FINITE ELEMENT ANALYSIS ON THE DEFECTED REINFORCED CONCRETE COLUMN

CHONG KEAN YEE

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE, 2007

To my beloved family

ACKNOWLEDGEMENT

First of all, I would like to express my greatest gratitude to all parties who have given me the co-operation and help. Without them, I would not be able to accomplish this Master's Project. Besides that, I am very thankful to my project supervisor, Dr. Redzuan Abdullah, for being a wise teacher and an understanding friend. I appreciate his guidance, enlightenment and most importantly his motivation.

Apart from that, sincere appreciation is conveyed to my beloved family and of course, Miss Goh, Hui Weng. Their invaluable encouragement, supports and understanding helped me to get through my tough moment.

Last but not least, thanks is extended to all of those who had directly and indirectly helped in this project.

ABSTRACT

In construction industry, misinterpretation of detail drawings is likely to occur in a tight-scheduled project, leading to the non-conformance with the detail drawings. This study is conducted on a damaged column of a real construction project, where the as-built dimension of its stump does not comply with the detail drawings. The stump is protruded from the wall and is hacked for aesthetic reason, thus the strength of the column is reduced. The aim for this study is to conduct a finite element analysis on the reinforced concrete column whose stump is damaged, to study the behaviour of the column. The strength level and maximum hacking allowed are determined. Non-linear analyses are performed on the column model using LUSAS. The accuracy of the finite element model is verified against experimental data published. The theoretical results are also used to verify the finite element model. From the analysis results, the load capacity, deflection and stress contour of the column with the respected degrees of damage at stump due to hacking are known. Subsequently, the failure mode of the column and the maximum hacking allowed are determined. Besides that, an equation for the particular column is established to determine the column capacity based on the damage done to the stump due to hacking. At the end of the study, it is found that the column having its stump hacked is still able to sustain its design load and maintain its stability.

ABSTRAK

Dalam industri pembinaan, kesilapan membaca lukisan perincian sering berlaku disebabkan oleh kesuntukan masa pihak bertanggung-jawab. Hal menyebabkan kesilapan dalam pembinaan di mana pembinaan tidak sama dengan lukisan perincian. Kajian ini dilakukan ke atas tiang dengan merujuk kepada projek pembinaan sebenar, yakni ukuran 'as-built' untuk tunggul tiang tidak sama dengan lukisan perincian. Oleh yang demikian, sebahagian daripada tunggul tiang tersebut telah dipecahkan, dan menyebabkan kekuatan tiang tersebut telah berkurangan. Tujuan utama kajian ini adalah untuk menjalankan analisis unsur terhingga ke atas tiang konkrit bertetulang, bagi mengkaji kelakuan tiang tersebut dan seterusnya mencari tahap kekuatan serta menentukan tahap pecahan maksimum yang dibenarkan. Justeru, analisis tidak lelurus dijalankan ke atas model tiang dengan menggunakan LUSAS. Demi menentukan kejituan analisis unsur terhingga, data eksperimen makmal dari pihak lain telah dirujuk. Daripada keputusan analisis yang dijalankan ke atas tiang tersebut, kapasiti beban, pesongan and kontur tegasan telah diperolehi. Hasil analisis mod kegagalan dan tahap pecahan yang dibenarkan telah dikenalpasti. Selain itu, satu rumus yang dapat menentukan kapasiti tiang telah diperolehi. Akhirnya, tiang tersebut didapati masih berupaya untuk menahan beban rekabentuk.

TABLE OF CONTENTS

TITLE

CHAPTER

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
LIST OF APPENDICES	xvi

INTR	CODUCTION	1
1.1	Background	1
1.2	Problems Statement	2
1.3	Objectives of the Study	3
1.4	Scopes of the Study	3
	INTR 1.1 1.2 1.3 1.4	INTRODUCTION1.1Background1.2Problems Statement1.3Objectives of the Study1.4Scopes of the Study

2	LITE	RATU	RE REVIEW	4
	2.1	Concre	ete	
		2.1.1	Stress-strain Relation in Compression of Concrete	4
		2.1.2	Elastic Modulus of Concrete	6

PAGE

2.2	Reinfo	orcing Steel	7
2.3	Reinfo	orced Concrete	8
2.4	Reinfo	orced Concrete Column	9
	2.4.1	Types of Column	10
	2.4.2	Column Classification and Failure Modes	10
	2.4.3	Capacity of the Reinforced Concrete Column	12
2.5	Fractu	re	13
2.6	Geom	etrical Non-linearity	15
2.7	Buckli	ing of Slender Column	16
2.8	Finite	Element Method	19
	2.8.1	Brief History	19
	2.8.2	Formulation of the Elements	19
	2.8.3	Finite Elements	19
	2.8.4	Verification of Results	20
	2.8.5	Basic Steps of Finite Element Analysis	20
2.9	LUSA	S	21
	2.9.1	The Iteration Procedures for Non-linear Static	22
		Analysis	
2.10	Studie	s done on Reinforced Concrete Column	23
	2.10.1	Slender High-strength Concrete Columns	23
		Subjected to Eccentric Loading	
	2.10.2	A Three Dimensional Finite Element Analysis	27
		of Damaged Reinforced Concrete Column	

