PERFORMANCE EVALUATION OF UNCOATED AND COATED CARBIDE TOOLS WHEN DRILLING TITANIUM ALLOY

ERWEEN BIN ABD. RAHIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

SEPTEMBER 2005

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and most Compassionate

The author would like to thank Allah Almighty for blessing and giving me strength to accomplish this thesis. The author would like to acknowledge Assoc. Prof. Dr. Safian Sharif and Assoc. Prof. Zainal Abidin Ahmad for their guidance, help and relentless encouragement. Many of my accomplishments would not have been realized without his dedication to hard work. The author is also grateful to Kolej Universiti Teknologi Tun Hussein Onn for providing the financial assistant to the author throughout the study.

Special thank and appreciations goes to all the friends and technicians in Production Laboratory, Machine Shop and Material Laboratory, Faculty of Mechanical Engineering for their help at various occasions. In particular, thanks to Mr. Amrifan for his help and useful discussion.

My warmest thanks go to my parent and parent-in-law for their support. My highest appreciation goes to my wife and my son for their unconditional support and love that continuously fed my strength desire to succeed.

ABSTRACT

Titanium alloys are widely used in the aerospace industry especially in airframes and engine components due to their high strength-weight ratio that is maintained at elevated temperature and their exceptional corrosion resistance. Nevertheless, titanium and its alloys are thought to be difficult-to-machine material due to their poor thermal properties and highly chemical reactivity. In this study, Ti-6Al-4V has been drilled using single-layer PVD-HIS-TiAlN coated carbide, Type A (T12-A) and Type C (T12-C and T13-C), multi-layer PVD-HIS-Supernitride coated carbide, Type A (S13-A) and Type C (S12-C and S13-C) and uncoated carbide Type B (U12-B and U13-B) and Type C (U12-C and U13-C) drills with different drill point geometry under various cutting speeds and constant feed rate. The tool performance, tool failure modes and tool wear mechanisms were analyzed under various cutting speeds. On the other hand, the cutting forces and the surface roughness were measured. In this study, Type C drills outperformed Type A and B drills in terms of tool life for almost all the cutting conditions tested. At low cutting speed of 25 m/min, the uncoated carbide tool of U12-C drills demonstrated the longest tool life, which resulted in low tool wear rate. The excellent improvement of both coated drills were mainly due to their ability of maintaining oxidation resistance and high hardness especially at elevated temperatures. On the other hand, poor performance of Type B drills was mainly due to premature tool failure caused by severe chipping and breakage. Non-uniform flank wear, chipping, cracking and catastrophic failure were the dominant failure modes of all tools under most cutting conditions tested. These failure modes were mainly associated with adhesion, diffusion and plastic deformation wear mechanisms. Based from the results obtained, it can be suggested that Type C drill was recommended and the lower cutting speed of 25 m/min should be employed in order to achieve high performance in drilling Ti-64.

ABSTRAK

Aloi titanium telah digunakan dengan meluas di dalam industri aero-angkasa untuk membuat kerangka pesawat dan komponen enjin disebabkan oleh nisbah diantara kekuatan-berat yang tinggi serta mampu bertahan pada suhu yang melampau dan tahan karat. Tambahan lagi, aloi titanium adalah sukar untuk dimesin kerana sifat termalnya yang lemah dan mempunya tahap tindak balas kimia yang tinggi. Di dalam kajian ini, Ti-6Al-4V telah digerudi menggunakan gerudi disalut selapis TiAlN pada karbida, Jenis A (T12-A) dan Jenis C (T12-C dan T13-C), disalut berlapis-lapis Supernitride pada karbida, Jenis A (S13-A) dan Jenis C (S12-C dan S13-C) dan karbida tanpa disalut, Jenis B (U12-B dan U13-B) dan Jenis C (U12-C dan U13-C) pada pelbagai halaju pemotongan dan kadar suapan malar. Prestasi mata gerudi, mod kegagalan mata alat, dan mekanisma kehausan mata alat telah dianalisa pada keadaan penggerudian yang basah. Daya pemotongan dan kekasaran permukaan pada dinding lubang juga telah diukur. Di dalam kajian ini, gerudi Jenis C adalah lebih baik jika dibandingkan dengan Jenis A dan B dari aspek jangka hayat gerudi tersebut bagi hampir kesemua keadaan pemotongan. Pada halaju pemotongan 25 m/min, gerudi karbida tanpa disalut, U12-C mempamerkan jangka hayat yang lama dan kadar kehausan mata gerudi yang rendah. Peningkatan prestasi bagi gerudi karbida yang disalut adalah disebabkan oleh keupayaan gerudi tersebut untuk menangani pengoksidaan dan mempunyai kekerasan yang tinggi pada suhu yang melampau. Prestasi yang buruk ditunjukkan oleh gerudi Jenis B adalah kerana kegagalan pra-matang disebabkan oleh sumbing yang ketara dan mata alat patah. Kehausan rusuk yang tidak seragam, sumbing, retakan dan kegagalan bencana merupakan mod kegagalan yang utama bagi semua mata alat pada hampir kesemua keadaan penggerudian. Mod-mod kegagalan ini boleh jadi berkaitan dengan rekatan, resapan dan perubahan bentuk plastik. Berdasarkan kepada keputusan yang dicerap, gerudi Jenis C telah disyorkan dengan halaju pemotongan pada 25 m/min bagi mencapai prestasi penggerudian yang optimum untuk menggerudi Ti-6Al-4V.

