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ABSTRACT 
 
 
 
 

Graphs are pervasive data structures in computer science, and algorithms 

working with them are fundamental to the field. Many challenging problems in Very 

Large-Scale Integration (VLSI) physical design automation are modeled using 

graphs. The routing problems in VLSI physical design are, in essence, shortest path 

problems in special graphs. It has been shown that the performance of a graph-based 

shortest path algorithm can severely be affected by the performance of its priority 

queue. This thesis proposes a graph processing hardware accelerator for shortest path 

algorithms applied in nanometer VLSI interconnect routing problems. A custom 

Graph Processing Unit (GPU), in which a hardware priority queue accelerator is 

embedded, designed and prototyped in a Field Programmable Gate Array (FPGA) 

based hardware platform. The proposed hardware priority queue accelerator is 

designed to be parameterizable and theoretically cascadable. It is also designed for 

high performance and it exhibits a run-time complexity for an INSERT (or 

EXTRACT) queue operation that is constant. In order to utilize the high performance 

hardware priority queue module, modifications have to be made on the graph-based 

shortest path algorithm. In hardware, the priority queue size is constrained by the 

available logic resources. Consequently, this thesis also proposes a hybrid software-

hardware priority queue which redirects priority queue entries to software priority 

queue when the hardware priority queue module exceeds its queue size limit. For 

design validation and performance test purposes, a computationally expensive VLSI 

interconnect routing Computer Aided Design (CAD) module is developed. Results of 

the performance tests on the proposed hardware graph accelerator, graph 

computations are significantly improved in terms of algorithm complexity and 

execution speed. 
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ABSTRAK 
 
 
 
 

Graf adalah struktur data yang meluas dalam sains komputer, dan algoritma 

yang bekerja dengan mereka adalah teras kepada bidang ini. Kebanyakan masalah 

yang mencabar dalam bidang automasi rekabentuk fizikal ‘Very Large-Scale 
Integration’ (VLSI) dimodelkan sebagai graf. Banyak masalah penyambungan wayar 

dalam rekabentuk fizikal VLSI melibatkan masalah mencari-jalan paling pendek 

dalam graf yang istimewa. Ianya juga telah di tunjukkan bahawa prestasi algoritma 

mencari-jalan paling pendek berdasarkan graf dipengaruhi oleh prestasi baris gilir 

keutamaan. Tesis ini mengusulkan perkakasan pemproses graf untuk 

mempercepatkan perhitungan graf dalam masalah mencari-jalan paling pendek. Unit 

Pemprosesan Graf (GPU), di mana modul perkakasan pemecut keutamaan giliran 

dibenamkan dan prototaip dalam perkakasan ‘Field Programmable Gate Array’ 

(FPGA) dapat dibentuk semula. Modul perkakasan pemecut keutamaan giliran 

tersebut direka supaya mudah diubahsuai, ia berprestasi tinggi dan mampu 

memberikan kompleksiti masa-lari yang malar bagi setiap tugas SISIPAN atau 

SARI. Untuk menggunakan perkakasan pemecut keutamaan giliran yang berprestasi 

tinggi tersebut, pengubahsuaian ke atas algoritma graf juga dilakukan. Dalam 

perkakasan, saiz baris gilir ketumaan dikekang oleh sumber-sumber logik yang ada. 

Tesis ini juga mengusulkan pemecut keutamaan giliran hibrid berasaskan perkakasan 

dan perisian, di mana sisipan ke perkakasan pemecut keutamaan giliran akan 

ditujukan ke perisian apabila perkakasan pemecut keutamaan giliran tidak mampu 

untuk menampungnya. Untuk pengesahan rekacipta dan pengujian prestasi, satu 

modul pengkomputeran VLSI penyambungan wayar ‘Computer Aided Design’ 

(CAD) dibangunkan. Hasil kerja tesis ini menunjukkan bahawa perkakasan pemecut 

yang diusulkan dapat mempercepatkan penghitungan graf, baik dari segi kerumitan 

algoritma dan masa perlakuan.
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

This thesis proposes a graph processing hardware accelerator for shortest path 

algorithms applied in nanometer VLSI interconnect routing problems. A custom 

Graph Processing Unit (GPU), in which a hardware priority queue accelerator 

module is embedded, designed and prototyped on a reconfigurable FPGA-based 

hardware platform. The hardware priority queue accelerator off-loads and speed up 

graph-based shortest path computations. For design validation and performance test 

purposes, a computationally extensive VLSI interconnect routing CAD module (or 

EDA sub-system) is developed to execute on the proposed GPU. This chapter 

introduces the background of research, objectives, problem statement, scope of work, 

previous related works and the significance of this research. The organization of 

thesis is summarized at the end of the chapter. 

