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The ground state energies, energy gaps Egap, HOMO and LUMO energies, 

electron affinity and ionization potential are calculated at the level of HF/6-311G 

and DFT-B3LYP/6-311G exchange level and basis set. The results show good 

agreement when compared with theoretical and the experimental values. It was 

found that the ground state energy of the system, gaps energy, electrophilicity, 

electronegativity and chemical hardness decreased with the increase in the number 

of acenes ring. From HOMO and LUMO energies, Ionization energies and 

electron affinity results, they show an improvement compare to the acenes 

molecules. Pentacene and the predicted molecules exhibit good electronic 

properties. 
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1.0 INTRODUCTION 
 

Interest in the research of -conjugate organic semiconductor materials has 

potentially increased over a decade in materials science, chemistry as well as 

space physics. They display a promising over a traditional inorganic material such 

as lower cost of production, light  weight, flexibility, large area of coverage [1], 

low temperature and soluble-based processes [2], and they possessed good 

promising mechanical properties [3]. The -conjugate organic semiconductor 

materials demonstrate great important applications in light emitting diode 

(OLED), energy storage, photovoltaic cells, organic thin film transistors (OTFT), 

electrochromic devices, sensors [4], electronic paper and flat panel liquid crystal 

displays [5] and organic electrochemical transistor  as  biocompatible  for  brain-

machine interface [6]  

 In addition, low-cost ‘smart cards’, radio-frequency ID tags and printable 

transistors are under active investigation [5]. Ribeiro and Macedo [7] reported a 

fabrication of polyacenes capacitors with high capacity, rapid charge/discharge 

function and high reliability. Also, due to good quantum fluorescence efficiency 

and high mobility of  hole transport, the acenes derivatives are among the most 

promising candidates for optoelectronic devices. These devices include organic 

light emitting diodes, organic field effect transistor and hole collectors in organic 

photovoltaic cells [8]. 

Consequently, molecular orbitals as highest occupied molecular orbital 

(HOMO) and Lowest unoccupied molecular orbital (LUMO) of organic 

semiconductor play important role in the determination of electronic and optical 

properties of organic electronic materials for the design of new organic electronic 

material [9]. where ionization potential (IP) and electron affinity (EA) for n- or p-

type organic material conduction are mainly used to estimate the energy barrier for 



Proceeding of 3rdInternational Science Postgraduate Conference 2015 (ISPC2015) 
© Faculty of Science, Universiti Teknologi Malaysia 

473 
 

injection of holes and electrons. Also to determine the efficiency in the design of 

the molecular electronics device such as OLED  [10]. For an efficient electron 

injection from common metal electrodes, the electron affinity (EA) should be in 

excess of 3.00 eV [11].  

The main setback in the developing organic semiconductor materials 

(OSMs) are; intrinsic instability of radical ions in the air and the high barrier for 

electron injection as considered  work function [12]. Also, poor electrons, scarcely 

soluble and difficult to process them[13]. Similar problem with pentacene and 

other high acenes molecules reproted by Wang, Xu [14]. However, there are many 

efforts to overcome such drawback in the organic electronic molecular design. The 

earlier cited work to reduce instability in air was [14]. They used Bis 

(dithienobenzene) organic material with reasonable exhibited thin-film mobility of 

0.04  to reduce air stability, and the work of [15, 16]. Therefore, there 

is a need to further study the oligomers of acene properties due to their importance 

in organic electronic design. Here, we wish to report the theoretical ground state 

energy and electronic properties of the acenes (1 to 5) and the predicted molecules 

with in HF and DFT theory. 

 
 

2.0 COMPUTATIONAL DETAIL 
As part of adopted methodology,  the predicted molecules was designed 

based on this work [12]. The results presented in this work are performed with the 

program package NWChem 6.1. The NWChem is an ab intio computational 

chemistry software package which also includes quantum chemical and molecular 

dynamic functionality. It is designed by EMSL (environmental molecular Science 

Laboratory) to run on high-performance parallel supercomputers, as well as 

conventional workstation clusters.  
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Also, the code is capable of calculating of molecular electronic energies, 

analytical gradient using Hartree-Fock self-consistent field (SCF) theory, Gaussian 

density functional theory (DFT), and second-order perturbation theory.  For all 

methods, geometry optimization is available to determine energy minima and 

transition state [17]. 

