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ABSTRACT 

 
 
 
 

The main hindrance to employ carbon nanotubes (CNTs) commercially is the 
inability to control the growth of the nanotubes and to grow bulk amounts of carbon 
nanotubes. However, recently the Chemical Vapour Deposition (CVD) has been 
modified by applying various supported metals catalysts in the production of CNTs. 
Therefore, in this research we focus on the effects of supported catalysts in the 
synthesis of CNTs via Catalytic Chemical Vapour Deposition (CCVD) method. The 
CCVD method was used to synthesize high quality CNTs in high yield and 
economical cost with controlling of the CNTs characteristics and morphologies. A 
practical and high performance CCVD system has been designed and built. The fixed 
bed flow reactor in the CCVD system is specifically fabricated to carry out the 
pyrolysis of hydrocarbon to produce CNTs. The supported catalysts of cobalt (Co), 
iron (Fe) and mixture of these metals (Co/Fe) were prepared by using the alumina 
(Al2O3), molecular sieves (MS) and anodic aluminium oxide (AAO) template as 
supports. All supported catalysts were prepared by impregnation method. The as-
prepared supported catalysts were subjected to calcination at 450 °C. The catalysts 
were characterised using X-Ray Diffraction (XRD) technique. Acetylene (C2H2) was 
selected as the carbon precursor and the reaction was performed at 700 °C for 30 
minutes. The yields of the reaction collected as black depositions on the catalysts. 
The characterisations of the yield were carried out using Scanning Electron 
Microscopy (SEM), Field-Emission Scanning Electron Microscopy (FE-SEM) and 
Transmission Electron Microscopy (TEM) as well as Energy Dispersive X-Ray 
Analysis (EDAX) techniques. Catalysts prepared were active in the production of 
CNTs. The most active catalysts were identified as Al-Co/Fe(3.0)Cal,                
AAO-Co/Fe(1.0)Cal and MS-Co/Fe(3.0)Cal as they generated high carbon contents 
of 72.00, 64.03 and 48.50 wt.% respectively. The as-grown CNTs over various 
catalysts showed high degree of graphitisation, purity and density with 
configurations of bundles, arrays and coils. The CNTs yields were classified as 
multi-walled carbon nanotubes (MWNTs). The best MWNT consists of 11 layers of 
turbostratic graphene wall with inner diameter of 3.57 nm and outer diameter of 
11.43 nm as well as distance between layers of 0.33 nm. The CNTs grown over 
Al2O3 supported catalysts followed the tip growth mechanism whereas the CNTs 
grown over MS supported catalysts followed the base growth mechanism. 
 
 
 

 



 vi

ABSTRAK 

 
 
 
 