TABLE OF CONTENTS

CHAPTER	TITLE							
	DECL	ARATION	ii					
	ACKN	IOWLEGEMENTS	iii					
	ABSR	ТАСТ	iv					
	ABST	RAK	v					
	TABL	E OF CONTENTS	vi					
	LIST	LIST OF TABLES LIST OF FIGURES						
	LIST							
	LIST	OF SYMBOLS	xix					
	LIST	OF APPENDICES	xxi					
1		INTRODUCTION	1					
	1.1	Background	1					
	1.2	Aims and Objectives	3					
2		LITERATURE SURVEY	4					
	2.1	Introduction to Metal Cutting	4					
		2.1.1 Force Model in Orthogonal Metal Cutting	5					
		2.1.2 Basic Hole Making	8					
		2.1.3 Geometry of Twist Drill	9					
		2.1.4 Mechanics of Drilling Process	12					

	2.1.5 Chip Formation in Drilling	14
2.2	Cutting Tool Materials	17
	2.2.1 Introduction	17
	2.2.2 Type of Cutting Tool Materials	17
	2.2.3 Tool Coatings	19
2.3	Tool Wear and Failure Modes in Drilling	22
	2.3.1 Introduction	22
	2.3.2 Tool Wear	22
	2.3.3 Tool Failure Modes	25
2.4	Tool Life	29
	2.4.1 Tool Life Criteria	29
2.5	Tool Wear Mechanism	32
	2.5.1 Abrasion Wear	32
	2.5.2 Adhesion Wear	33
	2.5.3 Diffusion Wear	34
2.6	Surface Finish, Ra (µm)	35
2.7	Titanium and Its Alloy	37
	2.7.1 Titanium Alloy Characteristics	38
2.8	Machinability of Titanium and Its Alloy	40
	2.8.1 Drilling of Titanium Alloy	40
	RESEARCH METHODOLOGY	43
3.1	Introduction	43
3.2	Workpiece Material	43
3.3	Cutting Tool	45
3.4	Drilling Experimental	47
3.5	Tool Wear Measurement	49
3.6	Tool Life Criteria	51
3.7	Surface Roughness Measurement	51
3.8	Preparation and Analysis of Worn Tools	52

EXPERIMENTAL RESULTS

Introdu	action		
Uncoat	ted Carbide Tools (U12-B, U13-B, U12-C		
and U1	(3-C)		
4.2.1	Tool Wear, Tool Failure Modes and Tool		
	Life		
4.2.2	Thrust Force		
4.2.3	Surface Roughness		
4.2.4	Comparative Tests on Tool Life when		
	Drilling Ti-64 with Uncoated Carbide Tools		
4.2.5	Comparative Tests on Thrust Force when		
	Drilling Ti-64 with Uncoated Carbide Tools		
TiAlN	TiAlN Coated Carbide Tools (T12-C and T13-C)		
4.3.1	Tool Wear, Tool Failure Modes and Tool		
	Life		
4.3.2	Thrust Force		
4.3.3	Surface Roughness		
4.3.4	Comparative Tests on Tool Life when		
	Drilling Ti-64 with TiAlN Coated Carbide		
	Tools		
4.3.5	Comparative Tests on Thrust Force when		
	Drilling Ti-64 with TiAlN Coated Carbide		
	Tools		
Supern	itride Coated Carbide Tools (S13-A, S12-C		
and S1	3-C)		
4.4.1	Tool Wear, Tool Failure Modes and Tool		
	Life		

