

GRAPH PROCESSING HARDWARE ACCELERATOR FOR SHORTEST PATH

ALGORITHMS IN NANOMETER VERY LARGE-SCALE INTEGRATION

INTERCONNECT ROUTING

CH’NG HENG SUN

UNIVERSITI TEKNOLOGI MALAYSIA

GRAPH PROCESSING HARDWARE ACCELERATOR FOR SHORTEST PATH

ALGORITHMS IN NANOMETER VERY LARGE-SCALE INTEGRATION

INTERCONNECT ROUTING

CH’NG HENG SUN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2007

iii

Specially dedicated to

 my beloved family

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest gratitude to Professor

Dr. Mohamed Khalil bin Haji Mohd Hani for giving me the opportunity to explore

new grounds in the computer-aided design of electronic systems without getting lost

in the process. His constant encouragement, support and guidance were key to

bringing this project to a fruitful completion. I have learnt and gained much in my

two years with him, not only in the field of research, but also in the lessons of life.

My sincerest appreciation goes out to all those who have contributed directly

and indirectly to the completion of this research and thesis. Of particular mention are

lecturer Encik Nasir Shaikh Husin for his sincere guidance and the VLSI-ECAD lab

technicians, En. Zulkifli bin Che Embong and En. Khomarudden bin Mohd Khair

Juhari, in creating a conducive learning and research environment in the lab.

Many thanks are due to past and present members of our research group at

VLSI-ECAD lab. I am especially thankful to my colleagues Hau, Chew, Illiasaak and

Shikin for providing a supportive and productive environment during the course of

my stay at UTM. At the same time, the constant encouragement and camaraderie

shared between all my friends in campus made life in UTM an enriching experience.

Finally, I would like to express my love and appreciation to my family who

have shown unrelenting care and support throughout this challenging endevour.

v

ABSTRACT

Graphs are pervasive data structures in computer science, and algorithms

working with them are fundamental to the field. Many challenging problems in Very

Large-Scale Integration (VLSI) physical design automation are modeled using

graphs. The routing problems in VLSI physical design are, in essence, shortest path

problems in special graphs. It has been shown that the performance of a graph-based

shortest path algorithm can severely be affected by the performance of its priority

queue. This thesis proposes a graph processing hardware accelerator for shortest path

algorithms applied in nanometer VLSI interconnect routing problems. A custom

Graph Processing Unit (GPU), in which a hardware priority queue accelerator is

embedded, designed and prototyped in a Field Programmable Gate Array (FPGA)

based hardware platform. The proposed hardware priority queue accelerator is

designed to be parameterizable and theoretically cascadable. It is also designed for

high performance and it exhibits a run-time complexity for an INSERT (or

EXTRACT) queue operation that is constant. In order to utilize the high performance

hardware priority queue module, modifications have to be made on the graph-based

shortest path algorithm. In hardware, the priority queue size is constrained by the

available logic resources. Consequently, this thesis also proposes a hybrid software-

hardware priority queue which redirects priority queue entries to software priority

queue when the hardware priority queue module exceeds its queue size limit. For

design validation and performance test purposes, a computationally expensive VLSI

interconnect routing Computer Aided Design (CAD) module is developed. Results of

the performance tests on the proposed hardware graph accelerator, graph

computations are significantly improved in terms of algorithm complexity and

execution speed.

vi

ABSTRAK

Graf adalah struktur data yang meluas dalam sains komputer, dan algoritma

yang bekerja dengan mereka adalah teras kepada bidang ini. Kebanyakan masalah

yang mencabar dalam bidang automasi rekabentuk fizikal ‘Very Large-Scale
Integration’ (VLSI) dimodelkan sebagai graf. Banyak masalah penyambungan wayar

dalam rekabentuk fizikal VLSI melibatkan masalah mencari-jalan paling pendek

dalam graf yang istimewa. Ianya juga telah di tunjukkan bahawa prestasi algoritma

mencari-jalan paling pendek berdasarkan graf dipengaruhi oleh prestasi baris gilir

keutamaan. Tesis ini mengusulkan perkakasan pemproses graf untuk

mempercepatkan perhitungan graf dalam masalah mencari-jalan paling pendek. Unit

Pemprosesan Graf (GPU), di mana modul perkakasan pemecut keutamaan giliran

dibenamkan dan prototaip dalam perkakasan ‘Field Programmable Gate Array’

(FPGA) dapat dibentuk semula. Modul perkakasan pemecut keutamaan giliran

tersebut direka supaya mudah diubahsuai, ia berprestasi tinggi dan mampu

memberikan kompleksiti masa-lari yang malar bagi setiap tugas SISIPAN atau

SARI. Untuk menggunakan perkakasan pemecut keutamaan giliran yang berprestasi

tinggi tersebut, pengubahsuaian ke atas algoritma graf juga dilakukan. Dalam

perkakasan, saiz baris gilir ketumaan dikekang oleh sumber-sumber logik yang ada.

Tesis ini juga mengusulkan pemecut keutamaan giliran hibrid berasaskan perkakasan

dan perisian, di mana sisipan ke perkakasan pemecut keutamaan giliran akan

ditujukan ke perisian apabila perkakasan pemecut keutamaan giliran tidak mampu

untuk menampungnya. Untuk pengesahan rekacipta dan pengujian prestasi, satu

modul pengkomputeran VLSI penyambungan wayar ‘Computer Aided Design’

(CAD) dibangunkan. Hasil kerja tesis ini menunjukkan bahawa perkakasan pemecut

yang diusulkan dapat mempercepatkan penghitungan graf, baik dari segi kerumitan

algoritma dan masa perlakuan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF SYMBOLS xvii