 
2.1    RESULTS AND DISCUSSIONS 

The total ground state energies (Zero point energies) and HOMO and 

LUMO energies, HOMO-LUMO energy gap, Egap in the Hartree-Fock Density 

Functional Theory is presented. The molecule's properties were optimized and 

calculated at HF/6-311G and DFT-B3LYP/6-311G exchange level and basis set 

with NWchem version 6.1 [17, 18]. Molden is used for visualizing interface [19]. 

The result is compared with available theoretical and experimental results. Table 1 

and 2 represent the total ground state energy and HOMO and LUMO energy 

compared with other experimental and theoretical values. While Table 3 and Table 

4 is the HOMO-LUMO energy gaps, ionization potential and electron affinity for 

the acene. Table 5 shows the predicted results when thiophene is introduced to the 

acenes, which indicate a similar trend as the initial acenes. It shows the decrease in 

total ground state energy, increase in HOMO and LUMO energies. Also Table 6 

indicates the variation of ionization potential and electron affinity of the predicted 

molecules.   Thus, the predicted molecules show merit in term of energy gaps, 

HOMO and LUMO energies, Ionization potential, electron affinity and chemical 

properties, but not the ground state energies. The Figure 1. Shows the structure of 

the predicted molecules to be investigated. 

 
Figure 1 predicted molecules with the acene (n = 1 to 5) 
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Table 1. Total ground state energies of the acenes (n= 1 to 5). 

[a] [20] 

 

Table 2 HOMO and LUMO energies compared to other experimental and 

theoretical results. 

  
                       This Work 

 
                         Other work 

Molecule           HF          B3LYP 
 

    Experiment  
 

     Theoretical  

n   

HOM
O 

LUM
O   HOM

O 
LUM
O   

IPES 
HOMO[
b] 

UPS 
LUM
O [b] 

  HOM
O [c] 

LUMO[
c] 

1 Benzene -7.49 -0.39   -7.49 0.39   -7.58 -0.40   -6.34 -1.19 

2 
Naphthale
ne -5.88 -0.99   -5.88 -0.99   -6.40 -1.10   -5.50 -2.05 

3 
Anthracen
e -4.99 -1.81   -4.99 -1.81   -5.70 -1.70   -5.00 -2.62 

4 Tetracene -4.45 -2.32   -4.45 -2.32   -5.10 -1.80   -4.67 -3.00 
5 Pentacene -4.24 -2.53   -4.24 -2.53   -2.80 -2.80   -4.45 -3.26 
[b] [21], [c] [22] 

Table 3 energy gap, Egap (eV) of the acenes (n= 1 to 5) 

n            Molecule 

HF/6-
311G 

DFT-
B3LYP/6-
311G 

  Experimental[d]   Other work [d] 

   
     DFT HF 

1 Benzene 7.10 7.88   6.20   6.82 12.78 
2 Naphthalene 4.89 4.89   4.51   4.60 9.84 
3 Anthracene 3.18 3.18   3.31   3.30 7.96 
4 Tetracene 2.13 2.13   2.63   2.51 6.85 
5 Pentacene 1.71 1.71           
[d] [23] 

    Molecule This work 
 

Other works 

n 
 

HF/6-
311G 

B3LYP/6-
311G 

 
HF  [a] DFT [a] LSDA [a] 

1 Benzene -230.62 -232.20   -230.70  -232.25 -230.90  

2 Naphthalene -383.30 -387.81 
 

-383.36  -385.89 -383.67 

3 Anthracene -535.79 -539.40 
 

-536.00  -539.53 -536.42 

4 Tetracene -688.36 -693.01 
 

-688.64 -693.17 -689.18 

5 Pentacene -840.95 -846.61   -841.28 -846.80 -841.93 
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Table 4 calculated ionization energies (IP) and electron affinity (EA) for acenes.  

    This work Other work 

n  Molecules  IP (eV) 
 

EA,(eV) 
IP-UPS, Exp.  