- 4.4.2 Thrust Force 108
- 4.4.3 Surface Roughness 111
- 4.4.4 Comparative Tests on Tool Life when 114 Drilling Ti-64 with Supernitride Coated Carbide Tools

4

4.1

4.2

4.3

4.4

54

54

55

66

71

72

72

77

78

89

92

95

97

98

98

4.4.5 Comparative Tests on Thrust Force when 116 Drilling Ti-64 with Supernitride Coated Carbide Tools

DISCUSSION 117

5.1 Introduction			uction	117
5	.2	Tool F	ailure Modes	118
		5.2.1	Flank Wear	119
		5.2.2	Brittle Fracture (Chipping, Cracking and	119
			Fracturing)	
5	.3	Tool V	Vear Mechanism	123
		5.3.1	Adhesion and Attrition Wear	123
		5.3.2	Diffusion Wear	127
5	.4	Effect	of Cutting Variables on Tool Life	132
		5.4.1	Effect of Cutting Speed	132
		5.4.2	Effect of Coating Material (TiAlN and	133
			Supernitride)	
		5.4.3	Effect of Drill Point Geometry	136
5	.5	Effect	of Cutting Variables on Thrust Force	137
		5.5.1	Effect of Cutting Speed	137
		5.5.2	Effect of Drill Point Geometry	138
		5.5.3	Effect of Coating Materials (TiAlN and	140
			Supernitride)	
5	.6	Surfac	e Roughness	141
6		CON	CLUSIONS AND RECOMMENDATION	144
6	.1	Conclu	usions	144
6	.2	Recon	nmendations for Future Work	145
REFERENCES				147
APPENDICES	А	Public	ations	161
	В	Flow (Chart	162

5

LIST OF TABLES

FIGURE NO.

TITLES

PAGE

3.1	Mechanical properties of Ti-64 at room temperature	44
3.2	Chemical composition of Ti-64 (wt. %)	44
3.3	Nominal composition and properties of cutting tool	45
3.4	Tool geometry for Type A drill	46
3.5	Tool geometry for Type B drill	46
3.6	Tool geometry for Type C drill	47
3.7	The summary of experimental conditions in drilling	49
	Ti-64	
4.1	Tool life and failure modes data when drilling Ti-64	56
	with uncoated carbide drills (Type B)	
4.2	Tool life and failure modes data when drilling Ti-64	56
	with uncoated carbide drills (Type C)	
4.3	Tool life and failure modes data when drilling Ti-64	79
	with TiAlN coated carbide drills (Type A)	
4.4	Tool life and failure modes data when drilling Ti-64	79
	with TiAlN coated carbide drills (Type C)	
4.5	Tool life and tool failure modes results when drilling	100
	Ti-64 with Supernitride coatings (Type A)	
4.6	Tool life and tool failure modes results when drilling	101
	Ti-64 with Supernitride coatings (Type C)	

LIST OF FIGURES

FIGURE NO.

TITLES

PAGE

2.1	Metal cutting process model (a) orthogonal cutting, (b)	5
	oblique cutting	
2.2	Force diagram in orthogonal cutting	7
2.3	The main parts of the twist drill body	9
2.4	Force components in drilling process	14
2.5	Chip formation in metal cutting	15
2.6	The effect of rake angle in chip formation	16
2.7	Curly chip ejected from the hole	17
2.8	Comparison of toughness and hardness for each cutting	19
	tool materials	
2.9	Typical stages of tool wear in machining	23
2.10	Various types of drill wear	24
2.11	Measurement of flank wear	24
2.12	Plastic deformation at the edge of tool	27
2.13	The formation of BUE on the cutting edge	28
2.14	Location of flank wear land on the drill	31
2.15	A method to measure outer corner wear from a fixed	31
	reference point	
2.16	Different systems of surface roughness measurement	36
2.17	Strength-to-weight ratios of structural materials	38
2.18	Densities of various materials	38