 
 
 
 
1.1 Background 
 
 

Graphs are pervasive data structures in computer science, and algorithms 

working with them are fundamental to the field. There are many graph algorithms, 

and the well-established ones include Depth-First Search, Breadth-First Search, 

Topological Search, Spanning Tree algorithm, Dijkstra’s algorithm, Bellman-Ford 

algorithm and Floyd-Warshall algorithm. These graph algorithms are basically 

shortest path algorithms. For instance, Dijkstra’s algorithm is an extension of the 

Depth-First Search algorithm except the former solves the shortest path problem on 

weighted graph, while the latter solve the shortest unit path problem on unweighted 
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graph. Bellman-Ford algorithm and Dijkstra’s algorithm solve single-source shortest 

path problem, except the former targets graph with negative edges, while the latter is 

restricted to graph with non-negative edges. 

 
 
Many interesting problems in VLSI physical design automation are modeled 

using graphs. Hence, VLSI electronic design automation (EDA) systems are based 

on the graph algorithms. These algorithms include, among others, Min-Cut and Max-

Cut algorithms for logic partitioning and placement, Clock Skew Scheduling 

algorithm for useful skew clock tree synthesis, Minimum Steiner Tree algorithm and 

Span Minimum Tree algorithm for critical/global interconnect network synthesis, 

Maze Routing algorithm for point-to-point interconnect routing, etc. Many routing 

problems in VLSI physical design are, in essence, shortest path problems in special 

graphs. Shortest path problems, therefore, play a significant role in global and 

detailed routing algorithms (Sherwani, 1995). 

 
 
Real world problems modeled in mathematical set can be mapped into 

graphs, where elements in the set are represented by vertices, and the relation 

between any two elements are represented by edges. The run-time complexity and 

memory-consumption of graph algorithms are expressed in terms of the vertices and 

edges. A graph searching algorithm can discover much about the graph structure. 

Searching a graph means systematically following the edges of the graph so as to 

visit the vertices of graph. Many graph algorithms are organized as simple 

elaborations of basic graph searching algorithms (Cormen et al., 2001). Hence, the 

technique of searching in a graph is the heart of these algorithms. In the graph 

searching process, Priority Queues are used to maintain the tentative search results, 

which can grow very large as the graph size increases. Consequently, the 

implementation of these priority queues can significantly affect the run-time and 

memory consumption of a graph algorithm (Skiena, 1997). 
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1.2 Problem Statement 
 
 

According to Moore’s Law, to achieve minimum cost, the number of 

transistors in an Integrated Circuit (IC) needs to double every 18 months. Achieving 

minimum cost per transistor entails enormous design effort and high non-recurrent-

engineering (NRE) cost. The design complexity grows proportionally to the increase 

of transistor density, and subsequently, circuit engineers face tremendous design 

challenges. When physical design moves into nanometer circuit integration range, we 

would encounter a combinatorial explosion of design issues, involving signal 

integrity, interconnect delay and lithography, which not only challenge the attempt 

for effective design automation, but further the need to suppress NRE cost, which in 

turn increases the demand of EDA (Electronic Design Automation) tools.  

 
 
Conventional interconnect routing is rather straight-forward, and hence does 

not pose too great a challenge to the development of algorithms. However, the 

continual miniaturization of technology has seen the increasing influence of the 

interconnect delay. According to the simple scaling rule (Bakoglu, 1990), when 

devices and interconnects are scaled down in all three dimensions by a factor of S, 

the intrinsic gate delay is reduced by a factor of S but the delay caused by 

interconnect increases by a factor of S2. As the device operates at higher speed, the 

interconnect delay becomes even more significant. As a result, interconnect delay has 

become the dominating factor affecting system performance. In many system designs 

targeting 0.35um – 0.5um, as much as 50% to 70% of clock cycles are consumed by 

interconnect delay. This figure will continue to rise as the feature technology size 

decreases further (Cong et al., 1996). Consequently, the effect of interconnect delay 

can no longer be ignored in nanometer VLSI physical design. 

