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Abstract Irreducible representations of a group provide the ways for labelling or-
bitals, determining molecular orbitals formation and determining vibrational motions
for a molecule. A set of irreducible representations represents the ways a particular
bond, atom or sets of atoms may respond to a given set of symmetry operations. In
this paper, the irreducible representations of all groups of order 8, namely D4, Q, C8,
C2×C4 and C2×C2×C2 are obtained using Burnside method and Great Orthogonality
Theorem method. Then, comparisons of the two methods are made.
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1 Introduction

There are different ways that individual atoms, bonds, atomic orbitals and any other piece
of the overall molecule respond to symmetry operations. Obtaining the irreducible repre-
sentations associated with a given bond, atoms or sets of atoms is a way of labelling orbitals
for reference. Besides, irreducible representations determine which sets of atomic orbitals
can combine with each other to form molecular orbitals. Furthermore, an irreducible rep-
resentation of a molecule determines the number and nature of vibrational motions for the
molecule by removing the irreducible representations that correspond to the translation and
rotation of the molecule.

There are five groups of order 8 which consist of two non-Abelian groups and three
Abelian groups. The groups are all written in group presentation form, that is the form of
a group with a set of generators and certain relations for the generators to satisfy.

The first non-Abelian group of order 8 is the dihedral group,

D4 = 〈a, b|a4 = b2 = 1, ab = a−1〉.

The second non-Abelian group of order 8 is the quaternion group,

Q = 〈a, b|a4 = 1, b2 = a2, ab = a−1〉.

The first Abelian group of order 8 is the cyclic group, C8 = 〈a|a8 = 1〉. The second Abelian
group of order 8 is the direct product of the groups C2 with C4, namely

C2 × C4 = 〈a, b|a2 = b4 = 1, ab = ba〉.



2 Nor Haniza Sarmin & Fong Wan Heng

The third Abelian group of order 8 is

C2 × C2 × C2 = 〈a, b, c|a2 = b2 = c2 = 1, ab = ba, ac = ca, bc = cb〉.

The irreducible representations of all of these groups will be obtained using Burnside method
and Great Orthogonality Theorem method. Then, comparisons of the two methods are
made.

2 Burnside Method

Burnside method, proposed by Burnside in 1911, can be used to obtain the irreducible
representations of a group [1]. Using this method, three formulas are involved in finding
the irreducible representations of a group, that is, the irreducible representations k. Using
these formulas, class multiplication coefficients, characters of the irreducible representations
in terms of dk and the numerical values for dk are obtained.

The first step in getting the irreducible representations is to obtain the class multiplica-
tion coefficients. Following Cracknell [2], the result of multiplying together two classes Ci

and Cj is a sum of several classes Cs:

CiCj =
∑

s

cij,sCs (1)

where cij,s are the class multiplication coefficients. Using equation (1), the class multipli-
cation coefficients cij,s can be evaluated.

The next step is to obtain the characters of the irreducible representations in terms of
dk, where dk is the dimension of the kth irreducible representation. Following Burns [1],
the characters are given in the form of:

hihjχi
kχj

k = dk

r∑
s=1

cij,shsχs
k (2)

where hi is the order of the class Ci, χi
k is the character of the elements in class Ci in

the irreducible representation labelled by k, dk is the dimension of the kth irreducible
representation, cij,s is the class multiplication coefficient and r is the number of classes in
the group.

The last step of getting the irreducible representations is to obtain the numerical values
for dk using [2]:

r∑

i=1

hiχi
jχi

k = Nδjk (3)

where N is the order of the group, δjk is the Kronecker Delta symbol, which has the value
1 when i = j, but has the value 0 when i 6= j , r is the number of classes in the group, χi

j

and χi
k are the characters of elements in class Ci in the irreducible representation labelled

by j and k respectively. The number of irreducible representations of a group is equal to
the number of classes [2].

In the following five subsections, irreducible representations of D4, Q, C8, C2 × C4 and
C2 × C2 × C2 are found using Burnside method.
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2.1 Irreducible Representations of Dihedral Group, D4

The group D4 is split up into five conjugacy classes as listed in Table 1, where the symbols
C1, C2, . . .,C5 are labels used to distinguish the classes and the elements right below them
are elements which make up the respective classes.

Table 1: Classes in D4 and their elements

C1 C2 C3 C4 C5

1 a, a3 a2 b, a2b ab, a3b

The first step to obtain the irreducible representations is to use equation (1) to obtain
the class multiplication coefficients. For instance, the class C5 has two elements, namely ab
and a3b. The multiplication table of C5 with C5 is shown in Table 2.