 LIST OF APPENDICES xviii

1 INTRODUCTION 1

 1.1 Background

1.2 Problem Statement

1.3 Objectives

1.4 Scope of Work

1.5 Previous Related Work

1.5.1 Hardware Maze Router and Graph Accelerator

1.5.2 Priority Queue Implementation

1.6 Significance of Research

1.7 Thesis Organization

1.8 Summary

1

3

4

5

6

6

8

10

11

13

viii

2 THEORY AND RESEARCH BACKGROUND 14

 2.1 Graph

2.2 Graph-based Shortest Path Algorithm

2.3 Priority Queue

2.4 Priority Queue and Dijkstra’s Shortest Path Algorithm

2.5 Modeling of VLSI Interconnect Routing as a Shortest

Path Problem

2.6 Summary

14

17

18

23

30

33

3 PRIORITY QUEUE AND GRAPH-BASED SHORTEST

PATH PROBLEM – DESCRIPTIONS OF

ALGORITHMS

34

 3.1 Priority Queue and the Insertion Sort Algorithm

 3.1.1 Insertion-Sort Priority Queue

3.2 Maze Routing with Buffered Elmore Delay Path

Optimization

3.3 Simultaneous Maze Routing and Buffer Insertion (S-

RABI) Algorithm

 3.3.1 Initial Graph Pruning in S-RABI

 3.3.2 Dijkstra’s Algorithm applied in S-RABI

 3.3.3 S-RABI in maze routing with buffered

interconnect delay optimization

3.4 Summary

34

35

39

45

45

47

49

56

4 ALGORITHM MODIFICATIONS FOR HARDWARE

MAPPING

57

 4.1 Modification in graph algorithm to remove

DECREASE-KEY operation

4.2 Modifications in Dijkstra’s and S-RABI algorithm

4.3 Modification of Insertion Sort Priority Queue

4.4 Summary

57

62

68

73

ix

5 THE GRAPH PROCESSING UNIT 74

 5.1 Introduction

5.2 System Architecture of Graph Processing Unit (GPU)

5.3 Priority Queue Accelerator Module

5.3.1 Specification and Conceptual Design of hwPQ

 5.3.2 Specification and Conceptual Design of

Avalon Interface Unit

5.4 hwPQ Device Driver

5.5 Hybrid Hardware-Software Priority Queue

(HybridPQ)

74

76

78

79

81

84

87

6 DESIGN OF PRIORITY QUEUE ACCELERATOR

MODULE

93

 6.1 Hardware Priority Queue Unit (hwPQ)

6.1.1 The design of Processing Element – RTL

Design

6.2 Pipelining in hwPQ

6.2.1 Data Hazards in the Pipeline

6.3 Timing Specifications of hwPQ

6.4 Avalon Interface Unit – Design Requirement

6.5 Avalon Interface Unit – RTL Design

6.5.1 Avalon Data Unit

6.5.2 Avalon Control Unit

93

98

102

104

108

113

114

115

117

7 SIMULATION, HARDWARE TEST AND

PERFORMANCE EVALUATION

119

7.1 Design Verification through Timing Simulation

7.1.1 Simulation of Priority Queue Accelerator

Module

7.2 Hardware Test

7.3 Comparison with priority queue software

119

119

123

125

x

implementation

7.4 Comparison with other priority queue hardware design

7.5 Performance Evaluation Platform

7.6 Performance of Priority Queue in Graph Computation

7.6.1 Worst Case Analysis

7.6.2 Practical Case Analysis

7.7 Summary

128

130

132

134

139

142

8 CONCLUSIONS 145

 8.1 Concluding Remarks

8.2 Recommendations for Future Work

145

147

REFERENCES 150

Appendices A - I 158 - 226

xi

LIST OF TABLES

TABLE NO TITLE PAGE

2.1 Run-time complexity for each operation among

different heap data structures.

 30

5.1 Avalon System Bus signal descriptions 82

5.2 Memory-mapped Register descriptions 83

6.1 IO Port Specifications of hwPQ 110

7.1 Set of Test Vectors 120

7.2 Resource Utilization and Performance of hwPQ 125

7.3 Comparison in Run-Time Complexity 126

7.4 Comparison in Number of Processor Cycles 126

7.5 Speed Up Gain by Priority Queue Accelerator

Module

 126

7.6 Comparison with other hardware implementations 129

7.7 Number of elapsed clock cycles per operation 144

8.1 Features of Hardware Priority Queue Unit (hwPQ) 146

xii

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 System Architecture 11

2.1 Two representations of an undirected graph 15

2.2 Two representation of a directed graph 15

2.3 A weighted graph 16

2.4 Shortest Path and Shortest Unit Path 17

2.5 Basic Operations of Priority Queue 19

2.6 Simplest way to implement Priority Queue 20

2.7 Priority Queue implemented as array or as heap 21

2.8 Set, Graph, Tree and Heap 22

2.9 Example of Binomial-Heap and Fibonacci-Heap 22

2.10 Function RELAX () 23

2.11 Relaxation 23

2.12 Dijkstra’s Shortest Path Algorithm 24

2.13 Illustration of Dijkstra’s algorithm 25

2.14 Illustration of the final execution result 29

2.15 VLSI layout represented in grid-graph 31

2.16 VLSI Routing as shortest unit path problem 31

2.17 Parallel expansion in Lee’s algorithm 32

2.18 VLSI Routing as shortest path (minimum-delay)

problem

 33

3.1 Insertion-Sort Algorithm 36

3.2 Insertion-Sort Priority Queue Algorithm 37

3.3 Operations in Insertion-Sort Priority Queue 38

3.4 A typical routing grid-graph 39

xiii

3.5 Typical maze routing algorithm with buffered

delay path optimixation

 40

3.6 Elmode Delay Model 41

3.7 Elmore Delay in hop-by-hop maze routing 42

3.8 Elmore Delay for buffer insertion in hop-by-hop

maze routing

 43

3.9 Graph pruning 46

3.10 Hop-by-hop Dijkstra’s Algorithm 48

3.11 Function Cost () 50

3.12 Function InsertCandidate () 51

3.13 Simltaneous Maze Routing and Buffer Insertion

(S-RABI)

