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ABSTRACT 

 

 

 

 

In recent years, there is more and more design on MOSFET that has been 

developed to fulfill the market need.  This project focused on the comparison of 

planar and vertical n-channel MOS transistor characteristic with effective channel 

length of 100nm down to 50nm.  Planar and vertical n-channel MOS transistors with 

effective channel length ranged from 50nm to 100nm has been developed.  

Simulation of the device design is done by using Silvaco-DevEdit.  Short channel 

effect (SCE) is investigated through out the device simulation.  SCEs affect on 

device and circuit performance in off-state leakage current and VT roll-off.  At the 

device simulation process, using Silvaco Atlas, the electrical parameter is extracted 

to investigate the device characteristic.  Several design analysis are performed to 

investigate the effectiveness and robustness of the method in order to prevent the 

varying threshold voltage or short channel effect of a MOSFET device.  A single 

channel vertical NMOS shows better VT roll-off and better subthreshold swing at 

~85mV/decade.  On the other hand, planar NMOS has lower threshold voltage value 

which is suitable for low voltage devices.  With these advantages from each NMOS 

analysis, one can decide which device to use to achieve required specification for 

specific usage in future. 
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ABSTRAK 

 

 

 

 

Satu kajian telah dijalankan untuk membandingkan ciri-ciri antara MOSFET 

saluran-n jenis mendatar dan menegak.  Setiap peranti mempunyai saluran efektif 

sepanjang 50nm hingga 100nm telah dibangunkan.  Peranti telah direka 

menggunakan Slvaco-DevEdit.  Kesan kurang sempurna dalam rekaan MOSFET 

seperti kesan saluran pendek telah dikaji. Kesan yang berlaku adalah seperti arus 

bocor dan kejatuhan voltan ambang.  Pada simulasi peranti, menggunakan Silvaco-

Atlas, parameter elektrikal telah diekstrak untuk megkaji ciri-ciri peranti.  Beberapa 

analisa peranti dilakukan untuk menyiasat keberkesanan kaedah yang telah 

digunakan dalam mengurangkan perubahan voltan ambang atau kesan saluran 

pendek bagi sesebuah MOSFET.  NMOS menegak bersaluran tunggal 

memperlihatkan kejatuhan voltan ambang yang lebih baik dan ayunan sub-ambang 

dalam lingkungan 85mV/dekad.  Manakala, NMOS mendatar memiliki voltan 

ambang yang lebih rendah yang bersesuaian dengan peranti bervoltan rendah. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

This project uses Silvaco DevEdit and Atlas as a primary fabrication process 

and simulation tool. First part of the report will elaborate more on the project 

background and fabrication process will be discussed regarding the development of 

planar and vertical n-channel MOSFET. This chapter also mention on the objective 

and scope of the project. 

 

 

 

 

1.1 Introduction 

 

 

Future high performance devices for higher speed and lower power 

consumption would require active device dimensions in the sub-100 nm regime.  

Chip complexity, chip performance, feature size, and the numbers of transistors 

produced each year are a few of the parameters of the semiconductor industry that 

have changed exponentially over the last 50 years.  The size reduction is in great 

improvement to MOSFET operation until the late 1990s with no deleterious 

consequences.  The difficulties with decreasing the size of the MOSFET have always 
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been associated with the semiconductor device fabrication process.  A steady path of 

constantly shrinking device geometries and increasing chip size has been followed by 

the integrated circuit industry for more than 30 years.  This strategy has been driven 

by the increased performance that the smaller devices make possible and the 

increased functionality that larger chips provide. 

 

 

Moore, one of the founders of Intel, observed in an article in the April 19, 

1965 issue of Electronics magazine that innovations in technology would allow a 

doubling of the number of transistors in a given space every year (in an update article 

in 1975, Moore adjusted the rate to every two years to account for the growing 

complexity of chips), and that the speed of those transistors would increase.  What is 

less well-known is that Moore also stated that manufacturing costs would 

dramatically drop as the technology advanced.  Moore's prediction, now popularly 

known as Moore's Law, had some startling implications, predicting that computing 

technology would increase in value at the same time it would actually decrease in 

cost.  This was an unusual idea at the time since, in a typical industry, building a 

faster, better widget with twice the functionality also usually means doubling the 

widget’s cost.  However, in the case of solid-state electronics, the opposite is true:  

Each time transistor size shrinks, integrated circuits (ICs) become cheaper and 

perform better. 

 

 

There are two main reasons that smaller MOSFETs are desirable in today’s 

world.  First, smaller MOSFETs allow more current to pass and second, it has 

smaller gates, thus lower capacitance.  These two factors bring to lower switching 

times and higher processing speeds.  Logic gates incorporating smaller MOSFETs 

have less charge to move as smaller MOSFETs have lower gate capacitance and the 

amount of charge on a gate is proportional to its capacitance.  There is another reason 

for scaled down MOSFETs, which is smaller MOSFETS can be packed more 

densely, resulting smaller chips and chips with more computing power in an area.   
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Figure1.1: Moore’s Law on increasing performance 

 

 

 

Figure 1.2: Moore’s Law on decreasing cost 
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1.2 Objectives 

 

 

The main objective of the project is to develop a planar and vertical n-channel 

MOSFET (NMOS) with a range of effective channel length of 100nm down to 50 

nm.  Many design aspects has to be considered when the MOSFET device is scaled 

down into deep submicron regime.  Short channel effects will appear whenever the 

MOSFET device is scaled down and gate oxide has to be thin enough to increase the 

device performance. 

 

 

The objectives of the study are listed as follows: 

1. To develop planar and vertical n-channel MOSFET using TCAD. 

2. To study the characteristic and to compare the performance between 

planar and vertical MOSFET. 

3. To analyze planar and vertical NMOS in nanometer regime 

 

 

 

 

1.3 Scope of Project 

 

 

Basic design structure has been implemented in designing the device in this 

project.  Generally, this project consists of two parts, which are the fabrication and 

the simulation process. 

 

 

1) Process simulation 

 

 The process used to fabricate the planar and vertical NMOS transistor will be 

simulated using Silvaco-DevEdit.  It is used to create the device structure, adding 

dopant, defining electrodes and creating the mesh.  It uses an advanced mesh 
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