Table 2: Multiplication table of C5 with C5

· ab a3b

ab 1 a2

a3b a2 1

Since 1 is the element of the class C1 and a2 is the element of the class C3, the table
shows that C5 · C5 = 2C1 + 2C3.

Therefore, from (1),

C5 · C5 = c55,1C1 + c55,2C2 + c55,3C3 + c55,4C4 + c55,5C5, which gives
2C1 + 2C3 = c55,1C1 + c55,2C2 + c55,3C3 + c55,4C4 + c55,5C5.

This implies c55,1 = 2 and c55,3 = 2.

Evaluating equation (1) for all cases, the non-zero class multiplication coefficients are
obtained as follows:

c11,1 = 1 c22,1 = 2 c33,1 = 1 c44,1 = 2 c55,1 = 2
c12,2 = 1 c22,3 = 2 c34,4 = 1 c44,3 = 2 c55,3 = 2
c13,3 = 1 c23,2 = 1 c35,5 = 1 c45,2 = 2
c14,4 = 1 c24,5 = 2
c15,5 = 1 c25,4 = 2

Next, the characters of the irreducible representations in terms of dk are found using
equation (2). For example, in the case i = j = 1:

h1h1χ1
kχ1

k = dk

5∑
s=1

c11,shsχs
k

= dk(c11,1h1χ1
k + c11,2h2χ2

k + c11,3h3χ3
k + c11,4h4χ4

k + c11,5h5χ5
k)

= dk(c11,1h1χ1
k + (0)h2χ2

k + (0)h3χ3
k + (0)h4χ4

k + (0)h5χ5
k)

= dkc11,1h1χ1
k.

Since c11,1 = 1, h1 = 1, thus, χ1
k = dk.
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Similarly, calculations in the case i = j = 3 will yield χ3
k = ±dk. Considering all

calculations in the cases when cij,s 6= 0, i, j, s = 1, . . . , 5, the following results are obtained:
For negative value of χ3

k, the values of χ2
k and χ4

k turn out to be 0. For positive values
of χ3

k, we get the following results:

(i) if χ2
k = dk, χ4

k = dk, then χ5
k = dk,

(ii) if χ2
k = dk, χ4

k = −dk, then χ5
k = −dk,

(iii) if χ2
k = −dk, χ4

k = dk, then χ5
k = −dk,

(iv) if χ2
k = −dk, χ4

k = −dk, then χ5
k = dk.

All of these characters of the irreducible representations of D4 are shown in Table 3,
where entries in row i (i = 1, . . . , 5) correspond to the ith irreducible representation.

Table 3: Characters of the irreducible representations of D4 in terms of dk

C1 C2 C3 C4 C5

dk dk dk dk dk

dk dk dk −dk −dk

dk −dk dk dk −dk

dk −dk dk −dk dk

dk 0 −dk 0 0

Lastly, equation (3) is used to obtain the numerical values for dk. For each 1 ≤ k ≤ 5,

5∑

i=1

hi(χi
k)2 = h1χ1

kχ1
k + h2χ2

kχ2
k + h3χ3

kχ3
k + h4χ4

kχ4
k + h5χ5

kχ5
k

= χ1
kχ1

k + 2χ2
kχ2

k + χ3
kχ3

k + 2χ4
kχ4

k + 2χ5
kχ5

k

= 8.

For example, using the characters of the third irreducible representation, when k = 3,

5∑

i=1

hi(χi
k)2 = d3d3 + 2(−d3)(−d3) + d3d3 + 2d3d3 + 2(−d3)(−d3)

= 8d3
2

= 8.

Thus, d3 = 1.

Therefore, dk = 1 for the first four irreducible representations and dk = 2 for the fifth
irreducible representation. The characters of the five irreducible representations of D4 are
given in Table 4, where Γ1, Γ2, . . ., Γ5 are labels for the different irreducible representations.

Thus for D4, there are five irreducible representations.
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Table 4: Irreducible representations of D4

C1 C2 C3 C4 C5

Γ1 1 1 1 1 1
Γ2 1 1 1 -1 -1
Γ3 1 -1 1 1 -1
Γ4 1 -1 1 -1 1
Γ5 2 0 -2 0 0

2.2 Irreducible Representations of Quaternion Group, Q

The group Q is split up into five conjugacy classes which are exactly the same as those for
D4, shown in Table 1. Therefore, the steps to obtain the irreducible representations of Q
are similar to the one for D4. The characters of the five irreducible representations of Q
are exactly the same as those obtained for D4, shown in Table 4.