 53

4.1 DECREASE-KEY and Relaxation 58

4.2 Function DECREASE-KEY () 59

4.3 INSERT in Relaxation 60

4.4 EXTRACT in Relaxation 61

4.5 Modifcation rules to remove DECREASE-KEY 61

4.6 Modified Dijkstra’s Algorithm – without

DECREASE-KEY

 62

4.7 Modified InsertCandidate () 63

4.8 Modified S-RABI Algorithm 65

4.9 Further optimization to reduce overhead 66

4.10 One-dimensional Systolic Array Architecture 68

4.11 Execution of identical task-cycles for one

operation

 69

4.12 Series of operations executed in pipeline 70

4.13 Modified Insertion-Sort Priority Queue 71

4.14 Example of INSERT_MOD operation 72

4.15 INSERT_MOD in identical sub-tasks of

Compare-and-Right-Shift

 76

5.1 NIOS II System Architecture 75

5.2 Different layers of software components in NIOS

II System

 76

xiv

5.3 Top-Level Architecture of Graph Processing

Unit

 76

5.4 GPU – Software/Hardware System Partitioning 78

5.5 Functional Block Diagram of Priority Queue

Accelerator Module

 79

5.6 Top-Level Description of hwPQ 80

5.7 Memory-mapped IO of Avalon Slave Peripheral 81

5.8 Functional Block Diagram of Avalon Interface

Unit

 82

5.9 Programming Model of Priority Queue

Accelerator Module

 84

5.10 Device driver routine for INSERT operation 85

5.11 Device driver routine for EXTRACT operation 85

5.12 Device driver routine for PEEK operation 86

5.13 Device driver routine for DELETE operation 87

5.14 Software Abstraction Layer of HybridPQ 88

5.15 Functional Block Diagram of HybridPQ 89

5.16 INSERT control mechanism in HybridPQ 90

5.17 EXTRACT control mechanism in HybridPQ 90

5.18 Functions provided in HybridPQ 91

6.1 Top-Level Functional Block Diagram of Priority

Queue Accelerator Module

 93

6.2 compare and right-shift tasks in an INSERT

operation

 94

6.3 Left-shift tasks on an EXTRACT operation 95

6.4 Hardware Priority Queue Unit 95

6.5 INSERT operation in systolic array based hwPQ 96

6.6 Execution of identical tasks for one operation 97

6.7 idle and left-shift tasks in EXTRACT 97

6.8 RTL Architecture of Processing Element 98

6.9 Communication between PEs 99

6.10 Behavioral Description of PE 100

6.11 RTL Control Sequence of PE 101

xv

6.12 Series of operations executed in pipeline 102

6.13 Pipelined execution of multiple INSERT 103

6.14 Pipelined execution of multiple EXTRACT 103

6.15 Symbolic representation of PEs in hwPQ 104

6.16 Example of INSERT followed by EXTRACT 105

6.17 Example of INSRT NOP EXTRACT 107

6.18 Several ways to insert idle state 108

6.19 Hardware Priority Queue Unit (hwPQ) 110

6.20 Timing Specification of hwPQ 111

6.21 Communication rule for RESET operation 113

6.22 Communication rule for INSERT operation 113

6.23 Communication rule for EXTRACT operation 114

6.24 Functional Block Diagram of Avalon Interface

Unit

 115

6.25 Functional Block Diagram of Avalon Data Unit 116

6.26 Behavioral Description of Avalon Data Unit 116

6.27 Functional Block Diagram of Avalon Control

Unit

 117

6.28 Behavioral Description of Avalon Control Unit 117

6.29 Control Flowchart of Avalon Control Unit 118

6.30 State Diagram of Avalon Control Unit 118

7.1 Simulation of Priority Queue Accelerator

Module

 121

7.2 Hardware Test Result 124

7.3 Overview of demonstration prototype 131

7.4 GUI of “VLSI Maze Routing DEMO”

application

 131

7.5 TPQ VS Entire Graph Computation Run-Time 133

7.6 Size of Priority Queue for Entire Graph

Computation

 133

7.7 Dijkstra’s – Maximum Queue Size VS Graph

Size

 134

7.8 S-RABI – Maximum Queue Size VS Graph Size 134

xvi

7.9 Dijkstra’s – Total number of operations VS

Graph Size

 135

7.10 S-RABI – Total number of operations VS Graph

Size

 135

7.11 S-RABI (FHPQ): Number of operations VS

Graph Size

 136

7.12 S-RABI (FHPQ): Total Cycle Elapsed for each

operation

 137

7.13 Dijkstra’s – Speed up Gain of using HybridPQ 137

7.14 S-RABI – Speed up gain of using HybridPQ 138

7.15 S-RABI – FHPQ: Maximum Queue Size VS

Graph Size

 139

7.16 S-RABI – HybridPQ: Maximum Queue Size VS

Graph Size

 140

7.17 High Dense – S-RABI: Speed up gain of using

HybridPQ

 140

7.18 Less Dense – S-RABI: Speed up gain of using

HybridPQ

 141

7.19 S-RABI – HybridPQ: Speed up gain VS

Maximum Queue Size

 141

7.20 Dijkstra’s – HybridPQ: Speed up Gain VS

Maximum Queue Size

 142

xvii

LIST OF SYMBOLS

API - Application Programming Interface

ASIC - Application Specific Integrated Circuit

CAD - Computer Aided Design

EDA - Electronic Design Automation

FPGA - Field Programmable Gate Array

GUI - Graphical User Interface

HDL - Hardware Development Language

IDE - Integrated Development Environment

I/O - Input/Output

LE - Logic Element

MHz - Megahertz

PC - Personal Computer

PE - Processing Element

RAM - Random Access Memory

RTL - Register Transfer Logic

SoC - System-on-Chip

SOPC - System-on-Programmable-Chip

UART - Universal Asynchronous Receiver Transmitter

UTM - Universiti Teknologi Malaysia

VHDL - Very High Speed Integrated Circuit Hardware Description Language

VLSI - Very Large Scale Integration

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Numerical Example of Dijkstra’s Algorithm 158

B Numerical Example of hop-by-hop Dijkstra’s

Algorithm

 167

C Numerical Example of S-RABI Algorithm 175

D Numerical Example of the Insertion Sort

Priority Queue Operation

 197

E Introduction to Altera Nios II Development

System

 203

F VHDL Source Codes of Priority Queue

Accelerator Module

 205

G C Source Code for hwPQ device driver and

HybridPQ API

 210

H Sample Graphs for Performance Test and

Evaluation

 216

I Design Verification – Simulation Waveform 219

CHAPTER 1

INTRODUCTION

This thesis proposes a graph processing hardware accelerator for shortest path

algorithms applied in nanometer VLSI interconnect routing problems. A custom

Graph Processing Unit (GPU), in which a hardware priority queue accelerator

module is embedded, designed and prototyped on a reconfigurable FPGA-based

hardware platform. The hardware priority queue accelerator off-loads and speed up

graph-based shortest path computations. For design validation and performance test

purposes, a computationally extensive VLSI interconnect routing CAD module (or

EDA sub-system) is developed to execute on the proposed GPU. This chapter

introduces the background of research, objectives, problem statement, scope of work,

previous related works and the significance of this research. The organization of

thesis is summarized at the end of the chapter.

1.1 Background

Graphs are pervasive data structures in computer science, and algorithms

working with them are fundamental to the field. There are many graph algorithms,

and the well-established ones include Depth-First Search, Breadth-First Search,

Topological Search, Spanning Tree algorithm, Dijkstra’s algorithm, Bellman-Ford

algorithm and Floyd-Warshall algorithm. These graph algorithms are basically

shortest path algorithms. For instance, Dijkstra’s algorithm is an extension of the

Depth-First Search algorithm except the former solves the shortest path problem on

weighted graph, while the latter solve the shortest unit path problem on unweighted

 2

graph. Bellman-Ford algorithm and Dijkstra’s algorithm solve single-source shortest

path problem, except the former targets graph with negative edges, while the latter is

restricted to graph with non-negative edges.

Many interesting problems in VLSI physical design automation are modeled

using graphs. Hence, VLSI electronic design automation (EDA) systems are based

on the graph algorithms. These algorithms include, among others, Min-Cut and Max-

Cut algorithms for logic partitioning and placement, Clock Skew Scheduling

algorithm for useful skew clock tree synthesis, Minimum Steiner Tree algorithm and

Span Minimum Tree algorithm for critical/global interconnect network synthesis,

Maze Routing algorithm for point-to-point interconnect routing, etc. Many routing

problems in VLSI physical design are, in essence, shortest path problems in special

graphs. Shortest path problems, therefore, play a significant role in global and

detailed routing algorithms (Sherwani, 1995).

