NUMERICAL SIMULATION AND WIND TUNNEL MEASUREMENTS OF LATERAL AERODYNAMIC CHARACTERISTICS ON SIMPLIFIED AUTOMOTIVE MODEL

MUHAMMAD RIZA ABD RAHMAN

A thesis submitted in fulfillment of the requirement for the award of the degree of Master of Mechanical Engineering

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

December 2010

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Mechanical Engineering Dengan nama Allah yang Maha Pengasih lagi Maha Penyayang..

Teristimewa buat ibu dan ayah yang tersayang, Zainab Mustafa dan Abd Rahman Arifin seluruh keluarga dan sahabat... Terima kasih atas sokongan kalian sehingga aku mampu mencapai hingga ke tahap ini. Hanya Allah s.w.t sahajalah mampu membalas jasa kalian..

Amin..

Motivator terbaik adalah diri sendiri...

ACKNOWLEDGEMENT

All praise to Allah S.W.T, the Almighty God and the Lord of the Universe, the Merciful and Gracious. Salam to our beloved prophet, Nabi Muhammad s.a.w for His mercy has given me the strength, blessing and time to complete this project.

Words cannot express my thankfulness to my supervisors PM. Dr. Ir. Shuhaimi Mansor who guided me through the whole study with his knowledge and great patience. His excitement and curiosity toward science inspired me a lot. His encouragement has been with me all the time during the years of my study. Without his endless support and guidance, this thesis would not have been very well presented as for now.

I extend my gratitude to En. Iskandar Ishak and Yaheyia Aldreany, who shared their experience and knowledge in simulation and wind tunnel test analysis. I express my deep sense of gratitude and indebtedness to our engineer, Abd Basid Abd Rahman and all staff of Aeronautic laboratory especially Airi Ali for their guidance, advices and motivation while completing this project.

Last but not least, the biggest appreciation to my parents and family and also to everyone for their precious contribution as being supportive for all the time.

Thank you...

ABSTRACT

Computational Fluid Dynamic (CFD) has become an important tool to solve various engineering problems related to aerodynamics. One such growing interest in CFD is to correlate results between CFD and wind tunnel tests. The accuracy of CFD has improved considerably over the years but still large errors are present and lateral aerodynamic characteristics such as drag, side force and yaw moment due to yaw angle are often poorly predicted especially on bluff body shapes. Due to this, comparison between CFD and wind tunnel measurements has become more on demand. The main goal of this research is to investigate the capability of CFD to determine aerodynamic characteristics of simple automotive type bodies and its effect on crosswind stability. An investigation was performed both experimentally and computationally to analyze the main characteristics of flow past a 1:6 scale wind tunnel model of a simplified automotive body shape with different rear slant angles. The investigations were focused on the prediction and measurement of drag, side force, vawing moment and flow characteristics around the model in Revnolds number range of 1.29×10^6 to 2.14×10^6 at various yaw angles. The wind tunnel measurements were performed to provide aerodynamic data on vehicle stability and also to build a database for validating the numerical simulation model. The CFD solver FLUENT 6.3 was used to simulate incompressible three dimensional flow with the standard k- ε turbulent models. The result of the wind tunnel tests and the numerical simulations were found to be in good agreement. The results show that the rear slant angles have significant effect on aerodynamics lateral derivatives.