2.3 Irreducible Representations of Cyclic Group of Order 8, C8

The group C8 is split up into eight conjugacy classes as listed in Table 5.

Table 5: Classes in C8 and their elements

C1 C2 C3 C4 C5 C6 C7 C8

1 a a2 a3 a4 a5 a6 a7

Evaluating equation (1) for all cases, the non-zero class multiplication coefficients are
obtained as follows:

c11,1 = 1 c22,3 = 1 c33,5 = 1 c44,7 = 1 c55,1 = 1 c66,3 = 1 c77,5 = 1 c88,7 = 1
c12,2 = 1 c23,4 = 1 c34,6 = 1 c45,8 = 1 c56,2 = 1 c67,4 = 1 c78,6 = 1
c13,3 = 1 c24,5 = 1 c35,7 = 1 c46,1 = 1 c57,3 = 1 c68,5 = 1
c14,4 = 1 c25,6 = 1 c36,8 = 1 c47,2 = 1 c58,4 = 1
c15,5 = 1 c26,7 = 1 c37,1 = 1 c48,3 = 1
c16,6 = 1 c27,8 = 1 c38,2 = 1
c17,7 = 1 c28,1 = 1
c18,8 = 1

Next, the characters of the irreducible representations in terms of dk are found using
equation (2). For example, in the case i = j = 1:
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h1h1χ1
kχ1

k = dk

8∑
s=1

c11,shsχs
k

= dk(c11,1h1χ1
k + c11,2h2χ2

k + c11,3h3χ3
k + c11,4h4χ4

k

+ c11,5h5χ5
k + c11,6h6χ6

k + c11,7h7χ7
k + c11,8h8χ8

k)
= dk((1)h1χ1

k + (0)h2χ2
k + (0)h3χ3

k + (0)h4χ4
k

+(0)h5χ5
k + (0)h6χ6

k + (0)h7χ7
k + (0)h8χ8

k)
= dkh1χ1

k.

Since h1 = 1, thus χ1
k = dk.

h5h5χ5
kχ5

k = dk

8∑
s=1

c55,shsχs
k

= dk(c55,1h1χ1
k + c55,2h2χ2

k + c55,3h3χ3
k + c55,4h4χ4

k

+ c55,5h5χ5
k + c55,6h6χ6

k + c55,7h7χ7
k + c55,8h8χ8

k)
= dk((1)h1χ1

k + (0)h2χ2
k + (0)h3χ3

k + (0)h4χ4
k

+(0)h5χ5
k + (0)h6χ6

k + (0)h7χ7
k + (0)h8χ8

k)
= dkh1χ1

k.

Since h1 = h5 = 1 and χ1
k = dk, thus

χ5
kχ5

k = dk
2,

χ5
k = ±dk.

Considering all cases when cij,s 6= 0, i, j, s = 1, . . . , 8,

if χ5
k = dk, then χ3

k = ±dk;
if χ5

k = −dk, then χ3
k = ±dki,

if χ3
k = dk, then χ6

k = ±dk;
if χ3

k = −dk, then χ6
k = ±dki;

if χ3
k = dki, then χ6

k = ±dkε, where ε = i
1
2 ;

if χ3
k = −dki, then χ6

k = ±dkε∗, where ε∗ = (−i)
1
2 ,

and the others can similarly be shown.

.

All of these characters of the irreducible representations of C8 are shown in Table 6,
where entries in row i (i = 1, . . . , 8) correspond to the ith irreducible representation.

Lastly, equation (3) is used to obtain the numerical values for dk. For each 1 ≤ k ≤ 8,

8∑

i=1

hi(χi
k)2 = h1χ1

kχ1
k + h2χ2

kχ2
k + h3χ3

kχ3
k + h4χ4

kχ4
k

+ h5χ5
kχ5

k + h6χ6
kχ6

k + h7χ7
kχ7

k + h8χ8
kχ8

k

= χ1
kχ1

k + χ2
kχ2

k + χ3
kχ3

k + χ4
kχ4

k

+ χ5
kχ5

k + χ6
kχ6

k + χ7
kχ7

k + χ8
kχ8

k

= 8.
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Table 6: Characters of the irreducible representations of C8 in terms of dk