Real world problems modeled in mathematical set can be mapped into

graphs, where elements in the set are represented by vertices, and the relation

between any two elements are represented by edges. The run-time complexity and

memory-consumption of graph algorithms are expressed in terms of the vertices and

edges. A graph searching algorithm can discover much about the graph structure.

Searching a graph means systematically following the edges of the graph so as to

visit the vertices of graph. Many graph algorithms are organized as simple

elaborations of basic graph searching algorithms (Cormen et al., 2001). Hence, the

technique of searching in a graph is the heart of these algorithms. In the graph

searching process, Priority Queues are used to maintain the tentative search results,

which can grow very large as the graph size increases. Consequently, the

implementation of these priority queues can significantly affect the run-time and

memory consumption of a graph algorithm (Skiena, 1997).

 3

1.2 Problem Statement

According to Moore’s Law, to achieve minimum cost, the number of

transistors in an Integrated Circuit (IC) needs to double every 18 months. Achieving

minimum cost per transistor entails enormous design effort and high non-recurrent-

engineering (NRE) cost. The design complexity grows proportionally to the increase

of transistor density, and subsequently, circuit engineers face tremendous design

challenges. When physical design moves into nanometer circuit integration range, we

would encounter a combinatorial explosion of design issues, involving signal

integrity, interconnect delay and lithography, which not only challenge the attempt

for effective design automation, but further the need to suppress NRE cost, which in

turn increases the demand of EDA (Electronic Design Automation) tools.

Conventional interconnect routing is rather straight-forward, and hence does

not pose too great a challenge to the development of algorithms. However, the

continual miniaturization of technology has seen the increasing influence of the

interconnect delay. According to the simple scaling rule (Bakoglu, 1990), when

devices and interconnects are scaled down in all three dimensions by a factor of S,

the intrinsic gate delay is reduced by a factor of S but the delay caused by

interconnect increases by a factor of S2. As the device operates at higher speed, the

interconnect delay becomes even more significant. As a result, interconnect delay has

become the dominating factor affecting system performance. In many system designs

targeting 0.35um – 0.5um, as much as 50% to 70% of clock cycles are consumed by

interconnect delay. This figure will continue to rise as the feature technology size

decreases further (Cong et al., 1996). Consequently, the effect of interconnect delay

can no longer be ignored in nanometer VLSI physical design.

Many techniques are employed to reduce interconnect delay; among them,

buffer insertion has been shown to be an effective approach (Ginneken, 1990). Hence,

in contrast to conventional routing which considers only wires, nanometer VLSI

interconnect routing considers both buffer insertion and wire-sizing along the

interconnect path, in order to achieve minimum interconnect delay. It is obvious that

the complexity of nanometer interconnect routing is greater, and in fact, grows

 4

exponentially when multiple buffer choices and wire-sizes (at different metal layers,

with different width and depth) are considered as potential interconnect candidates at

each point along the interconnect path.

In general, given a post-placement VLSI layout, there are restrictions on

where buffers may be inserted. For instance, it may be possible to route wires over a

pre-placed macro-cell, but it may not be possible to insert buffers in that region. In

this case, the routing has to, not only minimize the interconnect delay, but

simultaneously strive for good buffer location, manage buffer density and congestion,

and wire sizing. Consequently, many researches have proposed techniques in

simultaneous maze routing with buffer insertion and wire sizing to solve the above

interconnect routing problem.

A number of interconnect routing algorithms have been proposed, with

different strategies for buffer insertion (Chu and Wong, 1997; Chu and Wong, 1998;

Chu and Wong, 1999; Dechu et al., 2004; Ginneken, 1990; Lai and Wong, 2002;

Jagannathan et al., 2002; Nasir, 2005; Zhou et al., 2000). Most of these algorithms

are formulated as graph theoretic shortest path algorithms. Clearly, as many

parameters and constraints are involved in VLSI interconnect routing, these

algorithms are, essentially, multi-weighted multi-constrained graph search algorithms.

In graph search, the solution space and search results are effectively maintained

using priority queues. The choice of priority queue implementation, hardware or

software, differ significantly on how they affect the run-time and memory

consumption of the graph algorithms (Skienna, 1997).

1.3 Objectives

The overall objective of this thesis is to propose the design of a graph

processing hardware accelerator for high-speed computation of graph based

algorithm. This objective is modularized into the following sub-objectives:

 5

1) To design a Graph Processing Unit (GPU) customized for high-speed

computation of graph based shortest path algorithm.

2) To design a priority queue accelerator module to speed up priority queue

operations on the above custom GPU.

3) To verify the design and validate the effectiveness of accelerating, via

hardware, priority queue operations in a graph algorithm. This is derived

from performance validation studies on the application of the proposed GPU

executing a compute-intensive VLSI interconnect routing algorithm.

1.4 Scope of Work

1) The Graph Processing Unit (GPU) is implemented on FPGA-based embedded

system hardware platform on Altera Stratix II development board.

2) The priority queue accelerator module will have the following features:

a. It supports the two basic priority queue function: (i) INSERT and (ii)

EXTRACT.

b. It is parameterizable so that the implemented length of priority queue

can be adjusted based on available logic resources.

c. It is cascade-able such that further queue length extension is possible.

d. It is able to store each queue-entry in 64-bit: 32-bit for priority-value

and 32-bit for the associate-identifier.

3) A hybrid hardware-software priority queue is developed. It avoids overflow

at hardware priority queue module.

4) A demonstration application prototype is developed to evaluate the design.

System validation and performance evaluation are derived by examining the

graph based shortest path algorithms on this application prototype. Note that:

 6

a. The test algorithm is called S-RABI for Simultaneous Maze Routing

and Buffer Insertion algorithm, proposed by Nasir et al. (2006).

b. In order to utilize the hardware priority queue accelerator module

effectively, the algorithms have to be modified.

1.5 Previous Related Work

The area of hardware maze router design, generic graph accelerator design,

and priority queue has received significant attention over the years. In this section

these previous related work are reviewed and summarized.

1.5.1 Hardware Maze Router and Graph Accelerator

Maze routing is the most fundamental algorithm among many other VLSI

routing algorithms. Technically speaking, other routing problems can be decomposed

into multiple sub-problems and solved with the maze routing algorithm. Many

hardware maze routers had been proposed and most the work exploit the inherent

parallelism of Lee’s algorithm (Lee, 1961). This includes the Full-Grid Maze Router,

independently proposed by (Nestor, 2000; Keshk, 1997; Breuer and Shamsa, 1981).