ABSTRAK

Simulasi Dinamik bendalir berkomputer (CFD) telah menjadi satu alat yang penting dalam menyelesaikan pelbagai permasalahan kejuruteraan yang berkaitan dengan aerodinamik. Antara penggunaan yang semakin meluas pada masa kini adalah mencari perhubungan antara keputusan yang didapati dari CFD dengan ujian terowong angin. Ketepatan CFD semakin baik dari tahun ke tahun tetapi masih terdapat lagi ralat yang besar wujud dan pekali-pekali cirian aerodinamik seperti daya seret, daya sisi dan momen rewang terhadap sudut rewang biasanya kurang tepat terutama bagi bentuk jasad tubir. Oleh kerana itu, perbandingan antara CFD dan ujian terowong angin amat diperlukan. Matlamat utama kajian ini adalah untuk menyelidik kebolehan CFD dalam menentukan ciri-ciri aerodinamik dan kestabilan angin lintang ke atas badan automotif yang dipermudah. Kajian dilakukan secara ujikaji dan simulasi berkomputer bagi menganalisis ciri-ciri utama aliran yang melepasi model badan automotif yang dipermudah berskala 1:6 yang mempunyai sudut belakang yang berbeza-beza. Kajian memfokuskan kepada jangkaan dan pengukuran daya seret, daya sisi, momen rewang dan ciri-ciri aliran udara di sekeliling badan dalam julat nombor Reynolds 1.29×10^6 hingga 2.14×10^6 pada sudut rewang yang berlainan. Pengujian terowong angin dijalankan bagi mendapatkan data aerodinamik bagi kestabilan kenderaan dan juga digunakan untuk mengesahkan simulasi yang dibuat ke atas model. FLUENT 6.3 menggunakan model gelora k- ε dalam simulasi aliran tiga dimensi tak termampat. Keputusan yang diperolehi menunjukkan kaitan yang baik antara pengujian terowong angin dan simulasi. Keputusan kajian ini juga menunjukkan sudut belakang memberikan kesan yang jelas signifikan ciri-ciri aerodinamik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DEDICATION		viii
ACKNOWLED	GEMENT	ix
ABSTRACT		х
ABSTRAK		xi
TABLE OF CO	NTENTS	xii
LIST OF FIGU	RES	XV
LIST OF TABL	ES	xviii
NOMENCLAT	URE	xix
1. INTRODU	CTION	1
1.1 Introdu	iction	1
1.2 Problem	n Statement	2
1.3 Resear	ch Objective	3
1.4 Scope	of Work	3
1.5 Resear	ch Methodology	4
1.6 Organi	zation of The Thesis	5
2. LITERATU	JRE REVIEW	7
2.1 Introdu	iction	7
2.2 Aerody	vnamic Characteristic	9
2.2.1 Fc	rces and Moments	9
2.2.2 Ae	erodynamic Derivative	11
2.2.3 Pr	essure Distribution	11
2.2.4 Cr	osswind Sensitivity	12
2.2.5 Th	e Angle of Side Slip for Crosswind	12

2.2	2.6	Center of Pressure	13
2.3	Ve	hicle's Crosswind Stability	14
2.4	Blı	iff Body Type	14
2.5	Со	mputational Fluid Dynamic Simulation	15
2.:	5.1	Review of Previous Related CFD Study	18
3. CO	OMP	UTATIONAL FLUID DYNAMICS	23
3.1	Int	roduction	23
3.2	Pre	e-processing	24
3.2	2.1	Selection Grid	25
3.2	2.2	Size Function	25
3.2	2.3	Computational Domain	27
3.2	2.4	Grid Generation Using GAMBIT	28
3.2	2.5	Three Dimensional (3D) Modeling Mesh	28
3.2	2.6	Independent Meshing	30
3.3	So	ver Setup for Simulation	31
3.	3.1	CFD Simulations Using FLUENT 6.3	31
3	3.2	Solver Setup	36
3	3.3	Boundary Conditions	37
3	3.4	Fluid Properties	40
3.3	3.5	Solution Control	40
3.4	Pos	st-Processing	42
3.5	As	sumption of The Simulation	43
4. W	IND	TUNNEL TEST	44
4.1	Int	roduction	44
4.2	Wi	nd Tunnel Specification	44
4.3	Mo	odel specification	45
4.4	Me	easurement Method	46
4.5	So	lid Blockage	47
4.6	Ex	periment Setup	48
4.0	6.1	Comparison with Loughborough Wind Tunnel Test Results	48
4.7	Re	sults from 20 ⁰ Rear Slant Angle	50
4.′	7.1	Side Force and Yaw Moment Derivatives of 20 ⁰ Slant	51
4.8	Th	e Effect Rear Slant Angle	52
4.9	Sic	le Force and Yaw Moment Derivatives of Various Slant	55

5. RI	ESULTS AND DISCUSSION	58
5.1	Introduction	58
5.2	Detailed Simulation Results	58
5.3	Drag Force	59
5.4	Side Force Coefficient and Derivative	65
5.5	Yawing Moment Coefficient and Derivative	70
6. C0	ONCLUSION AND RECOMMENDATION	77
6.1	Conclusion	77
6.2	Recommendations	78
REFERENCES		80
APPENDIX A		84
APPENDIX B		93