C1 C2 C3 C4 C5 C6 C7 C8

dk dk dk dk dk dk dk dk

dk −dk dk −dk dk −dk dk −dk

dk dki −dk −dki dk dki −dk −dki
dk −dki −dk dki dk −dki −dk dki
dk dkε dki −dkε∗ −dk −dkε −dki dkε∗

dk −dkε dki dkε∗ −dk dkε −dki −dkε∗

dk dkε∗ −dki −dkε −dk −dkε∗ dki dkε
dk −dkε∗ −dki dkε −dk dkε∗ dki −dkε

For the second to sixth irreducible representations, it is necessary to take the complex
conjugate of χi

j since complex numbers are involved. For example, using the characters of
the fifth irreducible representation, when k = 5,

8∑

i=1

hi(χi
k)2 = (d5)(d5) + (d5ε)(d5ε) + (d5i)(d5i) + (−d5ε

∗)(−d5ε∗)

+ (−d5)(−d5) + (−d5ε)(−d5ε) + (−d5i)(−d5i) + (d5ε
∗)(d5ε∗)

= d5
2(1 + (ε)(ε) + (i)(i) + (−ε∗)(−ε∗)

+ (−1)(−1) + (−ε)(−ε) + (−i)(−i) + (ε∗)(ε∗))
= 8.

Since (ε)(ε) = 1, (ε∗)(ε∗) = 1 and (i)(i) = 1,

8d5
2 = 8,

d5 = 1.

For this group, dk = 1, 1 ≤ k ≤ 8, for all eight irreducible representations. Thus,
the characters of the eight irreducible representations of C8 are given in Table 7, where
Γ1, Γ2, . . . , Γ8 have been relabelled for the different irreducible representations. Therefore,
C8 has eight irreducible representations.

2.4 Irreducible Representations of C2 × C4

The group C2 × C4 is split up into eight conjugacy classes as listed in Table 8.
Evaluating equation (1) for all cases, the non-zero class multiplication coefficients are

obtained as follows:
c11,1 = 1 c22,3 = 1 c33,1 = 1 c44,3 = 1 c55,1 = 1 c66,3 = 1 c77,1 = 1 c88,3 = 1
c12,2 = 1 c23,4 = 1 c34,2 = 1 c45,8 = 1 c56,2 = 1 c67,4 = 1 c78,2 = 1
c13,3 = 1 c24,1 = 1 c35,7 = 1 c46,5 = 1 c57,3 = 1 c68,1 = 1
c14,4 = 1 c25,6 = 1 c36,8 = 1 c47,6 = 1 c58,4 = 1
c15,5 = 1 c26,7 = 1 c37,5 = 1 c48,7 = 1
c16,6 = 1 c27,8 = 1 c38,6 = 1
c17,7 = 1 c28,5 = 1
c18,8 = 1
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Next, the characters of the irreducible representations in terms of dk are found using
equation (2). All of these characters of the irreducible representations of C2 × C4 are
shown in Table 9, where entries in row i (i = 1, . . . , 8) correspond to the ith irreducible
representation.

Lastly, equation (3) is used to obtain the numerical values for dk. For this group,
dk = 1, 1 ≤ k ≤ 8, for all eight irreducible representations. Thus, the characters of the
eight irreducible representations of C2 × C4 are given in Table 10.

Therefore, C2 × C4 has eight irreducible representations.

2.5 Irreducible Representations of C2 × C2 × C2

The group C2 × C2 × C2 is split up into eight conjugacy classes as listed in Table 11.
Evaluating equation (1) for all cases, the non-zero class multiplication coefficients are

obtained as follows:

c11,1 = 1 c22,1 = 1 c33,1 = 1 c44,1 = 1 c55,1 = 1 c66,1 = 1 c77,1 = 1 c88,1 = 1
c12,2 = 1 c23,5 = 1 c34,7 = 1 c45,8 = 1 c56,7 = 1 c67,5 = 1 c78,2 = 1
c13,3 = 1 c24,6 = 1 c35,2 = 1 c46,2 = 1 c57,6 = 1 c68,3 = 1
c14,4 = 1 c25,3 = 1 c36,8 = 1 c47,3 = 1 c58,4 = 1
c15,5 = 1 c26,4 = 1 c37,4 = 1 c48,5 = 1
c16,6 = 1 c27,8 = 1 c38,6 = 1
c17,7 = 1 c28,7 = 1
c18,8 = 1

Next, the characters of the irreducible representations in terms of dk are found using
equation (2). All of these characters of the irreducible representations of C2 × C2 ×C2 are
shown in Table 12, where entries in row i (i = 1, . . . , 8) correspond to the ith irreducible
representation.

Lastly, equation (3) is used to obtain the numerical values for dk. For this group, dk

= 1, 1 ≤ k ≤ 8, for all eight irreducible representations. Thus, the characters of the eight
irreducible representations of C2 × C2 × C2 are given in Table 13.