Halangan utama dalam menggunakan nanotiub karbon (CNTs) secara 
komersial adalah ketidakupayaan untuk mengawal pertumbuhan nanotiub karbon dan 
tidak dapat menghasilkan nanotiub karbon dalam jumlah yang banyak. Walau 
bagaimanapun, kebelakangan ini kaedah Pemendapan Wap Kimia (CVD) telah 
diubahsuai dengan menggunakan pelbagai jenis mangkin logam berpenyokong 
dalam penghasilan CNTs. Oleh itu, kajian ini menfokuskan kepada kesan mangkin 
berpenyokong ke atas sintesis CNTs melalui teknik Pemendapan Wap Kimia 
Bermangkin (CCVD). Teknik CCVD ini digunakan untuk mensintesis CNTs 
berkualiti tinggi dengan hasil yang tinggi, kos yang ekonomik dan dapat mangawal 
ciri-ciri dan morfologi CNTs terhasil. Sistem CCVD yang praktikal dan 
berkeupayaan tinggi telah direka bentuk dan dibina. Reaktor pengaliran dasar tetap 
dalam CCVD sistem ini dibina khas untuk proses pirolisis hidrokarbon untuk 
menghasilkan CNTs. Mangkin berpenyokong jenis kobalt (Co), ferum (Fe) and 
campuran kedua-dua logam ini (Co/Fe) telah disediakan dengan menggunakan 
alumina (Al2O3), penapis molekul (MS) dan templat anodik aluminium oksida 
(AAO) sebagai penyokong. Kesemua mangkin berpenyokong telah disediakan 
dengan kaedah pengisitepuan. Mangkin berpenyokong tersedia telah dikalsinkan 
pada suhu 450 °C. Semua mangkin berpenyokong telah dicirikan dengan teknik 
Pembelauan Sinar-X (XRD). Asetilena (C2H2) telah dipilih sebagai bahan asas 
karbon. Tindak balas telah dijalankan pada suhu 700 °C selama 30 minit dan hasil 
daripada tindak balas dikumpul sebagai serbuk hitam yang termendap atas mangkin. 
Pencirian hasil ini telah dilakukan dengan menggunakan teknik Mikroskopi Imbasan 
Elektron (SEM), Mikroskopi Imbasan Elektron Pemancaran Medan (FE-SEM) dan 
Mikroskopi Transmisi Elektron (TEM) serta Analisis Penyerakan Tenaga Sinar-X 
(EDAX). Mangkin berpenyokong yang disediakan adalah aktif dalam penghasilan 
CNTs. Mangkin yang teraktif dikenalpasti sebagai Al-Co/Fe(3.0)Cal,                 
AAO-Co/Fe(1.0)Cal dan MS-Co/Fe(3.0)Cal kerana ia menghasilkan kandungan 
karbon yang tinggi, iaitu masing-masing 72.00, 64.03 and 48.50 % berat. CNTs 
tersedia atas pelbagai jenis mangkin menunjukan darjah grafitasi, ketulinan dan 
kepadatan yang tinggi dengan konfigurasi jenis gumpalan, teratur and lingkaran. 
Hasil CNTs itu telah diklasifikasikan sebagai nanotiub karbon dinding berganda 
(MWNTs). MWNTs yang terbaik terdiri daripada 11 lapis dinding grafin turbostratik 
dengan diameter dalaman 3.57 nm dan diameter luaran 11.43 nm serta jarak antara 
lapisan 0.33 nm. Pertumbuhan CNTs bagi mangkin berpenyokong Al2O3 adalah 
melalui mekanisma pertumbuhan hujung, manakala mangkin berpenyokong MS 
melalui mekanisma pertumbuhan pangkal. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Research Background 

 
 

The past decade has witnessed tremendous effort and progress in the field of 

carbon nanotubes. Ever since the discovery of carbon nanotubes by Iijima (1991), it 

has captured the attention of researchers worldwide. Understanding their unique 

properties and exploring their potential applications have been a main driving force 

for this area.  

 
 

Throughout history, the allotropes of carbon have played a number of 

important roles in technology. In ancient times, diamond was celebrated for its 

hardness and beauty, and carbon black was used as a colorant. The industrial age 

brought greater interest in graphite and related carbon materials as a source of carbon 

vapour in arc-lamps and as clean-burning fuels. Graphite-like carbon materials are 

now widely used for their unique mechanical, electrical and thermal properties. 

 
 

Very small diameter (less than 10nm) carbon filaments were prepared in the 

1970’s and 1980’s by the decomposition of hydrocarbons at high temperatures 

(Dresselhaus and Avouris, 2001). Direct stimulus to study carbon filaments of very 

small diameters more systematically came from the discovery of fullerenes by Kroto 

and Smalley. 
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In December 1990 at a carbon-carbon composites workshop, papers were 

given on the status of fullerene research by Smalley, the discovery of a new synthesis 

method for the efficient production of fullerenes and a review of carbon fibers 

research by M.S. Dresselhaus. Discussions at the workshop stimulated Smalley to 

speculate about the existence of carbon nanotubes of dimensions comparable to C60. 

These conjectures were later followed up in August by an oral presentation at a 

fullerene workshop by Dresselhaus on the symmetry proposed for carbon nanotubes 

capped at either end by fullerene hemispheres (Saito et al., 1998). 