LIST OF FIGURES

FIGURE NO. FIGURE PAGE 5 1.1 Flow chart for research methodology 8 2.1 SAE vehicle body axes 2.2 Pressure distribution on a horizontal vehicle 11 2.3 The angle of side slip for crosswind 12 2.4 The center of gravity and center of pressure 13 2.5 Computed and experimental drag coefficients for various rear slants angle of Ahmed model after Gillieron and Chometon 19 2.6 Instantaneous streamwise velocity fields in the symmetry plane, for 20 different time of simulation. Hinterberger et.al. (2004) 2.7 Surface mesh of Ahmed model with 30° rear slant angle, after Francis T. Makowski and Sung-Eun Kim (2000) 21 2.8 Time-study of C_D (DES) Figure (a) and Time -Study of C_D (RANS) Figure (b) after Sagar Kapadia et.al. 2003 22 3.1 (a) & (b). Grid generation using size functions 26 27 3.2 Computational domain size 29 3.3 Davis model configuration 3.4 Computational meshing model 30 Drag coefficient versus number of meshing element (Mesh 3.5 independent study) 31 3.6 Graph drag coefficient versus yaw angle for different turbulence model for 20° rear slant angle 35 Universiti Teknologi Malaysia Low Speed Tunnel (UTM-LST) 4.1 45 General dimensions of baseline shape (rear slant angle 20°) of 4.2 Davis model. All edge radii 10 mm. 46 4.3 Model with different rear slant angles. All edge radii 10 mm. 46 Aerodynamic coefficient against yaw angle at wind speeds 40 m/s 4.4 of 20° slant. (a) drag force, (b) side force ,(c) yaw moment 49

4.5	Model slant angle 20^0 setup for static test	50
4.6	Aerodynamic coefficients against yaw angle at different wind	
	speeds of rear slant angle 20^{0} . (a) side force, (b) yaw moment	51
4.7	Aerodynamic coefficient versus yaw angle for different rear slant	
	angles at 40 m/s. (a) drag, (b) side force, (c) yaw moment	53
4.8	Side force, yaw moment coefficient and centre of pressure for	
	various rear slant angles for 10^0 yaw and drag	54
4.9	Static aerodynamic derivatives of different slant angles at 30 to	
	50 m/s. (a) side force, (b) yaw moment	56
4.10	Static side force derivatives versus Reynolds number for	
	different rear slant angles.	57
4.11	Static yaw moment derivatives versus Reynolds number for	
	different rear slant angles.	57
5.1	(a) and (b): Velocity vector and contours in the wake of 0^0 slant	60
5.2	(a) and (b): Velocity vector and contours in the wake of 10^{0} slant	61
5.3	(a) and (b): Velocity vector and contours in the wake of 20^0 slant	62
5.4	(a) and (b): Velocity vector and contours in the wake of 30^0 slant	63
5.5	(a) and (b): Velocity vector and contours in the wake of 40^0 slant	64
5.6	Graph side force coefficients versus yaw angle for slant 0^0	65
5.7	Graph side force coefficients versus yaw angle for slant 10^0	65
5.8	Graph side force coefficients versus yaw angle for slant 20^0	66
5.9	Graph side force coefficients versus yaw angle for slant 30^0	66
5.10	Graph side force coefficients versus yaw angle for slant 40^0	66
5.11	Graph side force coefficients versus yaw angle at different slant	
	angle	67
5.12	Graph side force coefficients versus rear slant angle at yaw	
	angle 10 ⁰	68
5.13	Static side force derivatives versus Reynolds number for	
	different rear slant angles.	68
5.14	Comparison experimental and CFD static side force derivatives	
	versus rear slant angles for 40 m/s.	69
5.15	Graph yawing moment coefficients versus yaw angle for rear	
	slant 0 ⁰	70

5.16	Graph yawing moment coefficients versus yaw angle for	
	rear slant 10^0	70
5.17	Graph yawing moment coefficients versus yaw angle for	
	rear slant 20 ⁰	71
5.18	Graph yawing moment coefficients versus yaw angle for	
	rear slant 30^0	71
5.19	Graph yawing moment coefficients versus yaw angle for	
	rear slant 40^0	71
5.20	Graph yaw moment coefficients versus yaw angle at different	
	rear slant angle	72
5.21	Graph yawing moment coefficients versus rear slant angle at	
	yaw angle 10 ⁰	73
5.22	Static yawing moment derivatives versus Reynolds number for	
	different rear slant angles.	73
5.23	Comparison experimental and CFD static yaw moment force	
	derivatives versus rear slant angles for 40 m/s.	73
5.24	Velocity vector at plane behind the model	75

xvii

xviii

LIST OF TABLES

TABLE NO.