3.1	Microstructure of Ti-6Al-4V (Ti-64) at magnification of	44
	200x	
3.2	CNC MAHO MH 700S machining center	48
3.3	Experimental set-up	48
3.4	Nikon toolmakers' microscope	50
3.5	Zeiss Stemi 2000-C microscope	50
3.6	Zeiss Handysurf E-35A	52
3.7	Cross-section of the sample preparation	53
4.1	Tool wear progression for (a) U12-B and (b) U13-B at	57
	various cutting speeds and feed of 0.06 mm/rev	
4.2	Tool wear progression for (a) U12-C and (b) U13-C at	58
	various cutting speeds and feed of 0.06 mm/rev	
4.3	Typical pattern of tool wear for U12-B and U13-B at	59
	various cutting speeds and feed of 0.06 mm/rev	
4.4	Typical pattern of tool wear for U12-C and U13-C at	60
	various cutting speeds and feed of 0.06 mm/rev	
4.5	Magnified images of Type B drills showing chipping on	61
	the cutting edge	
4.6	Magnified images of Type C drills showing chipping on	62
	the cutting edge	
4.7	Material adhesion observed at (a) chisel edge and (b)	63
	cutting edge of Type B tool after drilling Ti-64 for 0.4	
	seconds at 55 m/min and 0.06 mm/rev	
4.8	Material adhesion observed at (a) chisel edge and (b)	64
	cutting edge of Type C tool after drilling Ti-64 for 1	
	minute at 55 m/min and 0.06 mm/rev	
4.9	Crack on the flank face of U13-C tool after drilling Ti-64	65
	for 1 minute at 55 m/min and 0.06 mm/rev	
4.10	Effect of cutting speed and drill geometry on tool life	67
	when drilling Ti-64 with uncoated carbide tools	
4.11	Thrust force for (a) U12-B and (b) U13-B at various	68
	cutting speeds and feed 0.06 mm/rev	

4.12	Thrust force for (a) U12-C and (b) U13-C at various	69
	cutting speeds and feed 0.06 mm/rev	
4.13	Effect of cutting speed and drill geometry on thrust force	70
	when drilling Ti-64 with uncoated carbide tools	
4.14	Surface roughness for (a) U12-B and (b) U13-B at various	73
	cutting speeds and feed 0.06 mm/rev	
4.15	Surface roughness for (a) U12-C and (b) U13-C at various	74
	cutting speeds and feed 0.06 mm/rev	
4.16	Effect of cutting speed and drill geometry on surface	75
	roughness when drilling Ti-64 with uncoated carbide tools	
4.17	Tool life comparison of uncoated carbide tools when	76
	drilling Ti-64	
4.18	Flank wear versus cutting time of U120C and U13-C tools	76
	when drilling Ti-64 at cutting speed of 25 m/min and feed	
	of 0.06 mm/rev	
4.19	Thrust force comparison of uncoated carbide tools when	77
	drilling Ti-64	
4.20	Tool wear propagation for T12-A at various cutting speeds	80
	and feed 0.06 mm/rev	
4.21	Tool wear propagation for (a) T12-C and (b) T13-C at	81
	various cutting speeds and feed 0.06 mm/rev	
4.22	Typical pattern of tool wear for T12-A at various cutting	82
	speeds and feed 0.06 mm/rev	
4.23	Typical pattern of tool wear for T12-C and T13-C at	83
	various cutting speeds and feed 0.06 mm/rev	
4.24	Magnified image of Type A (T12-A) drill showing a non-	84
	uniform flank wear, chipping and workpiece adhesion	
	after drilling 7 seconds at 55 m/min	
4.25	Magnified image of Type C (T12-C) drill showing a	85
	chipping, adhered material and micro-crack after 2	
	minutes at 45 m/min	