Therefore, C2 × C2 × C2 has eight irreducible representations.
In the next section, the second method, namely Great Orthogonality Theorem method

is discussed to deduce irreducible representations of a group.

3 Great Orthogonality Theorem Method

The Great Orthogonality Theorem formula is stated as follows [3]:

∑

R

[Γi(R)mn][Γj(R)m′n′ ]∗ =
h√
lilj

δijδmm′δnn′ (4)

where h is the order of a group, li is the dimension of the ith representation, which is the
order of each of the matrices which constitute it, R is the generic symbol given to the various
operations in the group, Γi(R)mn is the element in the mth row and the nth column of the
matrix corresponding to an operation R in the ith irreducible representation.

There are five important rules to find irreducible representations and their characters [3]:
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Table 7: Irreducible representations of C8

C1 C2 C3 C4 C5 C6 C7 C8

Γ1 1 1 1 1 1 1 1 1
Γ2 1 −1 1 −1 1 −1 1 −1
Γ3 1 i −1 −i 1 i −1 −i
Γ4 1 −i −1 i 1 −i −1 i
Γ5 1 ε i −ε∗ −1 −ε −i ε∗

Γ6 1 −ε i ε∗ −1 ε −i −ε∗

Γ7 1 ε∗ −i −ε −1 −ε∗ i ε
Γ8 1 −ε∗ −i ε −1 ε∗ i −ε

Table 8: Classes in C2 × C4 and their elements

C1 C2 C3 C4 C5 C6 C7 C8

1 b b2 b3 a ba b2a b3a

Table 9: Characters of the irreducible representations of C2 × C4 in terms of dk

C1 C2 C3 C4 C5 C6 C7 C8

dk dk dk dk dk dk dk dk

dk −dk dk −dk dk −dk dk −dk

dk dki −dk −dki dk dki −dk −dki
dk −dki −dk dki dk −dki −dk dki
dk dk dk dk −dk −dk −dk −dk

dk −dk dk −dk −dk dk −dk dk

dk dki −dk −dki −dk −dki dk dki
dk −dki −dk dki −dk dki dk −dki

Table 10: Irreducible representations of C2 × C4

C1 C2 C3 C4 C5 C6 C7 C8

Γ1 1 1 1 1 1 1 1 1
Γ2 1 −1 1 −1 1 −1 1 −1
Γ3 1 i −1 −i 1 i −1 −i
Γ4 1 −i −1 i 1 −i −1 i
Γ5 1 1 1 1 −1 −1 −1 −1
Γ6 1 −1 1 −1 −1 1 −1 1
Γ7 1 i −1 −i −1 −i 1 i
Γ8 1 −i −1 i −1 i 1 −i
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Table 11: Classes in C2 × C2 × C2 and their elements

C1 C2 C3 C4 C5 C6 C7 C8

1 a b c ab ac bc abc

Table 12: Characters of the irreducible representations of C2 × C2 × C2 in terms of dk

C1 C2 C3 C4 C5 C6 C7 C8

dk dk dk dk dk dk dk dk

dk dk dk −dk dk −dk −dk −dk

dk dk −dk −dk −dk −dk dk dk

dk dk −dk dk −dk dk −dk −dk

dk −dk dk dk −dk −dk dk −dk

dk −dk dk −dk −dk dk −dk dk

dk −dk −dk −dk dk dk dk −dk

dk −dk −dk dk dk −dk −dk dk

Table 13: Irreducible representations of C2 × C2 × C2

C1 C2 C3 C4 C5 C6 C7 C8

Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 1 −1 1 −1 −1 −1
Γ3 1 1 −1 −1 −1 −1 1 1
Γ4 1 1 −1 1 −1 1 −1 −1
Γ5 1 −1 1 1 −1 −1 1 −1
Γ6 1 −1 1 −1 −1 1 −1 1
Γ7 1 −1 −1 −1 1 1 1 −1
Γ8 1 −1 −1 1 1 −1 −1 1
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Rule 1: The sum of the squares of the dimensions of the irreducible representations of a group
is equal to the order of the group, that is,

∑
li

2 = l1
2 + l2

2 + l3
2 + . . . = h (5)

where li is the dimension of the ith representation and h is the order of a group.

Rule 2: The sum of the squares of the characters in any irreducible representation equals the
order of the group, that is, ∑

R

[χi(R)]2 = h (6)

where R is the various operations in the group, χi(R) is the character of the repre-
sentation of R in the ith irreducible representation and h is the order of the group.

