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ABSTRACT 

 

 

 

 

Titanium alloys are widely used in the aerospace industry especially in 
airframes and engine components due to their high strength-weight ratio that is 
maintained at elevated temperature and their exceptional corrosion resistance.  
Nevertheless, titanium and its alloys are thought to be difficult-to-machine material 
due to their poor thermal properties and highly chemical reactivity.  In this study, Ti-
6Al-4V has been drilled using single-layer PVD-HIS-TiAlN coated carbide, Type A 
(T12-A) and Type C (T12-C and T13-C), multi-layer PVD-HIS-Supernitride coated 
carbide, Type A (S13-A) and Type C (S12-C and S13-C) and uncoated carbide Type 
B (U12-B and U13-B) and Type C (U12-C and U13-C) drills with different drill 
point geometry under various cutting speeds and constant feed rate.  The tool 
performance, tool failure modes and tool wear mechanisms were analyzed under 
various cutting speeds.  On the other hand, the cutting forces and the surface 
roughness were measured.  In this study, Type C drills outperformed Type A and B 
drills in terms of tool life for almost all the cutting conditions tested.  At low cutting 
speed of 25 m/min, the uncoated carbide tool of U12-C drills demonstrated the 
longest tool life, which resulted in low tool wear rate. The excellent improvement of 
both coated drills were mainly due to their ability of maintaining oxidation resistance 
and high hardness especially at elevated temperatures.  On the other hand, poor 
performance of Type B drills was mainly due to premature tool failure caused by 
severe chipping and breakage.  Non-uniform flank wear, chipping, cracking and 
catastrophic failure were the dominant failure modes of all tools under most cutting 
conditions tested.  These failure modes were mainly associated with adhesion, 
diffusion and plastic deformation wear mechanisms.  Based from the results 
obtained, it can be suggested that Type C drill was recommended and the lower 
cutting speed of 25 m/min should be employed in order to achieve high performance 
in drilling Ti-64.  
 

 

 

 

 

 

 



 

 

 

 

 

 

ABSTRAK 

 

 

 

 

Aloi titanium telah digunakan dengan meluas di dalam industri aero-angkasa 
untuk membuat kerangka pesawat dan komponen enjin disebabkan oleh nisbah 
diantara kekuatan-berat yang tinggi serta mampu bertahan pada suhu yang melampau 
dan tahan karat.  Tambahan lagi, aloi titanium adalah sukar untuk dimesin kerana 
sifat termalnya yang lemah dan mempunya tahap tindak balas kimia yang tinggi.  Di 
dalam kajian ini, Ti-6Al-4V telah digerudi menggunakan gerudi disalut selapis 
TiAlN pada karbida, Jenis A (T12-A) dan Jenis C (T12-C dan T13-C), disalut 
berlapis-lapis Supernitride pada karbida, Jenis A (S13-A) dan Jenis C (S12-C dan 
S13-C) dan karbida tanpa disalut, Jenis B (U12-B dan U13-B) dan Jenis C (U12-C 
dan U13-C) pada pelbagai halaju pemotongan dan kadar suapan malar.  Prestasi mata 
gerudi, mod kegagalan mata alat, dan mekanisma kehausan mata alat telah dianalisa 
pada keadaan penggerudian yang basah.  Daya pemotongan dan kekasaran 
permukaan pada dinding lubang juga telah diukur.  Di dalam kajian ini, gerudi Jenis 
C adalah lebih baik jika dibandingkan dengan Jenis A dan B dari aspek jangka hayat 
gerudi tersebut bagi hampir kesemua keadaan pemotongan.  Pada halaju pemotongan 
25 m/min, gerudi karbida tanpa disalut, U12-C mempamerkan jangka hayat yang 
lama dan kadar kehausan mata gerudi yang rendah. Peningkatan prestasi bagi gerudi 
karbida yang disalut adalah disebabkan oleh keupayaan gerudi tersebut untuk 
menangani pengoksidaan dan mempunyai kekerasan yang tinggi pada suhu yang 
melampau.  Prestasi yang buruk ditunjukkan oleh gerudi Jenis B adalah kerana 
kegagalan pra-matang disebabkan oleh sumbing yang ketara dan mata alat patah.  
Kehausan rusuk yang tidak seragam, sumbing, retakan dan kegagalan bencana 
merupakan mod kegagalan yang utama bagi semua mata alat pada hampir kesemua 
keadaan penggerudian.  Mod-mod kegagalan ini boleh jadi berkaitan dengan rekatan, 
resapan dan perubahan bentuk plastik.  Berdasarkan kepada keputusan yang dicerap, 
gerudi Jenis C telah disyorkan dengan halaju pemotongan pada 25 m/min bagi 
mencapai prestasi penggerudian yang optimum untuk menggerudi Ti-6Al-4V.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Titanium is more and more often utilized in critical services in a wide variety 