4.26	Magnified image of Type C (T13-C) drill showing a micro-chipping and micro-crack after 3 minutes at 55 m/min	86
4.27	Effect of cutting speeds and drill geometry on tool life when drilling Ti-64 with TiAlN coated carbide tools (T12-	88
4.28	A) Effect of cutting speeds and drill geometries on tool life when drilling Ti-64 with TiAlN coated carbide tools (T12- C and T13-C)	88
4.29	Thrust force for T12-A at various cutting speeds and feed 0.06 mm/rev	89
4.30	Thrust force for (a) T12-C and (b) T13-C at various cutting speeds and feed 0.06 mm/rev	90
4.31	Effect of cutting speeds and drill geometry on thrust force when drilling Ti-64 with TiAlN coated carbide tools (T12- A)	91
4.32	Effect of cutting speeds and drill geometries on thrust force when drilling Ti-64 with TiAlN coated carbide tools (T12-C and T13-C)	91
4.33	Surface roughness for T12-A at various cutting speeds and feed 0.06 mm/rev	93
4.34	Surface roughness for T12-C at various cutting speeds and feed 0.06 mm/rev	93
4.35	Surface roughness for T13-C at various cutting speeds and feed 0.06 mm/rev	94
4.36	Effect of cutting speeds and drill geometry on surface roughness when drilling Ti-64 with 95TiAlN coated carbide tools (T12-A)	94
4.37	Effect of cutting speeds and drill geometries on surface roughness when drilling Ti-64 with TiAlN coated carbide tools (T12-C and T13-C)	95

4.38	Tool life comparison of TiAlN coated carbide tools when	96
	drilling Ti-64	
4.39	Flank wear versus cutting time of T12-A and T13-C tools	97
	when drilling Ti-64 at cutting speed of 25 m/min with feed	
	of 0.06 mm/rev	
4.40	Thrust force comparison of TiAlN coated carbide tools	98
	when drilling Ti-64	
4.41	Tool wear propagation for S13-A at various cutting speeds	101
	and feed 0.06 mm/rev	
4.42	Tool wear propagation for S12-C at various cutting speeds	102
	and feed 0.06 mm/rev	
4.43	Tool wear propagation for S13-C at various cutting speeds	102
	and feed 0.06 mm/rev	
4.44	Non-uniform flank wear, chipping and adhered material	103
	on the flank face of S13-A tool after drilling Ti-64 for 40	
	seconds at 55 m/min and 0.06 mm/rev	
4.45	Typical pattern of tool wear for S13-A at various cutting	104
	speed and feed 0.06 mm/rev	
4.46	Typical pattern of tool wear for S12-C and S13-C at	105
	various cutting speed and feed 0.06 mm/rev	
4.47	Evidence of micro-crack of S13-C tool when drilling Ti-	106
	64 for 5 minutes at cutting speed of 35 m/min and feed	
	0.06 mm/rev	
4.48	Effect of cutting speeds and drill geometry on tool life	107
	when drilling Ti-64 with Supernitride coated carbide tools	
	(S13-A)	
4.49	Effect of cutting speeds and drill geometries on tool life	107
	when drilling Ti-64 with Supernitride coated carbide tools	
	(Type C, S12-C and S13-C)	
4.50	Thrust force for S13-A at various cutting speeds and feed	108
	0.06 mm/rev	

4.51	Thrust force for (a) S12-C and (b) S13-C at various	109
	cutting speeds and feed 0.06 mm/rev	

- 4.52 Effect of cutting speeds and drill geometry on thrust force 110 when drilling Ti-64 with Supernitride coated carbide tools (S13-A)
- 4.53 Effect of cutting speeds and drill geometries on thrust 110 force when drilling Ti-64 with Supernitride coated carbide tools (S12-C and S13-C)
- 4.54 Surface roughness versus cutting time when drilling Ti-64 111 with S13-A tool at various cutting speed and feed 0.06 mm/rev
- 4.55 Surface roughness versus cutting time when drilling Ti-64 112 with (a) S12-C tool and (b) S13-C tool at various cutting speed and feed 0.06 mm/rev
- 4.56 Effect of cutting speeds and drill geometry on surface 113 roughness when drilling Ti-64 with Supernitride coated carbide tools (S13-A)
- 4.57 Effect of cutting speeds and drill geometries on surface 113 roughness when drilling Ti-64 with Supernitride coated carbide tools (S12-C and S13-C)
- 4.58 Tool life comparison of Supernitride coated carbide tools 115 when drilling Ti-64
- 4.59 Flank wear versus cutting time of S13-A and S13-C tools 115 when drilling Ti-64 at cutting speed of 25 m/min with feed of 0.06 mm/rev
- 4.60 Thrust force comparison of Supernitride coated carbide 116 tools when drilling Ti-64
- 5.1 Non-uniform flank wear, micro-chipping and adhered 120 material on the cutting edge of U12-B tool at cutting speed of 45 m/min, feed 0.06 mm/rev