 
 

However, the real breakthrough on carbon nanotube research came with the 

experimental observation of carbon nanotubes in 1991 by Iijima of the NEC 

Laboratory in Tsukuba, Japan using High-Resolution Transmission Electron 

Microscopy (HRTEM) (Iijima, 1991). It was this work which bridged the gap 

between experimental observation and the theoretical framework of carbon 

nanotubes in relation to fullerenes and as theoretical examples of 1D system. Since 

the pioneering work by Iijima, the study of carbon nanotubes has progressed rapidly. 

 
 
 
 
1.2 Problem Statement 

 
 

The main hindrance to employing carbon nanotubes (CNTs) in real world is 

the inability to control the growth of the nanotubes and to grow bulk amounts of 

carbon nanotubes. There are three main techniques to grow carbon nanotubes: arc-

discharge, laser ablation and chemical vapour deposition (CVD). The first two 

methods are high temperature processes that produce high quality CNTs, but they 

cannot grow mass quantities of nanotubes within a reasonable amount of time. The 

CVD technique is able to grow bulk amounts of nanotubes and arrays of multi-

walled carbon nanotubes (MWNTs). However, these nanotubes contain a vast 

amount of defects along the length of the tubes due to the relatively low synthesis 

temperature of 600 – 1200 °C. 
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Nevertheless, some progress has been recently obtained, the chemical vapour 

deposition (CVD) has been modified by applying various supported metals catalysts 

in the production of CNTs. The catalytic chemical vapour deposition (CVD) method 

supplies CNTs in high yield and low costs, but also at controlling the CNTs 

characteristics and morphologies. Being a catalytic process, the combinations of 

transition metals and support can be changed depending on the characteristics 

required, such as the alignment and diameter of the nanotubes. The CCVD synthesis 

of CNTs can be carried out at low temperature and ambient pressure. 

 
 
 
 
1.3 Research Objectives 

 
 

This research is intended to synthesize carbon nanotubes (CNTs) of high 

yield and purity at economical cost. Therefore, this research is conducted to achieve 

the following primary objectives: 

 
1. To produce carbon nanotubes (CNTs) using Catalytic Chemical Vapour 

Deposition (CCVD) method. 

 
2. To study the effects of supported catalysts in the synthesis of carbon 

nanotubes (CNTs). 

 
3. To characterise the supported catalysts and carbon nanotube yields 

chemically and physically. 

 
4. To identify the best catalyst-support combination to catalyze the carbon 

nanotubes growth. 
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1.4 Scopes of Study 

 
 
 In order to achieve the objectives, this research is focusing on the following 

scopes: 

 
(i) Designing and fabricating an effective Catalytic Chemical Vapour Deposition 

(CCVD) system contains a fixed bed flow reactor which facilitates the 

production of CNTs. 

 
(ii) Preparing supported catalysts by using alumina (Al2O3) beads, molecular 

sieves (MS) beads and anodic aluminium oxide (AAO) template as catalyst 

supports and cobalt (Co) or ferrum (Fe) as metal catalysts with impregnation 

or dip coat techniques. Applying calcination treatment to enhance the activity 

of the catalysts. 

 
(iii) Producing CNTs through catalyze pyrolysis of acetylene (C2H2) at optimum 

temperature, reaction time and gas flow rate. 

 
(iv) Characterising the supported catalysts and CNT yields using X-ray 

Diffraction (XRD) technique to reveal the active catalyst sites and effects of 

calcination. 

 
(v) Investigating the morphologies and topologies of the supported catalysts and 

the CNT yields through Scanning Electron Microscopy (SEM), Field-

Emission Scanning Electron Microscopy (FE-SEM) and Transmission 

Electron Microscopy (TEM) techniques.  

 
(vi) Determining the surface composition of a sample (metal catalyst and carbon 

content) using Energy Dispersive X-Ray Analysis (EDAX) technique. 

 
(vii) Comparing the performance of supported catalysts in the production of CNTs 

to figure out the best combination of support, catalyst, loading and treatment 

for the supported catalysts. 