TABLE

PAGE

2.1	Forces and moment.	8
3.1	Default values of α in FLUENT	41
4.1	Balance load range and accuracy.	47
4.2	Comparison aerodynamic derivative UTM-LST and	
	Loughborough University wind tunnel test	50
4.3	Static measured derivatives of Cy_{β} and Cn_{β} for 20 ⁰ slant.	52
4.4	Side force and moment derivative at different rear slant angle	56
5.1	The drag force and the coefficient of drag for the Fluent and wind	
	tunnel test result.	59
5.2	Tabulated data experimental and CFD static yaw moment force	
	derivatives versus rear slant angles for 40 m/s.	69
5.3	Tabulated data experimental and CFD static yaw moment force	
	derivatives versus rear slant angles for 40 m/s.	74

NOMENCLATURE

A	- model frontal area	m^2
As	- model side area	m^2
Cd	- aerodynamic drag coefficient	
cg	- centre of gravity	
Cn	- aerodynamic yaw moment coefficient	
ср	- centre of pressure	
e_0	- distance center of aerodynamic to center wheel base	m
$C_{\rm s}$	- aerodynamic side force derivative	rad ⁻¹
$C_{\mathcal{Y}\beta}$		na d ⁻¹
Cn_{β}	- aerodynamic yaw moment derivative	rad
Cy		
3	- dissipation rate	$lram^2$
1 _{zz} 1-	- model ng yaw moment of mertia	ĸg.m
ĸ	- Kinetic energy model characteristic length	m
l cn	- distance between <i>cn</i> and <i>cg</i>	m
lwh	- wheel hase length	m
1	- distance between front axle to <i>cg</i>	m
l_F	distance between rear ayle to ca	m
m	- mass of the model	ko
Na	- aerodynamic vaw moment	Nm
Re	- Reynolds Number	
N_{f}	- yaw moment fluctuation	Nm
u, v, w	- forward, lateral and vertical speed	$m.s^{-1}$
V	- wind tunnel velocity	$m.s^{-1}$
V_x	- wind tunnel axial velocity	$m.s^{-1}$
V_y	- wind tunnel lateral velocity	$m.s^{-1}$
V_z	- wind tunnel vertical velocity	$m.s^{-1}$
V_{f}	- lateral velocity fluctuation	$m.s^{-1}$
V_w	- crosswind velocity	$m.s^{-1}$
β	- model yaw angle	deg
β_w	- relative crosswind angle	deg
ρ	- air density	kg.m ⁻³
θ	- model angle of rotation	deg
ϕ	- phase angle	deg
Ψ	- crosswind angle with respect to vehicle forward speed	deg

CHAPTER 1

INTRODUCTION

1.1 Introduction

Currently, a new environment exist in the industry that want to produce a new design or model in short period and want to reduce cost. One of the best solution for this problem is by using computational fluid dynamic (CFD) simulation. Therefore, computational fluid dynamic is becoming more important and in high demands. Computational fluid dynamic and experiments have their own strengths and limitations. CFD can provide a very detailed view of the flow field, generating velocities, pressure and densities at every point in the domain where it would be very expensive to measure experimentally. However, calculations always approximate the flow in some way, either by solving a simplified equation or by introducing approximations through the numerical method itself. Besides that, the wind tunnel test has the advantage of dealing with a real fluid and measuring the correct physics, though usually not at perfect real conditions (Reynolds number differences) or the right geometry (because of model support interference or wall effects). It often provides good measures of integrated flow properties such as total forces and moments acting on a body.