- 5.2 High magnification of sectioned by U13-C tool shows 122 evidence of cracks propagated when drilling Ti-64 after 1 minute at cutting speed 55 m/min and feed 0.06 mm/rev
- 5.3 High magnification of sectioned by T12-A tool shows 122 evidence of cracks propagated when drilling Ti-64 after 2 minutes at cutting speed 45 m/min and feed 0.06 mm/rev
- 5.4 SEM micrograph of S12-C at 45 m/min showing adhered 124 material on the flank face
- 5.5 SEM images of the flank face showing an irregular worn 125 surface chipping and the evidence of removed material from U13-B after drilling Ti-64 for 1 minute at 25 m/min and feed of 0.06 mm/rev
- 5.6 Magnified view of worn region of T12-A tool (from 126 Figure 4.24), showing evidence of removed tool particles after drilling Ti-64 for 7 seconds at 55 m/min and feed of 0.06 mm/rev
- 5.7 Section of worn T12-C tool, showing adherent workpiece 128 material on the cutting edge after drilling Ti-64 for 2 minutes at 45 m/min and 0.06 mm/rev
- 5.8 Section of worn T13-C tool, showing adherent workpiece 129 material on the cutting edge after drilling Ti-64 for 3 minutes at 55 m/min and 0.06 mm/rev
- 5.9 Section of worn S13-C tool, showing adherent workpiece 129 material on the cutting edge after drilling Ti-64 for 4 minutes at 45 m/min and 0.06 mm/rev
- 5.10 Section of worn S12-C tool, showing adherent workpiece 130 material on the cutting edge after drilling Ti-64 for 1 minute at 45 m/min and 0.06 mm/rev
- 5.11 EDAX analysis on the adherent workpiece material on 130 T12-C tool (from Figure 5.7)
- 5.12 EDAX analysis on the adherent workpiece material on 131 T13-C tool (from Figure 5.8)

5.13	EDAX	analysis	on the	adherent	workpiece	material	on	131
	S13-C t	cool (from	n Figur	e 5.9)				

- 5.14 EDAX analysis on the adherent titanium on S12-C tool 132 (from Figure 5.10)
- 5.15 Tool life of coated carbide tools when drilling Ti-64 135
- 5.16Average flank wear versus cutting time when drilling Ti-13564 at 25 m/min
- 5.17 Comparison of thrust force produced using type C 141 uncoated carbide, TiAlN coated carbide and Supernitride coated carbide tools
- 5.18 Comparison of surface roughness value produced using 143 uncoated carbide, TiAlN coated carbide and Supernitride coated carbide tools when drilling Ti-64

LIST OF SYMBOLS

α	-	Tool rake angle
b	-	Width of cut
β	-	Friction angle
C_T	-	Chisel edge wear (depth)
C_M	-	Chisel edge wear (width)
2d	-	Drill diameter
F_f	-	Component of parallel frictional force
F_p	-	Component of horizontal force
F_s	-	Component of horizontal shear force
F_t	-	Component of vertical force
i	-	Inclination angle
K_M	-	Crater wear
L	-	Lead length of the helix
M_w	-	Margin wear
N_f	-	Component of normal frictional force
N_s	-	Component of normal shear force
P_M	-	Chipping (width)
P_T	-	Chipping (depth)
2p	-	Drill point angle
R _a	-	Arithmetical mean deviation
R _{max}	-	Maximum height of the profile
Rz	-	Height of the profile irregularities in ten points
r	-	Drill radius
t_c	-	Undeformed chip thickness
V_{b}	-	Flank wear

$V_{b,max}$	-	Maximum flank wear
W	-	Web thickness
w	-	Outer corner wear
λ	-	Size of built-up edge
φ	-	Shear angle
σ_s	-	Normal stress
$ au_s$	-	Shear stress
ρ	-	Normalized radial coordinate
γ	-	Chisel edge angle
θ	-	Nominal clearance angle