RESE	CARCH	I METHODOLOGY	31
3.1	Introd	uction	31
3.2	Devel	opment of Finite Element	31
	3.2.1	Model Geometry	32
	3.2.2	Finite Element Meshing	33
	3.2.3	Material Properties	35
	3.2.4	Modelling of the Supports and the Load	36
		3.2.4.1 Modelling of the Supports and the	37
		Load – Cap Type I	

3

		3.2.4.2 Modelling of the Supports and the	39
		Load – Cap Type II	
	3.2.5	Non-linear Analysis Control Setting	41
	3.2.6	Verification of the Results and Discussions	41
3.3	Mode	lling of the Undamaged Reinforced Concrete	42
	Colun	nn	
	3.3.1	Column Geometry	43
	3.3.2	Finite Element Meshing	45
	3.3.3	Material Properties	47
	3.3.4	Modelling of the Supports and the Loading	48
	3.3.5	Non-linear Analysis Control Setting	49
3.4	Mode	lling of the Damaged Reinforced Concrete	50
	Colun	nn	
3.5	Verifi	cation of the Results and Discussion	53

4	RES	ULTS AND DISCUSSION	60
	4.1.	Introduction	60
	4.2.	Analysis Results	60
	4.3.	Failure Mode of the Column	63
	4.4.	Parametric study on the Column Capacity	72
	4.5.	Column Strength Level	76
		4.5.1. Maximum Hacking Allowed	76
		4.5.2. Stability of the On-site Column	78

CONC	CLUSIONS	79
5.1	Conclusions	79
5.2	Recommendations	80

REFERENCES	82
APPENDICES	84

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Details of columns in group A, B and C	24
2.2	The properties of the materials	28
3.1	Material properties of concrete	35
3.2	Materials properties of steel	36
3.3	Material properties concrete	47
3.4	Material properties steel	47
3.5	Section properties of the transformed section	55
4.1	Summary of the analysis results	62
4.2	Section properties of the column transformed section	67
4.3	Buckling load	68
4.4	Maximum displacement before buckling	68
4.5	Failure mode of the column (stump 20% - 70% damaged)	69
4.6	Summary of the column failure mode	69
4.7	Parameters in the study	72

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
1.1	The damage to the column	2
2.1	Typical stress-strain curve for concrete in compression	5
2.2	Static modulus of concrete	6
2.3	Typical stress-strain curve for reinforcing steel	7
2.4	Simplified stress-strain curve for reinforcing steel	8
2.5	P- Δ effect on slender column	11
2.6	Failure modes of column	12
2.7	Forces act on the column section	13
2.8	Different Modes of Fracture	14
2.9	P- Δ effect on a column	15
2.10	Buckling of an initially crooked column	17
2.11	Bending moment in the column	18
2.12	Flow chart for the basic steps of finite element analysis	21
2.13	Forms of modified Newton-Raphson iteration	22
2.14	Geometry and details of configurations (a) and (b)	24
2.15	Load arrangement for the test	25
2.16	Instrumentation of slender column	26
2.17	The model of the round column	29
3.1	Detail of column cross section	32
3.2	Column length	33
3.3	2-dimensional bar element with quadratic interpolation	34
3.4	Plane stress element with quadratic interpolation	34
3.5	Elastic-plastic model	35
3.6	Bearing plate	36

3.7	Stresses induced by eccentric point load	37
3.8	Spreading of point load into equivalent stress	38
3.9	Cap models	38
3.10	Redundant portion of cap model	39
3.11	Dimension for triangular cap	40
3.12	Models of cap	40
3.13	Graph of eccentric vertical load versus column mid-height	42
3.14	Detail of column cross section	43
3.15	Detail of column elevation	44
3.16	Geometries defined	45
3.17	Finite Element Meshing	46
3.18	Dimensions for cap model	48
3.19	Model for supports and load	49
3.20	Portion of damages at the stump due to hacking	50
3.21	Transmission length of the reinforcement	51
3.22	Column full model (60% of the stump is damaged)	52
3.23	Finite element model used for verification	53
3.24	Contour of ultimate equivalent stress	54
3.25	Column section	55
3.26	Effective length of the column	56
3.27	Comparison of results for vertical load against vertical	58
	displacement	
4.1	Graph of eccentric load against vertical displacement	61
4.2	Deflected shape of the column	62
4.3	Stress contour of the column having 0%-damaged stump	64
4.4	Stress contour of the column having 10%-damaged stump	64
4.5	Stress diagram of the critical section	65
4.6	Stress diagram of the critical section	66
4.7	Stress contour of the column having 50%-damaged stump	70
4.8	Elevation detail of the column	71
4.9	Graph of column capacity versus second moment of inertia	73
4.10	Graph of column capacity versus cross sectional area	73
4.11	Damaged stump section for $A_e = 90924 \text{ mm}^2$	74