The architecture accelerates Lee’s algorithm using N*N identical processor-elements

for worst-case N*N grid-graph, thus huge hardware resources are consumed.

Another hardware maze router is the Wave-Front Machine, proposed by Sahni and

Won (1987), and Suzuki et al. (1986). The Wave-Front-Machine uses N number of

processing-elements and a status map for N*N grid graph.

A more flexible and practical design, the cellular architecture with Raster

Pipeline Subarray (RPS) is proposed (Rutenbar, 1984a, 1984b). Applying raster

scanning concept, the grid-graph is divided into smaller square regions and floated

into RPS. For each square region, RPS updates the status-map. The architecture of

RPS is complex but constant for any input size. Systolic Array implementation of

 7

RPS is then proposed (Rutenbar and Atkins, 1988) for better handling of the

pipelined data.

The above full-custom maze routers are specifically for maze routing, another

approach to accelerate the graph-based shortest path algorithms is via generic graph

accelerator. Unweighted graph represented in adjacency-matrix can be mapped into

massive parallel hardware architecture where each of the processing units is a simple

bit-machine. The computation of bit-wise graph characteristics: reachability,

transitive closure, and connected-components can be accelerated. Huelsbergen (2000)

had proposed such implementation in FPGA. Besides reachability, transitive closure

and connected components, the computation of shortest unit path can be accelerated

as well. An improved version, Hardware Graph Array (HAGAR) is proposed by

Mencer et al. (2002) which uses RAM blocks than mere logic elements in FPGA.

The proposed architecture of Huelsbergen (2000) and Mencer (2002) are actually

quite similar to Full-Grid Maze Router except the former targets more generic

application rather than the specific VLSI maze routing.

In general, most graph problems, however, are weighted. Shortest Path

Processor proposed by Nasir and Meador (1995, 1996) can be used to solve

weighted-graph problems. It uses square-array analog hardware architecture to direct

benefit from the adjacency-matrix representation of graph. The critical challenge of

such implementation lies on the accuracy of D/A converter and voltage comparator

(both analog) to provide accurate result. An improved version called Loser-Take-All

is then proposed, it uses current-comparator instead of voltage-comparator (Nasir and

Meador, 1999). Besides that, a digital version is proposed to resolve inaccuracy

issues resulted in analog design (Rizal, 1999). Specifically for undirected weighted

graph problems, triangle-array is proposed by Nasir et al. (2002a, 2002b). The

triangle-array saves about half of the logic resources consumed by square-array

implementation.

All proposed previous work on hardware maze router and generic graph

accelerator primarily explore the inherit parallelism of adjacency-matrix

representation in graph. The major problem in such design required huge logic

 8

resources, e.g. generic graph accelerator uses Θ (V2) logic resources for a graph of

|V| vertices while maze router uses Θ (V2) logic resources for a grid-graph of |V * V|

vertices (see section 2.1 for definition of ‘Θ’). In contrast, grid-graph for VLSI

physical design is actually sparse; adjacency-matrix representation is simply a waste

besides its inflexibility to support other graph variants.

The hardware maze routers and generic graph accelerators eventually

required entire graph input at initial stage, before proceed for shortest unit path

computation. On the other hand, nanometer VLSI routing adopts hop-by-hop

approach during graph-searching; information of graph vertices is unknown prior to

execution. This completely different scenario reflects that the conventional maze

routers and generic graph accelerators are not an option.

In addition to that, the hardware maze routers and generic graph accelerators

are designed to accelerate elementary graph algorithms, e.g. shortest unit path,

transitive closure, connected-components, etc, not only nanometer VLSI routing has

evolved into shortest path problem, it has evolved into multi-weight multi-constraint

shortest path problem. Certain arithmetic power is needed besides complex data

manipulation. This phenomenon leaves no room for the application of the primitive

parallel hardware discussed above. New designs of hardware graph accelerators are

needed.

1.5.2 Priority Queue Implementation

Due to the wide application of priority queue, much research effort had been

made to achieve better priority queue implementations. In general, the research on

priority queue can be categorized into: (i) various advanced data structure for priority

queue, (ii) specific priority queue data structure with inherent parallelism, targeted

Parallel Random Access Machine (PRAM) model, and (iii) full-custom hardware

design to accelerate array-based priority queue.

 9

Research in category (i) basically explore the various ‘heap’ structure (a

variant of ‘tree’ data structure) to obtain theoretically better run-time complexity of

priority queue operations. Binary-Heap, Binomial-Heap and Fibonacci-Heap are

some instances of priority queue implementation under this category. Whereas

research classified in category (ii) includes, among others, Parallel-Heap, Relaxed-

Heap, Sloped-Heap, etc. Basically, priority queue implementation under these two

categories is interesting from software/parallel-software point of view; these

implementations are capable to provide improvement in term of run-time complexity

at the expenses of more memory consumption, but fail to address the severe constant

overhead on memory data communication. In short, those heap-like structures are

interesting in software but are not adaptable for high speed hardware implementation

(Jones, 1986).

Research work in category (iii), full-custom hardware priority queue design is

driven by the demand of high-speed applications such as internet network routing

and real-time applications. These hardware priority queue can achieve very high

throughput and clocking frequency, thus improve the performance of priority queue

in both run-time complexity and communication overhead. Works in (iii) includes

Binary Trees of Comparator (BTC) by Picker and Fellman (1995); the organization

of comparators mimics the Binary-Heap. New elements enter BTC through the

leaves, the highest priority element is extracted from the root of BTC; therefore

constant O(lg n) run-time for BTC priority queue operations.

Ioannou (2000) proposed another variant of hardware priority queue, the

Hardware Binary-Heap Priority Queue. The algorithm maintaining Binary-Heap

property is pipelined and executed on custom pipelined processing units, results

constant O(1) run-time for both INSERT and EXTRACT priority queue operations.

Another implementation similar to it but using Binary-Random-Access-Memory

(BRAM) is also proposed by Argon (2006). Noted, adding successive layer at

binary-tree double the total number of tree-nodes, all these binary-tree based designs

suffer from quadratic expansion complexity.

 10

Brown (1988) and Chao (1991), independently propose the implementation

of hardware priority queue using First-In-First-Out architecture, called FIFO Priority

Queue. For l-levels of priority, l numbers of FIFO arrays is deployed; each stores

elements of that priority. This implementation gives constant O(1) run-time, besides

the FIFO order among elements with same priority is maintained. This

implementation inherits the disadvantage as discussed: if the desired priority-level is

large, huge number of FIFO arrays is needed. For example, if 32-bit priority-value is

desired, then 4,294,967,296 FIFO arrays are needed.