 
 
Many techniques are employed to reduce interconnect delay; among them, 

buffer insertion has been shown to be an effective approach (Ginneken, 1990). Hence, 

in contrast to conventional routing which considers only wires, nanometer VLSI 

interconnect routing considers both buffer insertion and wire-sizing along the 

interconnect path, in order to achieve minimum interconnect delay. It is obvious that 

the complexity of nanometer interconnect routing is greater, and in fact, grows 
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exponentially when multiple buffer choices and wire-sizes (at different metal layers, 

with different width and depth) are considered as potential interconnect candidates at 

each point along the interconnect path. 

 
 
In general, given a post-placement VLSI layout, there are restrictions on 

where buffers may be inserted. For instance, it may be possible to route wires over a 

pre-placed macro-cell, but it may not be possible to insert buffers in that region. In 

this case, the routing has to, not only minimize the interconnect delay, but 

simultaneously strive for good buffer location, manage buffer density and congestion, 

and wire sizing. Consequently, many researches have proposed techniques in 

simultaneous maze routing with buffer insertion and wire sizing to solve the above 

interconnect routing problem.  

 
 
A number of interconnect routing algorithms have been proposed, with 

different strategies for buffer insertion (Chu and Wong, 1997; Chu and Wong, 1998; 

Chu and Wong, 1999; Dechu et al., 2004; Ginneken, 1990; Lai and Wong, 2002; 

Jagannathan et al., 2002; Nasir, 2005; Zhou et al., 2000). Most of these algorithms 

are formulated as graph theoretic shortest path algorithms. Clearly, as many 

parameters and constraints are involved in VLSI interconnect routing, these 

algorithms are, essentially, multi-weighted multi-constrained graph search algorithms. 

In graph search, the solution space and search results are effectively maintained 

using priority queues. The choice of priority queue implementation, hardware or 

software, differ significantly on how they affect the run-time and memory 

consumption of the graph algorithms (Skienna, 1997). 

 
 
 
 
1.3 Objectives 
 
 

The overall objective of this thesis is to propose the design of a graph 

processing hardware accelerator for high-speed computation of graph based 

algorithm. This objective is modularized into the following sub-objectives: 
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1) To design a Graph Processing Unit (GPU) customized for high-speed 

computation of graph based shortest path algorithm. 

 

2) To design a priority queue accelerator module to speed up priority queue 

operations on the above custom GPU. 

 

3) To verify the design and validate the effectiveness of accelerating, via 

hardware, priority queue operations in a graph algorithm. This is derived 

from performance validation studies on the application of the proposed GPU 

executing a compute-intensive VLSI interconnect routing algorithm. 

 
 
 
 
1.4 Scope of Work 
 
 

1) The Graph Processing Unit (GPU) is implemented on FPGA-based embedded 

system hardware platform on Altera Stratix II development board.  

 

2) The priority queue accelerator module will have the following features: 

a. It supports the two basic priority queue function: (i) INSERT and (ii) 

EXTRACT. 

b. It is parameterizable so that the implemented length of priority queue 

can be adjusted based on available logic resources.  

c. It is cascade-able such that further queue length extension is possible. 

d. It is able to store each queue-entry in 64-bit: 32-bit for priority-value 

and 32-bit for the associate-identifier. 

 

3) A hybrid hardware-software priority queue is developed. It avoids overflow 

at hardware priority queue module. 

 

4) A demonstration application prototype is developed to evaluate the design. 

System validation and performance evaluation are derived by examining the 

graph based shortest path algorithms on this application prototype. Note that:  
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a. The test algorithm is called S-RABI for Simultaneous Maze Routing 

and Buffer Insertion algorithm, proposed by Nasir et al. (2006). 

b. In order to utilize the hardware priority queue accelerator module 

effectively, the algorithms have to be modified. 