Rule 3: The vectors whose components are the characters of two different irreducible repre-
sentations are orthogonal, that is,

∑

R

χi(R)χj(R) = 0 when i 6= j (7)

where χi(R) is the character of the representation of R in the ith irreducible repre-
sentation.

Rule 4: In a given representation (reducible or irreducible), the characters of all matrices
belonging to operations in the same class are identical.

Rule 5: The number of irreducible representations of a group is equal to the number of classes
in the group.

There is a specific method to find the irreducible representations for cyclic groups using
this method. A cyclic group is Abelian and each of its h elements is in a separate class.
It also has h 1-dimensional irreducible representations. In order to obtain the irreducible
representations for a cyclic group, the exponential below is used as the pth irreducible
representation, Γp(Cn):

εp = exp
(2πip

n

)
= cos

2πp

n
+ i sin

2πp

n
(8)

where Cn is the cyclic group of order n and p = 1, . . . , n. A table is obtained where the
elements inside are obtained by group multiplication. Then the powers of ε’s are reduced to
modulo 8. Finally, the elements in the table are replaced with their values using equation (8).
Thus the irreducible representations of the group are obtained.

Moreover, using this method, for groups which is made up of direct product of two (or
more) groups, say Cm × Cn, the representations of Cm is determined by the mth roots of
unity and the representations of Cn is determined by the nth roots of unity. In other words,
if χ and δ are the mth and nth roots of unity determining certain irreducible representations
of the groups Cm and Cn, then the pair {χ, δ} determine an irreducible representation T of
Cm × Cn through the formula below [4]:

T [(ai, bj)] = χiδj (9)

In the following five subsections, irreducible representations of D4, Q, C8, C2 × C4 and
C2 × C2 × C2 are found using Great Orthogonality Theorem method.
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3.1 Irreducible Representations of Dihedral Group, D4

According to rule 5, since the group D4 consists of five classes, there are five irreducible
representations for this group. By rule 1, we find a set of five positive integers, l1, l2, l3,
l4 and l5 which satisfy the equation l1

2 + l2
2 + l3

2 + l4
2 + l5

2 = 8. The only values of li
(i=1,...,5) which satisfy this requirement are 1, 1, 1, 1 and 2. Thus, the group D4 has four
1-dimensional irreducible representations and one 2-dimensional irreducible representation.
By rule 2, in any group, there will be a 1-dimensional irreducible representation whose
characters are all equal to 1, since

∑

R

(χ1(R))2 = (1)12 + (2)12 + (1)12 + (2)12 + (2)12 = 8.

The other representations will have to be such that
∑

R(χi(R))2 = 8, which can be true if
and only if each χi(R) = ±1. By rule 3, each of the other three representations has to be
orthogonal to the first irreducible representation, Γ1. Thus, there will have to be two +1’s
and two −1’s. The fifth representation will be of dimension 2, hence χ5(C1) = 2. In order
to find out the values of χ5(C2), χ5(C3), χ5(C4) and χ5(C5), the orthogonality relationships
as stated by equation (7) in rule 3 is used. Solving the four simultaneous equations below:

∑

R

χ1(R)χ5(R) = (1)(2) + (1)χ5(C2) + (1)χ5(C3) + (1)χ5(C4) + (1)χ5(C5) = 0,

∑

R

χ2(R)χ5(R) = (1)(2) + (1)χ5(C2) + (1)χ5(C3) + (−1)χ5(C4) + (−1)χ5(C5) = 0,

∑

R

χ3(R)χ5(R) = (1)(2) + (−1)χ5(C2) + (1)χ5(C3) + (1)χ5(C4) + (−1)χ5(C5) = 0,

∑

R

χ4(R)χ5(R) = (1)(2) + (−1)χ5(C2) + (1)χ5(C3) + (−1)χ5(C4) + (1)χ5(C5) = 0,

gives χ5(C2) = χ5(C4) = χ5(C5) = 0 and χ5(C3) = −2.
The complete set of irreducible representations of D4 is found to be the same as those

in Table 4.

3.2 Irreducible Representations of Quaternion Group, Q

The steps to obtain the irreducible representations of Q are exactly the same as those for
D4. Therefore, the complete set of irreducible representations of Q is also shown in Table 4.