4.12	Isometric view of the damaged stump	75
4.13	Cross section of the stump	77
4.14	Damage done to the column	78

LIST OF SYMBOLS

A _e	-	Transformed sectional area
As	-	Area of reinforcement
A _s '	-	Area of compression reinforcement
b	-	Width of column
d	-	Effective depth
d'	-	Depth to the compression reinforcement
E	-	Elasticity
Ec	-	Secant or static modulus of concrete
Es	-	Young's modulus of steel
e	-	Eccentricity of load
F _{cc}	-	Concrete compression force
F _{sc}	-	Reinforcement compression force
Fs	-	Reinforcement tension force
\mathbf{f}_{b}	-	Bond stress
\mathbf{f}_{bu}	-	Ultimate bond stress
\mathbf{f}_{cu}	-	Characteristic strength of concrete
$\mathbf{f}_{\mathbf{y}}$	-	Characteristic strength of reinforcement
h	-	Depth of column in the plane under consideration
Ie	-	Transformed section second moment of inertia
l _{anc}	-	Anchorage length
le	-	Effective column height
M _c	-	Moment before column buckle
M_{cap}	-	Moment capacity
Mo	-	Moment due to eccentric load
Ν	-	Column design load
N _{cap}	-	Column capacity
Ncrushing	-	Crushing load of column

- P Vertical load to the column
- P_c Buckling load
- r Radius of gyration
- x Depth to the neutral axis
- α Modulus ratio
- β Coefficient dependant on the bar type
- γ_m Partial safety factor
- δ Second order lateral deflection
- δ_o Maximum deviation from the straightness at mid-height
- δ_y Vertical displacement of column
- ϵ_{sc} Reinforcement compression strain
- ϵ_s Reinforcement tension strain
- σ Stress
- ϕ_e Effective bar size

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Laboratory test results by Claeson and Gylltoft (1996)	84

CHAPTER 1

INTRODUCTION

1.1. Background

In construction industry, structural and architectural elements of a building are detailed in separate sets of drawings. When the time allocated for a project is short and the schedule is tight, misinterpretation of the drawings is likely to occur. As a result, non-conformance with either one of the drawings may happen during construction stage, leading to a conflict between aesthetic quality and structural stability.

This study is conducted in reference to a real construction project¹ where non-conformance of architectural and structural drawing has occurred. The site problem was initiated when a stump was cast higher than finished floor level, due to the misinterpretation of the drawings during levelling survey work. This resulted in the protrusion of the stump from acoustic wall surface. Hence, the stump was hacked to provide a flat surface for the installation of the acoustic wall (see Figure 1.1).

¹ The project name is not disclosed due to the request by the project owner.

Figure 1.1 : The damage to the column

The strength of the defected column is assumed to have reduced due to hacking. Because the column is an important structural member of the building, a study to determine its capacity is proposed.

1.2 Problem Statement

The type of structural defect due to hacking to the column as presented in this study is not common. Therefore, there is no comprehensive reference available with regards to the acquisition of the maximum capacity for the column. Also, the current code of practice (i.e. BS 8110) does not provide any provision on the design of structural members with openings, hence useful data and references are not available.

For the reasons stated above, analysis is required to understand the structural behaviour of the defected column and consequently know its load bearing capacity. The finite element method (FEM) is chosen as the analysis tool in this study, because it has the advantages in the ability of predicting localised and global behaviours of a structural member.

1.3 Objectives of the study

The objectives of the study are listed as below:

- 1. To conduct a study on a reinforced concrete (RC) column using finite element analysis, before and after the damage due to the over-hacking.
- 2. To comprehend the behaviour and to determine the strength level of the damaged RC column.
- 3. To determine the maximum hacking allowed to the RC column before failure.

1.4 Scopes of the Study

The scopes of the study are listed as below:

- 1. The finite element analysis is done by using LUSAS.
- 2. The linear and the non-linear analysis is done in 2-dimension.
- 3. Material and geometrical non-linearity are included in the analysis.
- 4. The study is based on the short-term behaviour of the concrete.
- 5. Analysis is conducted on a column according to the as-built details in the project