 
 
 
 
1.5 Previous Related Work 
 
 

The area of hardware maze router design, generic graph accelerator design, 

and priority queue has received significant attention over the years. In this section 

these previous related work are reviewed and summarized.  

 
 
 
 
1.5.1 Hardware Maze Router and Graph Accelerator 
 
 

Maze routing is the most fundamental algorithm among many other VLSI 

routing algorithms. Technically speaking, other routing problems can be decomposed 

into multiple sub-problems and solved with the maze routing algorithm. Many 

hardware maze routers had been proposed and most the work exploit the inherent 

parallelism of Lee’s algorithm (Lee, 1961). This includes the Full-Grid Maze Router, 

independently proposed by (Nestor, 2000; Keshk, 1997; Breuer and Shamsa, 1981). 

The architecture accelerates Lee’s algorithm using N*N identical processor-elements 

for worst-case N*N grid-graph, thus huge hardware resources are consumed. 

Another hardware maze router is the Wave-Front Machine, proposed by Sahni and 

Won (1987), and Suzuki et al. (1986). The Wave-Front-Machine uses N number of 

processing-elements and a status map for N*N grid graph.  

 
 
A more flexible and practical design, the cellular architecture with Raster 

Pipeline Subarray (RPS) is proposed (Rutenbar, 1984a, 1984b). Applying raster 

scanning concept, the grid-graph is divided into smaller square regions and floated 

into RPS. For each square region, RPS updates the status-map. The architecture of 

RPS is complex but constant for any input size. Systolic Array implementation of 
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RPS is then proposed (Rutenbar and Atkins, 1988) for better handling of the 

pipelined data. 

 
 

The above full-custom maze routers are specifically for maze routing, another 

approach to accelerate the graph-based shortest path algorithms is via generic graph 

accelerator. Unweighted graph represented in adjacency-matrix can be mapped into 

massive parallel hardware architecture where each of the processing units is a simple 

bit-machine. The computation of bit-wise graph characteristics: reachability, 

transitive closure, and connected-components can be accelerated. Huelsbergen (2000) 

had proposed such implementation in FPGA. Besides reachability, transitive closure 

and connected components, the computation of shortest unit path can be accelerated 

as well. An improved version, Hardware Graph Array (HAGAR) is proposed by 

Mencer et al. (2002) which uses RAM blocks than mere logic elements in FPGA. 

The proposed architecture of Huelsbergen (2000) and Mencer (2002) are actually 

quite similar to Full-Grid Maze Router except the former targets more generic 

application rather than the specific VLSI maze routing. 

 
 
In general, most graph problems, however, are weighted. Shortest Path 

Processor proposed by Nasir and Meador (1995, 1996) can be used to solve 

weighted-graph problems. It uses square-array analog hardware architecture to direct 

benefit from the adjacency-matrix representation of graph. The critical challenge of 

such implementation lies on the accuracy of D/A converter and voltage comparator 

(both analog) to provide accurate result. An improved version called Loser-Take-All 

is then proposed, it uses current-comparator instead of voltage-comparator (Nasir and 

Meador, 1999). Besides that, a digital version is proposed to resolve inaccuracy 

issues resulted in analog design (Rizal, 1999). Specifically for undirected weighted 

graph problems, triangle-array is proposed by Nasir et al. (2002a, 2002b). The 

triangle-array saves about half of the logic resources consumed by square-array 

implementation.  

 
 
All proposed previous work on hardware maze router and generic graph 

accelerator primarily explore the inherit parallelism of adjacency-matrix 

representation in graph. The major problem in such design required huge logic 
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resources, e.g. generic graph accelerator uses Θ (V2) logic resources for a graph of 

|V| vertices while maze router uses Θ (V2) logic resources for a grid-graph of |V * V| 

vertices (see section 2.1 for definition of ‘Θ’). In contrast, grid-graph for VLSI 

physical design is actually sparse; adjacency-matrix representation is simply a waste 

besides its inflexibility to support other graph variants. 