3.3 Irreducible Representations of Cyclic Group of Order 8, C8

According to rule 5, since the group C8 consists of eight classes, there are eight irreducible
representations for this group. By rule 1, using equation (5), l1

2 + l2
2 + l3

2 + l4
2 + l5

2 +
l6

2 + l7
2 + l8

2 = 8. Therefore, possible values for li (i = 1, ..., 8) are all 1s. In other words,
the group C8 has a set of eight 1-dimensional irreducible representations namely, Γ1, Γ2,
Γ3, Γ4, Γ5, Γ6, Γ7 and Γ8 which satisfy

8∑
m=1

[Γp(Cn
m)][Γq(Cn

m)]∗ = hδpq. (10)
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Since this is a cyclic group, the exponential below is used:

Γp(C8) = εp

= exp(
2πip

8
)

= cos(
2πp

8
) + i sin(

2πp

8
)

Table 14 shows the set where the elements inside the table are obtained by group multipli-
cation:

Table 14: Table whose elements are obtained by group multiplication

C1 C2 C3 C4 C5 C6 C7 C8

Γ1 ε8 ε ε2 ε3 ε4 ε5 ε6 ε7

Γ2 ε16 ε2 ε4 ε6 ε8 ε10 ε12 ε14

Γ3 ε24 ε3 ε6 ε9 ε12 ε15 ε18 ε21

Γ4 ε32 ε4 ε8 ε12 ε16 ε20 ε24 ε28

Γ5 ε40 ε5 ε10 ε15 ε20 ε25 ε30 ε35

Γ6 ε48 ε6 ε12 ε18 ε24 ε30 ε36 ε42

Γ7 ε56 ε7 ε14 ε21 ε28 ε35 ε42 ε49

Γ8 ε64 ε8 ε16 ε24 ε32 ε40 ε48 ε56

In order to show that these representations satisfy equation (10), consider any two
representations, say Γp and Γq, where q − p = r. The left-hand side of equation (10) is

(εp)∗εp+r + (ε2p)∗ε2(p+r) + (ε3p)∗ε3(p+r) + (ε4p)∗ε4(p+r)

+(ε5p)∗ε5(p+r) + (ε6p)∗ε6(p+r) + (ε7p)∗ε7(p+r) + (ε8p)∗ε8(p+r)

which can be simplified as

εr + ε2r + ε3r + ε4r + ε5r + ε6r + ε7r + ε8r =
8∑

s=1

exp(
2πis

8
). (11)

The representation are thus normalized, since if Γp = Γq, then r = 0 and equation (11)
is eight times e0, that is 8. If Γp and Γq are different, r is some number from 1 to 7 since
ε8 equal to 1.

Therefore, the sum of equation (11) reduces to 0, that is,

8∑
s=1

exp(
2πis

8
) = 0

using the trigonometric identities

l∑
s=1

cos
2πs

l
= 0 and

l∑
s=1

sin
2πs

l
= 0.
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Table 15: Reducing the powers of ε’s to modulo 8 to Table 14

C1 C2 C3 C4 C5 C6 C7 C8

Γ1 1 ε ε2 ε3 ε4 ε5 ε6 ε7

Γ2 1 ε2 ε4 ε6 1 ε2 ε4 ε6

Γ3 1 ε3 ε6 ε ε4 ε7 ε2 ε5

Γ4 1 ε4 1 ε4 1 ε4 1 ε4

Γ5 1 ε5 ε2 ε7 ε4 ε ε6 ε3

Γ6 1 ε6 ε4 ε2 1 ε6 ε4 ε2

Γ7 1 ε7 ε6 ε5 ε4 ε3 ε2 ε
Γ8 1 1 1 1 1 1 1 1

Table 15 is set by reducing the powers of ε’s to modulo 8.
Using equation (8) where ε2 is replaced by i, ε3 by −ε∗, ε4 by −1, ε5 by −ε, ε6 by −i, ε7 by

ε∗, ε8 by 1 and rearranging the rows, the characters of the eight irreducible representations
of C8 are the same as in Table 7.

3.4 Irreducible Representations of C2 × C4

According to rule 5, since the group C2 × C4 consists of eight classes, there are eight
irreducible representations for this group. By rule 1, using equation (5), l1

2 + l2
2 + l3

2 +
l4

2+ l5
2+ l6

2+ l7
2+ l8

2 = 8. Therefore, possible values for li (i = 1, ..., 8) are all 1s. In other
words, the group C8 has a set of eight 1-dimensional irreducible representations namely, Γ1,
Γ2, Γ3, Γ4, Γ5, Γ6, Γ7 and Γ8. Since this is a direct product group, the following approach
is used.

The representations of C2 are determined by square roots of unity: 1 and −1, and those
of C4 are determined by the fourth roots of unity: 1, i, −1 and −i. If χ and δ are second
and fourth roots of unity determining certain irreducible representations of C2 and C4, then
the pair {χ, δ} determine an irreducible representation T of C2 × C4 through the formula

T [(ai, bj)] = χiδj .