of chemical, surgical, ship building and aerospace industry.  Among the different 

alloys of titanium, Ti-6Al-4V is the most demanding due to its unique set of 

properties such as its high strength-to-weight ratio that can be maintained at elevated 

temperatures, corrosion and erosion resistance.  However the material causes severe 

problems during the machining process.  Ti-6Al-4V is notorious to machining due to 

its low thermal conductivity which causes high cutting temperature. At high 

temperature, it becomes chemically active and tends to react with most tool materials 

that are available today.  Premature tool failure and inhomogeneous deformation by 

catastrophic shear are the consequence of the combination problem, which makes the 

cutting force fluctuate and causes tool wear, thereby aggravating tool wear and 

chatter.  This poor machinability of titanium alloys has limited the cutting speed to 

less than 60 m/min in industrial applications (Komanduri and von Turkovich, 1981). 

 

 

As pointed out by Siekmann (1955), machining titanium and its alloys will always be 

a problem no matter what techniques are employed to transform this metal 



 

into chips.  Much previous researchers have been carried out to improve the 

machinability in machining of titanium alloys especially in turning (Komanduri and 

vonTurkovich,1981; Dearnley and Grearson, 1986; Ezugwu and Wang, 2000; Jawaid 

et al., 1999; Kitagawa et al., 1997) and milling (Ezugwu and Pashby, 1991; Ezugwu 

and Machado, 1988; Jawaid et al., 2000; Min and Youzhen, 1988; Sharif et al.,2000).  

In contrast, very little work has been conducted in drilling of titanium and its alloy 

especially on Ti-6Al-4V.  Sakurai et al. (1991; 1992; 1996), Mantle et al. (1995), 

Arai and Ogawa (1997), Fujise and Ohtani (1998), Dornfeld et al. (1999), Lopez et 

al. (2000) and Syed et al. (2002) are among the researchers who investigated the 

drilling operation on titanium alloys. 

 

 

Sakurai et al. (1991; 1992; 1996) studied the drilling process of Ti-6Al-4V 

using high speed steel drill with different cutting strategies (intermittently 

decelerated feed drilling, vibratory drilling and supplied with high pressure of 

coolant). They concluded that intermittently decelerated feed drilling have improved 

the tool life.  Mantle et al. (1995) in their research found that the thrust force and 

torque for Ti-48Al-2Mn-2Nb was greater than Ti-6Al-4V using solid carbide drill.  

In another work, Arai and Ogawa (1997) had suggested that high pressure of coolant 

in drilling, can prolong the tool life.  The comparison of cooling methods was 

performed by Lopez et al. (2000).  They found that a significant improvement on tool 

life was achieved when applying high pressure internal cooling during drilling of Ti-

6Al-4V. 

 

 

As pointed by Fujise and Ohtani (1998), the rapid tool wear and the chip 

adhesion to the cutting edges which resulted in short tool life of high speed steel 

drill, was mainly due to the combination of heat generated and the concentration of 

thermal stress on the tool.  Dornfeld et al. (1999) investigated the influences of 

related parameters of high speed steel and solid carbide drills on drilling burr 

formation and they proposed several basic burr formation mechanism during drilling 

Ti-6Al-4V. Syed et al. (2002) conducted several drilling experiments in Ti-6Al-4V 

using different tool geometries of solid carbide drills to determine the burr on the exit 

hole and hole surface roughness.  They found that drill with two helical flutes 



 

produced poor results.  Although there have been great improvement with regards to  

drilling of titanium alloy in the last decade, the most recent literatures revealed that 

the study on the effect of drill point geometry and tool coating is still limited and 

worth exploring.  Therefore, considerable research effort in drilling of titanium alloy 

offers a significant potential in understanding the effect of the drill point geometry 

and coating performance.  

 

 

 

 

1.2 Aims and Objectives  

 

 

Drilling can be classified as a finishing process because most of the other 

machining processes like milling and turning were done first. Any failure during this 

process will cause a huge lost in terms of raw materials.  This research is designed to 

evaluate the machining performance of uncoated WC-Co carbide tools, single layer 

PVD-HIS TiAlN coated carbide tools and multi layer PVD-HIS- Supernitride coated 

carbide tools as well as various types of drill point geometry when drilling Ti-6Al-

4V.  The specific objectives of this study are to:   

 

 

a) establish acceptable cutting conditions for each type of carbide tool when 

drilling Ti-6Al-4V at various cutting conditions. 

b) investigate the wear mechanism and tool failure modes of different type of 

carbide tools when drilling Ti-6Al-4V at various cutting conditions and 

various drill point geometries. 

c) investigate the effect of various cutting conditions and various drill point 

geometries on tool life performance as well as the cutting forces.  

investigate the effect of various cutting conditions and various drill point geometry 

on surface finish of the machined surface. 

 

 

 