Shift Register and Systolic-Shift-Register implementation of priority queue

(Toda et al., 1995; Moon et al., 2000) has better performance compared to the above

designs. The priority level and the implemented worst-case priority queue size can be

easily scaled. The designs deploy O(n) processing-elements arranged in one

dimensional array, for constant O(1) INSERT and EXTRACT run-time complexity.

The designs has the disadvantage of severe bus loading effect because all processing-

elements are connected to the input data bus, which results in low clocking

frequency.

1.6 Significance of Research

This research is significant in that it tackles the issue of interconnect delay

optimization in VLSI physical design since the interconnect delay now dominates

gate delay in nanometer VLSI interconnect routing. Existing maze routers consider

interconnects contribute negligible delay, which is now not correct. Nanometer VLSI

routing algorithms now has to include strategies to handle interconnect delay

optimization problem which include, among others, buffer insertion. Consequently,

the algorithms are now more complex in that they are modeled using multi-weighted

multi-constrained graphs. These graphs involve searching over millions of nodes,

and hence the algorithms are now extremely compute-intensive. The need for

hardware acceleration as proposed in this research is clear. The contribution of this

research is as follows:

 11

1) A comprehensive design of a 32-bit, parameterizable hardware priority queue

accelerator module to accelerate priority queue operations. The module is

incorporated into a graph processing unit, GPU. Modifications to the graph

algorithms are made such that the proposed design can be applied with other

graph-based shortest path algorithms.

2) A hybrid priority queue based on hardware-software co-design is also

developed. Such implementation introduces a simple yet efficient control

mechanism to avoid overflow in hardware priority queue module.

3) An application demonstration prototype of a graph processing hardware

accelerator is developed. It includes the front-end GUI on host to generate

sample post-placement layout. Figure 1.1 gives the architecture of the

proposed system.

Figure 1.1: System Architecture

Graph Processing Unit (GPU)

VLSI
Maze

Routing
DEMO
(GUI)

Hardware
Priority Queue Unit

NIOS II Processor Priority Queue Accelerator Module

A
va

lo
n

In
te

rf
ac

e
U

ni
t

System Bus

Host PC

Simultaneous
Maze Routing

and Buffer
Insertion
algorithm
(S-RABI)

HybridPQ

UART

1.7 Thesis Organization

The work in this thesis is conveniently organized into eight chapters. This

first chapter presents the motivation and research objectives and follows through

 12

with research scope, previous related works, research contribution, before concluding

with thesis organization.

 The second chapter provides brief summaries of the background literature

and theory reviewed prior to engaging the mentioned scope of work. Several topics

related to this research are reviewed to give an overall picture of the background

knowledge involved.

 Chapter Three discusses the priority queue algorithm which leads to our

hardware design. Next, the Simultaneous Maze Routing and Buffer Insertion (S-

RABI) algorithm applied in nanometer VLSI routing module is presented. It entails

the two underlying algorithms which form the S-RABI algorithm.

 Chapter Four presents the necessary algorithmic modification on the S-RABI

algorithm in order to benefit from the limited but fast operation of hardware priority

queue. Next the architecture chosen for the implementation of hardware priority

queue accelerator is described; followed by the necessary modifications on the

priority queue algorithm for better hardware implementation.

Chapter Five explains the design of the Graph Processing Unit. First the top-

level description of GPU is given; followed by each of its sub-components: the NIOS

II processor, the system bus, the bus interface and the priority queue accelerator

module. Also in this chapter, the development of device driver and HybridPQ is

discussed.

 Chapter Six delivers the detailed description on the design of priority queue

accelerator module. This includes the Hardware Priority Queue Unit and the required

bus interface module as per required by our target implementation platform.

Chapter Seven describes the simulation and hardware test that are performed

on individual sub-modules, modules and the system for design verification and

system validation. Performance evaluations of the designed priority queue

 13

accelerator module are discussed and comparisons with other implementations are

made. This chapter also illustrates the top-level architecture of nanometer VLSI

routing module developed to be executable on GPU. Further by detail analysis on the

performance of graph algorithm with the presence of priority queue accelerator

module.

In the final chapter of the thesis, the research work is summarized and

deliverables of the research are stated. Suggestion for potential extensions and

improvements to the design is also given.

1.8 Summary

In this chapter, an introduction was given on the background and motivation

of the research. The need for a hardware implementation of priority queue module to

accelerate graph algorithm, particularly state-of-the-art nanometer VLSI interconnect

routing is discussed. Based on it, several scope of project was identified and set to

achieve the desired implementation. The following chapter will discuss the literature

relevant to the theory and research background.

REFERENCES

Altera Corporation (2003a). Introduction to Quartus II. Altera Corporation.

Altera Corporation (2003b). SOPC Builder Data Sheet. Altera Corporation.

Altera Corporation (2004a). Nios II Hardware Development Tutorial. Altera Corporation.

Altera Corporation (2004b). Nios II Processor Reference Handbook. Altera Corporation.

Altera Corporation (2004c). Nios II Software Developer’s Handbook. Altera Corporation.

Altera Corporation (2005a). Avalon Interface Specification. Altera Corporation.

Alpert, C. J., Hu, J., Sapatnekar, S. S. and Villarrubia, P. G. (2001). A Practical Methodology

for Early Buffer and Wire Resource Allocation. IEEE/ACM Design Automation Conference,

Las Vegas. 2001. Nevada, United States: IEEE/ACM, 189-195.

Alpert, C. J., Hrkic, M. and Quay, S. T. (2004). A Fast Algorithm for Identifying Good Buffer

Insertion Candidates Locations. ACM International Symposium on Physical Design (ISPD’04).

Phoenix, Arizona, USA: ACM, 47-52.

Argon, J. A. (2006). Real-Time Scheduling Support for Hybrid CPU/FPGA SoCs. University

of Kansas, United States of America: Master Degree Thesis.

Auletta, V., Das, S. K., Vivo, A. D., Pinotto, M. C., Scarano, V. (2002). Optimal Tree Access

by Elementary and Composite Templates in Parallel Memory Systems. IEEE Transactions on

Parallel and Distributed Systems. 13(4): 399-411.

151

Bakoglu, H. B. (1990). Circuits, Interconnects, and Packaging for VLSI. Reading MA:

Addison-Wesley.

Bhagwan, R., Lin, B. (2000a). Fast and Scalable Priority Queue Architecture for High-Speed

Network Switches. IEEE Annual Conference on Computer Communication (INFOCOM 2000)

Tel Aviv, Israel: IEEE, vol. 2, 538-547.

Bhagwan, R., Lin, B. (2000b). Design of a High-Speed Packet Switch with Fine-Grained

Quality-of-Service Guarantees. IEEE International Conference on Communication (ICC

2000). New Orleans, USA: IEEE, vol. 3, 1430-1434.