LIST OF APPENDICES

APPENDIX.		TITLES	PAGE
А	Publications		161
В	Flow Chart		162

CHAPTER 1

INTRODUCTION

1.1 Background

Titanium is more and more often utilized in critical services in a wide variety of chemical, surgical, ship building and aerospace industry. Among the different alloys of titanium, Ti-6Al-4V is the most demanding due to its unique set of properties such as its high strength-to-weight ratio that can be maintained at elevated temperatures, corrosion and erosion resistance. However the material causes severe problems during the machining process. Ti-6Al-4V is notorious to machining due to its low thermal conductivity which causes high cutting temperature. At high temperature, it becomes chemically active and tends to react with most tool materials that are available today. Premature tool failure and inhomogeneous deformation by catastrophic shear are the consequence of the combination problem, which makes the cutting force fluctuate and causes tool wear, thereby aggravating tool wear and chatter. This poor machinability of titanium alloys has limited the cutting speed to less than 60 m/min in industrial applications (Komanduri and von Turkovich, 1981).

As pointed out by Siekmann (1955), machining titanium and its alloys will always be a problem no matter what techniques are employed to transform this metal into chips. Much previous researchers have been carried out to improve the machinability in machining of titanium alloys especially in turning (Komanduri and vonTurkovich,1981; Dearnley and Grearson, 1986; Ezugwu and Wang, 2000; Jawaid et al., 1999; Kitagawa et al., 1997) and milling (Ezugwu and Pashby, 1991; Ezugwu and Machado, 1988; Jawaid et al., 2000; Min and Youzhen, 1988; Sharif et al.,2000). In contrast, very little work has been conducted in drilling of titanium and its alloy especially on Ti-6Al-4V. Sakurai et al. (1991; 1992; 1996), Mantle et al. (1995), Arai and Ogawa (1997), Fujise and Ohtani (1998), Dornfeld et al. (1999), Lopez et al. (2000) and Syed et al. (2002) are among the researchers who investigated the drilling operation on titanium alloys.

Sakurai et al. (1991; 1992; 1996) studied the drilling process of Ti-6Al-4V using high speed steel drill with different cutting strategies (intermittently decelerated feed drilling, vibratory drilling and supplied with high pressure of coolant). They concluded that intermittently decelerated feed drilling have improved the tool life. Mantle et al. (1995) in their research found that the thrust force and torque for Ti-48Al-2Mn-2Nb was greater than Ti-6Al-4V using solid carbide drill. In another work, Arai and Ogawa (1997) had suggested that high pressure of coolant in drilling, can prolong the tool life. The comparison of cooling methods was performed by Lopez et al. (2000). They found that a significant improvement on tool life was achieved when applying high pressure internal cooling during drilling of Ti-6Al-4V.

As pointed by Fujise and Ohtani (1998), the rapid tool wear and the chip adhesion to the cutting edges which resulted in short tool life of high speed steel drill, was mainly due to the combination of heat generated and the concentration of thermal stress on the tool. Dornfeld et al. (1999) investigated the influences of related parameters of high speed steel and solid carbide drills on drilling burr formation and they proposed several basic burr formation mechanism during drilling Ti-6Al-4V. Syed et al. (2002) conducted several drilling experiments in Ti-6Al-4V using different tool geometries of solid carbide drills to determine the burr on the exit hole and hole surface roughness. They found that drill with two helical flutes produced poor results. Although there have been great improvement with regards to drilling of titanium alloy in the last decade, the most recent literatures revealed that the study on the effect of drill point geometry and tool coating is still limited and worth exploring. Therefore, considerable research effort in drilling of titanium alloy offers a significant potential in understanding the effect of the drill point geometry and coating performance.

1.2 Aims and Objectives

Drilling can be classified as a finishing process because most of the other machining processes like milling and turning were done first. Any failure during this process will cause a huge lost in terms of raw materials. This research is designed to evaluate the machining performance of uncoated WC-Co carbide tools, single layer PVD-HIS TiAIN coated carbide tools and multi layer PVD-HIS- Supernitride coated carbide tools as well as various types of drill point geometry when drilling Ti-6Al-4V. The specific objectives of this study are to:

- a) establish acceptable cutting conditions for each type of carbide tool when drilling Ti-6Al-4V at various cutting conditions.
- b) investigate the wear mechanism and tool failure modes of different type of carbide tools when drilling Ti-6Al-4V at various cutting conditions and various drill point geometries.
- c) investigate the effect of various cutting conditions and various drill point geometries on tool life performance as well as the cutting forces.

investigate the effect of various cutting conditions and various drill point geometry on surface finish of the machined surface.