The aerodynamic characteristics of passenger cars have been a fruitful area of research for several decades, and continue to this day. However, it is well appreciated that there still remains much more things to be learned in this area, and for that purpose, further research is required to understand the complex aerodynamic and flow around the model. Crosswind stability is an important area of study in vehicle aerodynamic design since it leads to safety issues. The main concern in aerodynamic design for years has been concentrated on reducing the drag for fuel efficiency. Later on, it was found that the streamlined vehicle shapes are sensitive to crosswind disturbance. The styling trend towards rounder shapes especially at the rear of the vehicles and a continuing reduction in aerodynamic drags are suspected to contribute to the crosswind sensitivity (Howell, 1993).

Crosswind sensitivity was one of the major concerns in the design stage process. But this area is still not fully understood. In practical, this behavior sometime will be happen after production. Previously, CFD is used to predict the aerodynamic loads and flow characteristics around the model only but now this research also to predict and see the aerodynamic derivatives.

The ability of computational fluid dynamic (CFD) to predict critical flow characteristics has always been questionable. The accuracy of CFD, has improved considerably over the years but still large errors are present and vehicle parameters such as drag and lift are often poorly predicted. Due to this, comparison between computational fluid dynamic and wind tunnel testing has become demanding. The main goal of this research is to investigate the capability of CFD to determine aerodynamic characteristics on simple automotive type bodies and its effect on crosswind sensitivity. Numerical analysis using CFD modeling and simulation will be compared with experimental results in the wind tunnel.

1.2 Problem Statement

Currently, during the design of a new model both wind tunnel test and computational fluid dynamic will be used. In real application wind tunnel test will consume more cost and time and have limitation in data requirement. To overcome this problem all designer try to change to simulation but the confident level of simulation prediction is still not too accurate compare to wind tunnel test results. In current practice CFD has been used to predict aerodynamic loads and flow field around the model. However, there are few researchers focus on aerodynamic derivatives (side force and moment derivatives) which is very important to estimate the stability of model. The stability of the model play the important role to make sure the shape of the vehicle can be optimized.

1.3 Research Objective

- 1. To investigate the capability of CFD to determine lateral aerodynamic characteristics on simple automotive type body.
- 2. To determine the aerodynamic derivative characteristics of a bluff body with various rear slant angles.

1.4 Scope of Work

The current research work is limited to the following:

- Computational Fluid Dynamic (CFD) simulation using FLUENT
 6.3 and wind tunnel test on a bluff body
- 2. The study is based on a Davis model with different rear slant angles $(0^0, 10^0, 20^0, 30^0 \text{ and } 40^0)$.
- 3. Air velocity between 30 to 50 m/s which corresponds to a range of Reynolds number based on model length between 1.29 x 10^6 and 2.49 x 10^6 .
- 4. The yaw range was between -16° and 16° with increment of 2° .

1.5 Research Methodology

This research comprises of two main parts, Computational Fluid Dynamic (CFD) simulation using Fluent 6.3 and wind tunnel test measurement. In both parts, Davis model with five different rear slant angles $(0^0, 10^0, 20^0, 30^0, \text{ and } 40^0)$ were test and simulate in various wind speeds ranging from 30 m/s to 50 m/s with interval of 5 m/s. Wind tunnel test has been conducted at Universiti Teknologi Malaysia Low Speed Tunnel (UTM-LST) and forces and moments subjected to the models were measured using six component external balances. In this research, Davis model with rear slant angles of 20^0 become a base model for Validation of simulation and experimental verification with Mansor (2006) works before other rear angles being tested. Both results are then compared to find any correlation between experiment and simulation. The overall flow chart of the research methodology is shown in Figure 1.1.

Figure 1.1 Flow chart for research methodology

1.6 Organization of The Thesis

This dissertation is structured in six chapters. The background, a short description of the methodology, motivation and objectives has been presented in this chapter. Chapter 2 is devoted to literature survey, a detailed review of the research work conducted in the area. Chapter 3 briefly discusses the numerical

tools, solution procedure and turbulence modeling that are being used in this dissertation. Then, Chapters 4 and 5 investigate bluff body aerodynamics on Davis model. Presented in Chapter 4 are the experimental measurements of drag, side force and yaw moment at various yaw angle from the static wind tunnel tests, and in Chapter 5 the numerical results and their comparison with experimental measurements are provided. Finally, conclusions of the present study and recommendations for future enhancement of the work are given in Chapter 6.