Breuer, M. and Shamsa, K. (1981). A Hardware Router. Journal of Digital Systems. 4(4): 393-

408.

Brodal, G. S., Zaroliagis, C. D. and Traff, J. L. (1997). A Parallel Priority Data Structure with

Applications. The 11th International Parallel Processing Symposium, Geneva, Switzerland.

689-693.

Brown, R. (1988). Calendar Queues: A Fast O(1) Priority Queue Implementation for the

Simulation Event Set Problem. Communications of the ACM. October 1988. 31(10): 1220-

1227.

Chao, J. (1991). A Novel Architecture for Queue Management in the ATM Network. IEEE

Journal on Selected Areas in Communication. 9(7): 1110-1118.

Chu, C. C. N., Wong, D. F. (1997). A new approach to buffer insertion and wire sizing.

Proceeding IEEE International Conference on Computer Aided Design 1997. San Jose,

California: IEEE, 614-621.

Chu, C. C. N., Wong, D. F. (1998). A Polynomial Time Optimal Algorithm for Simultaneous

Buffer and Wire Sizing. Proc. Design Automation & Test 1998. Europe. 479-485.

152

Chu, C. C. N., Wong, D. F. (1999). A Quadratic Programming Approach to Simultaneous

Buffer Insertion/Sizing and Wire Sizing. IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems. 18(6): 787-798.

Cong, J., Kong, T. and Pan, D. Z. (1999). Buffer Block Planning for Interconnect-Driven

Floorplanning. IEEE/ACM International Conference on Computer Aided Design 1997. San

Jose, California: IEEE, 358-363.

Cong, J., Lei, H., Koh, C-K., Madden, P. H., (1996). Performance Optimization of VLSI

Interconnect Layout. Technical Report, Dept. of Computer Science, University of California,

L.A., 1-99.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001) Introduction to Algorithms.

2nd Edition. The MIT Press, McGraw-Hill Book Company.

Das, S. K., Sarkar, F. and Pinotti, M.C. (1996a). Distributed Priority Queues on Hypercube

Architectures. IEEE, Proceedings of the 16-th International Conference on Distributed

Computing Systems 1996. Hong Kong: IEEE, 620-627.

Das, S. K., Sarkar, F. and Pinotti, M.C. (1996b). Optimal and Load Balanced Mapping of

Parallel Priority Queues on Hypercubes. IEEE Transactions on Parallel and Distributed

Systems. 555-564.

Driscoll, J. R., Gabow, H. N., Shrairman, R. and Tarjan, R. E. (1998). Relaxed Heaps: An

Alternative to Fibonacci-Heaps with Applications to Parallel Computation. Communications of

the ACM. 31(11): 1343-1354.

Dechu, S., Shen, Z. C., Chu, C. C. N. (2004). An Efficient Routing Tree Construction

Algorithm with Buffer Insertion, Wire Sizing and Obstacle Consideration. Proceedings of the

ASP-DAC 2004. Yokohama, Japan.

Elmore, W. C. (1948). The transient response of dampled linear networks with particular

regard to wide-band amplifiers. Journal of Applied Physics. 19(1): 55-63.

153

Ginneken, L. P. P. P. V. (1990). Buffer Placement in Distributed RC-Tree Networks for

Minimal Elmore Delay. Proc. International Symposium of Circuits and Systems 1990. 865-

868.

Gupta, A. K. and Phoutiou, A. G. (1994). Load Balanced Priority Queue Implementations on

Distributed Memory Machine. ACM - Lecture Notes in Computer Science, July 1994. vol. 817,

pp. 689-700.

Huelsbergen, L. (2000). A Representation for Dynamic Graphs in Reconfigurable Hardware

and its Application to Fundamental Graph Algorithms. Proc. ACM/SIGDA International

Symposium on Field Programmable Gate Arrays 2000. Monterey, CA, USA:ACM, 105-115.

Ioannou, A. D. (2000). An ASIC Core for Pipelined Heap Management to Support Scheduling

in High Speed Networks. Technical Report FORTH-ICS/TR-278 October 2000. Computer

Architecture and VLSI Systems Laboratory (CRAV), Institute of Computer Science (ICS),

Foundation for Science and Technology – Hellas (FORTH), University of Crete, Greece.

Master Degree Thesis.

Ioannou, A. D. and Katevenis, M. (2001). Pipelined Heap (Priority Queue) Management for

Advanced Scheduling in High-Speed Networks. IEEE International Conference on

Communications (ICC 2001). Helsinki, Finland: IEEE, vol. 7, 2043-2047.

Jagannathan, A., Hur, S-W. and Lillis, J. (2002). A Fast Algorithm for Context-Aware Buffer

Insertion. ACM Trans. On Design Automation of Electronic Systems, January 2002. 7(1): 173-

188.

JohnsonBaugh, R. and Schaefer, M. (2004). ALGORITHMS, Pearson Prentice Hall, 2004.

Jones, D. (1986). An Empirical Comparison of Priority-Queue and Event-Set Implmentations.

Commununication of the ACM, April 1986. 29(4): 300-311.

Khalil M, Koay K H, (1999). VHDL Module Generator: A Rapid-prototyping Design Entry

Tool for Digital ASICs. Jurnal Teknologi UTM, December. 31:45-61.

154

Keshk, H., Mori, S., Nakashima, H., Tomita, S. (1996). Amon2: A parallel wire routing

algorithm on a torus network parallel computer. Proceedings of the 10th international

conference on Supercomputing, January1996. 197-204.

Kuiper, F. A. and Mieghem, P. V. (2004a). Concepts of Exact QoS Routing Algorithms.

ACM/IEEE Trans. on Computer Networking (TON), 2004. 12(5): 851-864.

Kuiper, F. A. and Mieghem, P. V. (2004b). Quality-of-Service Routing in the Internet: Theory,

Complexity, and Algorithms. Delft University of Technology, Netherlands: PhD Thesis.

Kung. H.T. (1980). The Structure of Parallel Algorithm. Advances in Computers. 19: 65-112.

Academic Press, Inc.

Lai, M. and Wong, D. F. (2002). Maze routing with buffer insertion and wire sizing. IEEE

Transaction on Computer-Aided Design of Integrated Circuits and Systems, Oct 2002. 21:

1205-1209.

Lavoie, P. and Savaria, Y. (1994). A Systolic Architecture for Fast Stack Sequential Decoders.

IEEE Transaction on Communication, Feb./Mar./Apr. 1994. 42(2/3/4): 324-334.

Lee, C. Y., (1961). An Algorithm for Path Connections and Its Applications. IRE Transactions

on Electronic Computers, 1961.

Leiserson, C.E. (1979) Systolic Priority Queue. Proceeding Caltech Conference of VLSI. Jan.

