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ABSTRACT 

 
 

Computational Fluid Dynamic (CFD) has become an important tool to solve 

various engineering problems related to aerodynamics. One such growing interest in 

CFD is to correlate results between CFD and wind tunnel tests. The accuracy of CFD 

has improved considerably over the years but still large errors are present and lateral 

aerodynamic characteristics such as drag, side force and yaw moment due to yaw 

angle are often poorly predicted especially on bluff body shapes. Due to this, 

comparison between CFD and wind tunnel measurements has become more on 

demand. The main goal of this research is to investigate the capability of CFD to 

determine aerodynamic characteristics of simple automotive type bodies and its 

effect on crosswind stability. An investigation was performed both experimentally 

and computationally  to analyze the main characteristics of flow past a 1:6 scale wind 

tunnel model of a simplified automotive body shape with different rear slant angles. 

The investigations were focused on the prediction and measurement of drag, side 

force, yawing moment and flow characteristics around the model in Reynolds 

number range of 1.29x106 to 2.14x106 at various yaw angles. The wind tunnel 

measurements were performed to provide aerodynamic data on vehicle stability and 

also to build a database for validating the numerical simulation model. The CFD 

solver FLUENT 6.3 was used to simulate incompressible three dimensional flow 

with the standard k-� turbulent models. The result of the wind tunnel tests and the 

numerical simulations were found to be in good agreement. The results show that the 

rear slant angles have significant effect on aerodynamics lateral derivatives. 
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ABSTRAK 

 
 

Simulasi Dinamik bendalir berkomputer (CFD) telah menjadi satu alat yang 

penting dalam menyelesaikan pelbagai permasalahan kejuruteraan yang berkaitan 

dengan aerodinamik. Antara penggunaan yang semakin meluas pada masa kini 

adalah mencari perhubungan antara keputusan yang didapati dari CFD dengan ujian 

terowong angin. Ketepatan CFD semakin baik dari tahun ke tahun tetapi masih 

terdapat lagi ralat yang besar wujud dan pekali-pekali cirian aerodinamik seperti 

daya seret, daya sisi dan momen rewang terhadap sudut rewang biasanya kurang 

tepat terutama bagi bentuk jasad tubir. Oleh kerana itu, perbandingan antara CFD 

dan ujian terowong angin amat diperlukan. Matlamat utama kajian ini adalah untuk 

menyelidik kebolehan CFD dalam menentukan ciri-ciri aerodinamik dan kestabilan 

angin lintang ke atas badan automotif yang dipermudah. Kajian dilakukan secara 

ujikaji dan simulasi berkomputer bagi menganalisis ciri-ciri utama aliran yang 

melepasi model badan automotif yang dipermudah berskala 1:6 yang mempunyai 

sudut belakang yang berbeza-beza. Kajian memfokuskan kepada jangkaan dan 

pengukuran daya seret, daya sisi, momen rewang dan ciri-ciri aliran udara di 

sekeliling badan dalam julat nombor Reynolds 1.29x106 hingga 2.14x106 pada sudut 

rewang yang berlainan. Pengujian terowong angin dijalankan bagi mendapatkan data 

aerodinamik bagi kestabilan kenderaan dan juga digunakan untuk mengesahkan 

simulasi yang dibuat ke atas model. FLUENT 6.3 menggunakan model gelora k-� 

dalam simulasi aliran tiga dimensi tak termampat. Keputusan yang diperolehi 

menunjukkan kaitan yang baik antara pengujian terowong angin dan simulasi. 

Keputusan kajian ini juga menunjukkan sudut belakang memberikan kesan yang 

jelas signifikan ciri-ciri aerodinamik. 
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A - model frontal area        m2 

As - model side area        m2 
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CHAPTER 1 

 
 
 
 

1. INTRODUCTION

 
 
 
 
1.1 Introduction 

 
 

Currently, a new environment exist in the industry that want to produce a 

new design or model in short period and want to reduce cost. One of the best 

solution for this problem is by using computational fluid dynamic (CFD) 

simulation. Therefore, computational fluid dynamic is becoming more important 

and in high demands. Computational fluid dynamic and experiments have their 

own strengths and limitations. CFD can provide a very detailed view of the flow 

field, generating velocities, pressure and densities at every point in the domain 

where it would be very expensive to measure experimentally. However, 

calculations always approximate the flow in some way, either by solving a 

simplified equation or by introducing approximations through the numerical 

method itself. Besides that, the wind tunnel test has the advantage of dealing with 

a real fluid and measuring the correct physics, though usually not at perfect real 

conditions (Reynolds number differences) or the right geometry (because of 

model support interference or wall effects). It often provides good measures of 

integrated flow properties such as total forces and moments acting on a body. 