 
 
The hardware maze routers and generic graph accelerators eventually 

required entire graph input at initial stage, before proceed for shortest unit path 

computation. On the other hand, nanometer VLSI routing adopts hop-by-hop 

approach during graph-searching; information of graph vertices is unknown prior to 

execution. This completely different scenario reflects that the conventional maze 

routers and generic graph accelerators are not an option. 

 
 
In addition to that, the hardware maze routers and generic graph accelerators 

are designed to accelerate elementary graph algorithms, e.g. shortest unit path, 

transitive closure, connected-components, etc, not only nanometer VLSI routing has 

evolved into shortest path problem, it has evolved into multi-weight multi-constraint 

shortest path problem. Certain arithmetic power is needed besides complex data 

manipulation. This phenomenon leaves no room for the application of the primitive 

parallel hardware discussed above. New designs of hardware graph accelerators are 

needed. 

 
 
 
 
1.5.2 Priority Queue Implementation 
 
 

Due to the wide application of priority queue, much research effort had been 

made to achieve better priority queue implementations. In general, the research on 

priority queue can be categorized into: (i) various advanced data structure for priority 

queue, (ii) specific priority queue data structure with inherent parallelism, targeted 

Parallel Random Access Machine (PRAM) model, and (iii) full-custom hardware 

design to accelerate array-based priority queue.  
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Research in category (i) basically explore the various ‘heap’ structure (a 

variant of ‘tree’ data structure) to obtain theoretically better run-time complexity of 

priority queue operations. Binary-Heap, Binomial-Heap and Fibonacci-Heap are 

some instances of priority queue implementation under this category. Whereas 

research classified in category (ii) includes, among others, Parallel-Heap, Relaxed-

Heap, Sloped-Heap, etc. Basically, priority queue implementation under these two 

categories is interesting from software/parallel-software point of view; these 

implementations are capable to provide improvement in term of run-time complexity 

at the expenses of more memory consumption, but fail to address the severe constant 

overhead on memory data communication. In short, those heap-like structures are 

interesting in software but are not adaptable for high speed hardware implementation 

(Jones, 1986). 

 
 
Research work in category (iii), full-custom hardware priority queue design is 

driven by the demand of high-speed applications such as internet network routing 

and real-time applications. These hardware priority queue can achieve very high 

throughput and clocking frequency, thus improve the performance of priority queue 

in both run-time complexity and communication overhead. Works in (iii) includes 

Binary Trees of Comparator (BTC) by Picker and Fellman (1995); the organization 

of comparators mimics the Binary-Heap. New elements enter BTC through the 

leaves, the highest priority element is extracted from the root of BTC; therefore 

constant O(lg n) run-time for BTC priority queue operations.  

 
 
Ioannou (2000) proposed another variant of hardware priority queue, the 

Hardware Binary-Heap Priority Queue. The algorithm maintaining Binary-Heap 

property is pipelined and executed on custom pipelined processing units, results 

constant O(1) run-time for both INSERT and EXTRACT priority queue operations. 

Another implementation similar to it but using Binary-Random-Access-Memory 

(BRAM) is also proposed by Argon (2006). Noted, adding successive layer at 

binary-tree double the total number of tree-nodes, all these binary-tree based designs 

suffer from quadratic expansion complexity.  
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Brown (1988) and Chao (1991), independently propose the implementation 

of hardware priority queue using First-In-First-Out architecture, called FIFO Priority 

Queue. For l-levels of priority, l numbers of FIFO arrays is deployed; each stores 

elements of that priority. This implementation gives constant O(1) run-time, besides 

the FIFO order among elements with same priority is maintained. This 

implementation inherits the disadvantage as discussed: if the desired priority-level is 

large, huge number of FIFO arrays is needed. For example, if 32-bit priority-value is 

desired, then 4,294,967,296 FIFO arrays are needed.  

 
 
Shift Register and Systolic-Shift-Register implementation of priority queue 

(Toda et al., 1995; Moon et al., 2000) has better performance compared to the above 

designs. The priority level and the implemented worst-case priority queue size can be 

easily scaled. The designs deploy O(n) processing-elements arranged in one 

dimensional array, for constant O(1) INSERT and EXTRACT run-time complexity. 