1979. Caltech, Pasadena, California. 200-214.

Meador, J. L. (1995) Spatiotemporal Neural Networks for Shortest Path Optimization. Proc.

IEEE International Symposium on Circuits and Systems (ISCAS95). Seattle, Washington, USA.

II801-II804.

Mencer, O., Huang, Z. and Huelsbergen, L. (2002). HAGAR: Multi-Context Hardware Graph

Accelerators. 12th International Conference of Field Programmable Logic and Applications

2002. France.

155

Moon, S.W., Rexford, J., Shin, K.G. (2002). Scalable Hardware Priority Queue Architectures

for High-Speed Packet Swicthes. IEEE Transaction on Computers, Nov. 2000. 49(11).

Nasir, S., Meador, J. L. (1995). Mixed Signal Neural Circuits for Shortest Path Computation.

Proc. IEEE Conference on Signals, System and Computers 1995. California, USA. II876-

II880.

Nasir, S., Meador, J. L. (1996). Spatiotemporal Neural Networks for Link-State Routing

Protocols. Proc. IEEE International Symposium on Circuits and Systems (ISCAS96). Atlanta,

Georgia. III547-III550.

Nasir, S., Meador, J. L. (1999). A High Precision Current Copying Loser-Take-All Circuit.

Proc. World Engineering Congress (WEC99). Malaysia. EE177-179.

Nasir, S., Khalil, M., Teoh, G. S. (2002a). Implementation of Recurrent Neural Network for

Shortest Path Calculation in Network Routing. Proc. IEEE International Symposium on

Parallel Architectures, Algorithms and Networks (ISPAN), 2002, Manila, Philipines. 313-317.

Nasir, S., Khalil, M., Teoh, G. S. (2002b). Design and Implementation of a Shortest Path

Processor for Network Routing. Proc. 2nd World Engineering Congress (WEC ‘02), Malaysia.

EE175-179.

Nasir, S., Khalil, M. (2005). Multi-Constrained Routing Algorithm for Minimizing

Interconnect Wire Delay. Universiti Teknologi Malaysia: Ph.D. Research Proposal.

Nasir, S., Khalil, M., Ch’ng, H. S. (2006). Simultaneous Maze Routing and Buffer Insertion,

VLSI-ECAD Research Laboratory, Universiti Teknologi Malaysia: Technical Report VLSI-

ECAD-TR-NSH-021-06.

Nestor, J. A. (2002). A New Look at Hardware Maze Routing. Proceedings of the 12th

ACM Great Lakes Symposium on VLSI. April 18-19, 2002. New York, USA. 142-147.

156

Picker, D. and Fellman, R. (1995). A VLSI Priority Packet Queue with Inheritance and

Overwrite. IEEE Transaction on Very Large Scale Integration Systems, June 1995. 3(2): 245-

252.

Prasad, S. and Deo, N. (1992). Parallel Heap: Improved and Simplified. Proc. IEEE 6th

International Parallel Processing Symposium 1992. California, USA: IEEE, 448-451.

Prasad, S. and Sawart, S.I. (1995). Parallel Heap: A Practical Priority Queue for Fine-to-

Medium-Grained Applications on Small Multiprocessors. Proc.7th IEEE Symposium on

Parallel and Distributed Processing 1995. Santa Barbara, CA: IEEE, 328-335

Ranade, A., Cheng, S., Deprit, E., Jones, J. and Shih, S. (1994). Parallelism and Locality in

Priority Queues. Proceeding 6th IEEE Symposium on Parallel and Distributed Processing. Oct

1994. Dallas. (99): 490-496.

Rizal, K. G. (1999). Shortest Path Processor Using FPGA. Universiti Teknologi Malaysia:

Bachelor Degree Thesis.

Rutenbar, R. A. (1984a). A Class of Cellular Computer Architectures to Support Physical

Design Automation. Univ. of Michigan, Computing Res. Lab.: Ph.D. dissertation, CRL-TR-35-

84.

Rutenbar, R. A., Mudge, T. N. and Atkins, D. E. (1984b). A Class of Cellular Architectures to

Support Physical Design Automation, IEEE Trans. Computer-Aided Design, Oct. 1984. vol.

CAD-3: 264-278.

Rutenbar, R. A. and Atkins, D. E. (1988). Systolic Routing Hardware: Performance Evaluation

and Optimization. IEEE Transaction on Computer-Aided Design, Mar. 1988. vol. 7, 397-410.

Sahni, S. and Won, Y. (1987). A Hardware Accelerator for Maze Routing. Proceeding on

Design Automation Conference 1987. Miami, Florida:ACM/IEEE, 800-806.

157

Saxena, P., Menezes, N., Cocchini, P. and Kirkpatrick, D. A. (2003). The Scaling Challenge:

Can Correct-by-Construction Design Help?. Proceeding International Symposium on Physical

Design 2003. San Diego, CA:ACM/SIGDA 51-58.

Seido, A. I. A., Nowak, B. and Chu, C. (2004). Fitted Elmore Delay, A Simple and Accurate

Model. IEEE Trans. on VLSI, July 2004. 12(7): 691-696.

Sherwani, N. (1995). Algorithms for VLSI Physical Design Automation, 2nd Edition. Intel

Corporation: Kluwer Academic Publishers, Toppan Company (S) Pte. Ltd.

Skiena, S. S. (1997). The Algorithm Design Manual. New York: Springer-Verlag.

Suzuki, K., Matsunaga, Y., Tachibana, M. and Ohtsuki, T. (1986). A hardware maze router

with application to interactive rip-up and reroute, IEEE Trans. Computer-Aided Design. Oct.

1986. vol. 5, 466-476.

Tommiska, M. and Skytt, J. (2001). Dijkstra’s Shortest Path Routing Algorithm in

Reconfigurable Hardware. 11th International Conference of Field Programmable Logic and

Applications. Monterey, CA. 653-657.

Toda, K., Nishida, K., Takahashi, E., Michell, N. and Tamaguchi, Y. (1995). Design and

Implementation of a Priority Forwarding Router Chip for Real-Time Interconnect Networks.

Int. J. Mini and Microcomputers 1995. 17(1): 42-51.

Wolf, W. (2002). Modern VLSI Design: System-on-Chip Design, 3/E, Chapter 3, Prentice Hall.

Zhang, W. and Korf, R. E. (1992). Parallel Heap Operations on EREW PRAM: Summary of

Results. Proc. 6th IEEE International Parallel Processing Symposium, 1992. Beverly Hills,

CA, USA:IEEE, 315-318.

Zhou, H., Wong, D. F., Liu, I-M. and Aziz, A. (2000). Simultaneous Routing and Buffer

Insertion with Restrictions on Buffer Locations. IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, July 2000. vol. 19, 819-824.