As an example, for the pair {−1,−i},

T [(a0, b0)] = (−1)0(−i)0 = 1,

T [(a0, b1)] = (−1)0(−i)1 = −i,

T [(a0, b2)] = (−1)0(−i)2 = −1,

T [(a0, b3)] = (−1)0(−i)3 = i,

T [(a1, b0)] = (−1)1(−i)0 = −1,

T [(a1, b1)] = (−1)1(−i)1 = i,

T [(a1, b2)] = (−1)1(−i)2 = 1,

T [(a1, b3)] = (−1)1(−i)3 = −i.
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Continuing in this manner and rearranging the rows of irreducible representations, the
characters of the eight irreducible representations of C2 × C4 are found as in Table 10.

3.5 Irreducible Representations of C2 × C2 × C2

As before, the group C8 has a set of eight 1-dimensional irreducible representations namely,
Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7 and Γ8.

Since this group is a direct product of three copies of C2, the same approach is used as
for direct product of the groups C2 with C4.

The representations of C2 are determined by square roots of unity: 1 and −1. If χ, δ
and ε are all second roots of unity determining certain irreducible representations of C2,
then the pair {χ, δ, ε} determine an irreducible representation T of C2 × C2 × C2 through
the formula

T [(ai, bj , ck)] = χiδjεk.

As an example, for the pair {−1,−1, 1},
T [(a0, b0, c0)] = (−1)0(−1)010 = 1,

T [(a1, b0, c0)] = (−1)1(−1)010 = −1,

T [(a0, b1, c0)] = (−1)0(−1)110 = −1,

T [(a0, b0, c1)] = (−1)0(−1)011 = 1,

T [(a1, b1, c0)] = (−1)1(−1)110 = 1,

T [(a1, b0, c1)] = (−1)1(−1)011 = −1,

T [(a0, b1, c1)] = (−1)0(−1)111 = −1,

T [(a1, b1, c1)] = (−1)1(−1)111 = 1.

Continuing in this manner and rearranging the rows of irreducible representations, the
characters of the eight irreducible representations of C2×C2×C2 are found as in Table 13.

In the next section, Burnside method and Great Orthogonality Theorem method are
compared.

4 Comparison of the Two Methods

Both Burnside method and Great Orthogonality Theorem method can be used to obtain
the irreducible representations of all groups of order 8. Using Burnside method, three
formulas are involved to find the irreducible representations. The first and second formulas
are quite lengthy since there are n! calculations for each formula for a group with n classes.
Besides, every equation has to be satisfied in the second formula to find the characters of
the irreducible representations in terms of dk. As for the third formula, since it involves
Kronecker Delta, only the cases when j = k have to be checked. So there are only n
calculations to be done for a group with n classes. It is necessary to take the complex
conjugate of χi

j , the character of the elements in class Ci in the irreducible representation
labelled by j, whenever imaginary or complex numbers are involved. Burnside method
can be applied to any groups without considering the structure of the group as in Great
Orthogonality Theorem method.



16 Nor Haniza Sarmin & Fong Wan Heng

For Great Orthogonality Theorem method, Great Orthogonality Theorem formula and
five important rules concerning irreducible representations and their characters are used.
However, for cyclic groups and direct product groups, there are certain steps to be followed
to obtain the irreducible representations in addition to the Great Orthogonality Theorem
formula and the five important rules. In general, this method is not as lengthy as Burnside
method. Therefore, in order to deduce the irreducible representations for groups using
Great Orthogonality Theorem method, the type of groups need to be identified first.

5 Applications

Identifying the irreducible representations associated with a given atom is of great value as
convenient ways of labeling orbitals for reference, determining which sets of atomic orbitals
can combine with each other to form molecular orbitals and for determining the number
and nature of vibrational motions for a given molecule by removing the irreducible repre-
sentations that correspond to the translation and rotation of the molecule. The properties
of group presentations and their characters are also important in dealing with problems in
valence theory and molecular dynamics.

6 Conclusions

Two of the methods to obtain the irreducible representations of a group are Burnside method
and Great Orthogonality Theorem method. The two methods are used to obtain the ir-
reducible representations of all groups of order 8 and comparison of the two methods are
made. Although quite lengthy, Burnside method can be applied to any type of groups with-
out having to consider the structure of the group. Great Orthogonality Theorem method
is not as lengthy as Burnside method but there is specific method for cyclic groups and
direct product groups in addition to the Great Orthogonality Theorem formula and the five
important rules.
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