The designs has the disadvantage of severe bus loading effect because all processing-

elements are connected to the input data bus, which results in low clocking 

frequency. 

 
 
 
 
1.6 Significance of Research 

 
 
This research is significant in that it tackles the issue of interconnect delay 

optimization in VLSI physical design since the interconnect delay now dominates 

gate delay in nanometer VLSI interconnect routing. Existing maze routers consider 

interconnects contribute negligible delay, which is now not correct. Nanometer VLSI 

routing algorithms now has to include strategies to handle interconnect delay 

optimization problem which include, among others, buffer insertion. Consequently, 

the algorithms are now more complex in that they are modeled using multi-weighted 

multi-constrained graphs. These graphs involve searching over millions of nodes, 

and hence the algorithms are now extremely compute-intensive. The need for 

hardware acceleration as proposed in this research is clear. The contribution of this 

research is as follows: 
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1) A comprehensive design of a 32-bit, parameterizable hardware priority queue 

accelerator module to accelerate priority queue operations. The module is 

incorporated into a graph processing unit, GPU. Modifications to the graph 

algorithms are made such that the proposed design can be applied with other 

graph-based shortest path algorithms. 

  

2) A hybrid priority queue based on hardware-software co-design is also 

developed. Such implementation introduces a simple yet efficient control 

mechanism to avoid overflow in hardware priority queue module. 

 

3) An application demonstration prototype of a graph processing hardware 

accelerator is developed. It includes the front-end GUI on host to generate 

sample post-placement layout. Figure 1.1 gives the architecture of the 

proposed system. 

 
 

 
Figure 1.1: System Architecture 
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1.7 Thesis Organization 
 
 

The work in this thesis is conveniently organized into eight chapters. This 

first chapter presents the motivation and research objectives and follows through 
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with research scope, previous related works, research contribution, before concluding 

with thesis organization. 

 
 
 The second chapter provides brief summaries of the background literature 

and theory reviewed prior to engaging the mentioned scope of work. Several topics 

related to this research are reviewed to give an overall picture of the background 

knowledge involved.  

 
 
 Chapter Three discusses the priority queue algorithm which leads to our 

hardware design. Next, the Simultaneous Maze Routing and Buffer Insertion (S-

RABI) algorithm applied in nanometer VLSI routing module is presented. It entails 

the two underlying algorithms which form the S-RABI algorithm. 

 
 
 Chapter Four presents the necessary algorithmic modification on the S-RABI 

algorithm in order to benefit from the limited but fast operation of hardware priority 

queue. Next the architecture chosen for the implementation of hardware priority 

queue accelerator is described; followed by the necessary modifications on the 

priority queue algorithm for better hardware implementation.  

 
 

Chapter Five explains the design of the Graph Processing Unit. First the top-

level description of GPU is given; followed by each of its sub-components: the NIOS 

II processor, the system bus, the bus interface and the priority queue accelerator 

module. Also in this chapter, the development of device driver and HybridPQ is 

discussed.  

 
 
 Chapter Six delivers the detailed description on the design of priority queue 

accelerator module. This includes the Hardware Priority Queue Unit and the required 

bus interface module as per required by our target implementation platform. 

 
 

Chapter Seven describes the simulation and hardware test that are performed 

on individual sub-modules, modules and the system for design verification and 

system validation. Performance evaluations of the designed priority queue 
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accelerator module are discussed and comparisons with other implementations are 

made. This chapter also illustrates the top-level architecture of nanometer VLSI 

routing module developed to be executable on GPU. Further by detail analysis on the 

performance of graph algorithm with the presence of priority queue accelerator 

module. 

 
 

In the final chapter of the thesis, the research work is summarized and 

deliverables of the research are stated. Suggestion for potential extensions and 

improvements to the design is also given. 

 
 
 
 
1.8 Summary 
 
 

In this chapter, an introduction was given on the background and motivation 

of the research. The need for a hardware implementation of priority queue module to 

accelerate graph algorithm, particularly state-of-the-art nanometer VLSI interconnect 

routing is discussed. Based on it, several scope of project was identified and set to 

achieve the desired implementation. The following chapter will discuss the literature 

relevant to the theory and research background. 
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