 

The aerodynamic characteristics of passenger cars have been a fruitful area 

of research for several decades, and continue to this day. However, it is well 

appreciated that there still remains much more things to be learned in this area, 

and for that purpose, further research is required to understand the complex 

aerodynamic and flow around the model. 
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Crosswind stability is an important area of study in vehicle aerodynamic 

design since it leads to safety issues. The main concern in aerodynamic design for 

years has been concentrated on reducing the drag for fuel efficiency. Later on, it 

was found that the streamlined vehicle shapes are sensitive to crosswind 

disturbance. The styling trend towards rounder shapes especially at the rear of the 

vehicles and a continuing reduction in aerodynamic drags are suspected to 

contribute to the crosswind sensitivity (Howell, 1993). 

 

Crosswind sensitivity was one of the major concerns in the design stage 

process. But this area is still not fully understood. In practical, this behavior 

sometime will be happen after production. Previously, CFD is used to predict the 

aerodynamic loads and flow characteristics around the model only but now this 

research also to predict and see the aerodynamic derivatives. 

 

The ability of computational fluid dynamic (CFD) to predict critical flow 

characteristics has always been questionable. The accuracy of CFD, has improved 

considerably over the years but still large errors are present and vehicle 

parameters such as drag and lift are often poorly predicted. Due to this, 

comparison between computational fluid dynamic and wind tunnel testing has 

become demanding. The main goal of this research is to investigate the capability 

of CFD to determine aerodynamic characteristics on simple automotive type 

bodies and its effect on crosswind sensitivity.  Numerical analysis using CFD 

modeling and simulation will be compared with experimental results in the wind 

tunnel. 

 
 
 
 
1.2 Problem Statement 

 
 

Currently, during the design of a new model both wind tunnel test and 

computational fluid dynamic will be used. In real application wind tunnel test will 

consume more cost and time and have limitation in data requirement. To 

overcome this problem all designer try to change to simulation but the confident 
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level of simulation prediction is still not too accurate compare to wind tunnel test 

results. In current practice CFD has been used to predict aerodynamic loads and 

flow field around the model. However, there are few researchers focus on 

aerodynamic derivatives (side force and moment derivatives) which is very 

important to estimate the stability of model. The stability of the model play the 

important role to make sure the shape of the vehicle can be optimized. 

 
 
 
 
1.3 Research Objective 

 
 

1. To investigate the capability of CFD to determine lateral aerodynamic 

characteristics on simple automotive type body. 

 

2. To determine the aerodynamic derivative characteristics of a bluff body 

with various rear slant angles. 

 
 
 
 
1.4 Scope of Work 

 
 

The current research work is limited to the following: 

 

1. Computational Fluid Dynamic (CFD) simulation using FLUENT 

6.3 and wind tunnel test on a bluff body  

 

2. The study is based on a Davis model with different rear slant 

angles (00, 100, 200, 300 and 400). 

 

3. Air velocity between 30 to 50 m/s which corresponds to a range of 

Reynolds number based on model length between 1.29 x 106 and 

2.49 x 106. 

 
4. The yaw range was between -160 and 160 with increment of 20. 
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1.5 Research Methodology 

 
 

This research comprises of two main parts, Computational Fluid Dynamic 

(CFD) simulation using Fluent 6.3 and wind tunnel test measurement. In both 

parts, Davis model with five different rear slant angles (00, 100, 200, 300, and 400) 

were test and simulate in various wind speeds ranging from 30 m/s to 50 m/s with 

interval of 5 m/s. Wind tunnel test has been conducted at Universiti Teknologi 

Malaysia Low Speed Tunnel (UTM-LST) and forces and moments subjected to 

the models were measured using six component external balances. In this 

research, Davis model with rear slant angles of 200 become a base model for 

Validation of simulation and experimental verification with Mansor (2006) works 

before other rear angles being tested. Both results are then compared to find any 

correlation between experiment and simulation. The overall flow chart of the 

research methodology is shown in Figure 1.1. 
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� Problem statements 
� Define objectives 
� Determine scopes 
� Design research 

Preparation for CFD 
Simulation 

Design and fabrication 
of model and test rig 

CFD simulation validate 
with Mansor 2006
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CFD simulation for all 
configurations 
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Results 

Comparison CFD and 
wind tunnel test results 

Literature 

 
 

Figure 1.1  Flow chart for research methodology 

 
 
1.6 Organization of The Thesis 

 
 

This dissertation is structured in six chapters. The background, a short 

description of the methodology, motivation and objectives has been presented in 

this chapter. Chapter 2 is devoted to literature survey, a detailed review of the 

research work conducted in the area. Chapter 3 briefly discusses the numerical 
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tools, solution procedure and turbulence modeling that are being used in this 

dissertation. Then, Chapters 4 and 5 investigate bluff body aerodynamics on Davis 

model. Presented in Chapter 4 are the experimental measurements of drag, side 

force and yaw moment at various yaw angle from the static wind tunnel tests, and 

in Chapter 5 the numerical results and their comparison with experimental 

measurements are provided. Finally, conclusions of the present study and 

recommendations for future enhancement of the work are given in Chapter 6. 
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