study group 3 databank, and analyze in an easy to use environment features by using Mat-lab program.

The objective main approach is to enhance the existing satellite services at Ku-band under the rain conditions, study the rain and fade effect on the satellite, then the site diversity and try to get a new parameter for future satellite site diversity systems to get the data from higher frequency band such as Ka-band and above then transfer it to other satellite. The local experimental data will be used as function to enhance the prediction techniques for satellite path instead of using the theoretical models, which mainly based on experimental data of temperate regions.

1.4 Scope of work

- Specify rain attenuation data collected from Ericsson Microwave Link in (WCC) at UTM.
- Conversion of the terrestrial rain attenuation data for satellite application.
- Perform the Site Diversity based on available collective data.
- Obtain Similar profile from ITU-R group 3 databank.
- Calculate the fade duration statistics.
- Evaluate the effect of SD and compare it with various SD equations [1].
- Diversity improvement factor and diversity gain calculation.

• Calculate the site diversity gain.

1.5 Methodology

The main contribution of this project is to propose of combine the estimation of slant path rain attenuation and SD gain. It includes the designing of algorithm flow which incorporated into MATLAB programming software. It is hoped that with the availability of data, the design process of fade mitigation techniques will be greatly simplified. The ITU-R study Group 3 database will be use.

Therefore, the scope of this project consists of three parts, rain attenuation prediction techniques of slant path and terrestrial path, fade mitigation techniques and site diversity gain. The methodology diagram of overall project is shown in figure 1.1.

Figure (1.1) Methodology diagram of overall project

Step 1

- Depend on the yearly and average one year (between February 2001 and February 2002) UTM skudai data.
- Various locations in Malaysia data and concentrate on Johor.
- Tropical data from international data bank (DBSG5).

Step 2

- Calculate the specific attenuation, reduction factor and slant path for effective vertical and horizontal length for the collected data in Skudai.
- Calculate the vertical and horizontal slant path by using ITUR data for Skudai and Johor baharu.
- Simulate the slant paths calculated data against different time percentage for vertical and horizontal data.

Step 3

• Calculate and simulate the relationship between percentages of time with and without diversity for the same attenuation according to improvement factor formula.

Step 4

- Calculate the Fade duration statistics.
- Calculate and simulate the relationship between attenuation and percentage of time for two sites in different distance depending on the improvement factor table, fade duration statistics and site diversity formula.

Step 5

• Calculate the gain lost from the formula :

$$G = G_d \cdot G_f \cdot G_\theta \cdot G_\psi \qquad \text{dB}$$

1.6 Thesis Outline

Chapter 1: Consists of introduction of the project. The objectives of the project are clearly phased with detailed. The research scope and methodology background are also presented.

Chapter 2: Included introduction to the satellite communication, begins with an overview of propagation effects. Explain brief details about Malaysia climate characteristic. Rainfall distribution and rain vertical profile structure characteristics and its type also presented.

Chapter 3: include fade Durations in tropical climates, explained about fade duration modeling, overviewed of fade mitigation technique and explained accumulative distribution functions.

Chapter 4: Present site diversity and site diversity gain equations.

Chapter 5: Methodology and resents the results, analysis and discussion for the simulation program, the calculation of the attenuation, fade duration statistics, site diversity and site diversity gain calculations.

Chapter 6: Concludes the thesis. The conclusion is given based on the analysis of results from the previous chapter. Recommendations for future works are also presented.