[e],[f],[h] 

 EA-IPES, 
Exp.[e],[g], 

[h] 

1 
Benzene 7.492 0.389 

8.96, (7.66), 
(6.70),(9.24)   

 2 
Naphthalene 5.884 0.991 6.4 

1.100 (-
0.20) 

3 
Anthracene 4.994 1.813 5.700 (5.7±0.2) 

1.700 
(0.53), 1.7 

4 
Tetracene 4.453 2.324 5.1 

1.800  
(1.07) 

5 
Pentacene 4.237 2.526 4.850    (5.1±0.6) 

2.750 
(1.39), 

2.4±0.0.4 
[e] [24], [f] [25], [g] [26], [h]  [27] 

Table 5 Total energies of the proposed molecules and HOMO and LUMO 

energies respectively. 

n Molecule 
HF/6-
311G 

B3LYP/6-
311G            HF/6-311G               B3LYP/6-311G 

          HOMO LUMO HOMO LUMO 
1 BThB -1010 -1014.95         -5.187 -0.982         -5.187 -0.999 
2 NThN -1315 -1322.10         -5.057 -1.280         -5.057 -1.279 
3 AThA -1620 -1629.26         -5.060 -1.735         -5.060 -1.735 
4 TThT -1926 -1936.58         -4.441 -2.220         -4.441 -2.220 
5 PThP -2231 -2243.78          -4.267  -2.545        -4.267 -2.545 

 

Table 6 calculated ionization energies (IP) of the predicted molecules and electron 
affinity (EA).  

Molecules BThB NThN AThA TThT PThP 
Ionization energy 

Ip(eV) 5.1872 5.0574 5.0598 4.4411 4.2672 

Electro Affinity 
EA(eV) 0.9989 1.2792 1.7347 2.2204 2.5450 
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However, Figure 2 shows the decrease in the zero-point energies (ground 

state energy) as the number of increase and there is a rapid decrease in the energy 

from the predicted molecules when the amount of carbon increase. Also, Figure 3 

and Figure 4 show the decrease in the HOMO-LUMO energy gap, ionization 

potential (IP) and electron affinity (EA) with increase in the carbon of the acenes 

molecule. The predicted molecules exhibit a good energy gap, HOMO and LUMO 

energy, which is good for organic electronic material. 

 
Figure 2 Graph of total ground state energy in the two theories compared with 

proposed molecules. 

 

Figure 3. Energy gap of the acenes compared to other work 
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Figure 4. Ionization potential (IP) and electron affinity (EA) of the acene and the 

predicted molecules. 

 
Chemical Indices 

 Apart from the density functional theory, several important 

properties of molecules such as, ionization potential (IP), electron affinity (EA), 

chemical potential (µ), hardness index (ɳ), softness index (S), electronegativity 

index (χ), electrophilicity index (ɷ) and Fukui function  are  needed to accurately 

predict chemical and electronic behaviours of the organic semiconductor 

molecules .  

Further, according to Koopmans’ theorem, global descriptors or chemical 

indices for a close shell molecule, one may use Hartree-Fock theory to get 

ionization potential (IP) and electron affinity (EA) in the forms of molecular 

orbital energies and redefined µ, ɳ and χ  [28-31]. 

and                       (1.0) 

           (1.2) 

                                                (1.3) 

       (1.4) 
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 In addition, according to Koopmans’ theorem the energy gap  is 

defined as the difference between HOMO energy (Highest occupied molecular 

orbital) and LUMO energy (Lowest unoccupied molecular orbital) that is given 

by: 

                   (1.5) 

However, the chemical indices are evaluated based on Koopmans’ theorem 

relation. Here, Table 7 indicates the variation of the electronegativity index (χ), 

hardness index (ɳ), chemical potential (µ), softness index (S), electrophilicity 

index (ɷ) with the increase of the carbon in the ring. The result shows the 

decrease and increase of the individual paramter as the number of carbon 

increases. 

Table 7. Computed chemical Indices of the predicted acenes’ molecules. 

 
Conclusion 

The total ground state, electronic properties of the series of linear acenes 

and the predicted acenes derivatives at ground state were studied from a 

theoretical framework. The property was investigated as the function of the 

increased number of carbon in the acenes and the predicted molecules. Among the 

acene rings, pentacene shows a promising result for organic electronic material 

application and the predicted molecular exhibited a good result when compared to 

the original acenes molecules.  

Molecules Electronegativity χ  Hardness ɳ 
Chemical 

Potential µ Softness  S Electrophilic ɷ 

BThB 3.0931 4.1883 -3.0931 0.2388 20.0348 

NThN 3.1683 3.7782 -3.1683 0.2647 18.9632 

AThA 3.3973 3.3251 -3.3973 0.3007 19.1888 

TThT 3.3308 2.2207 -3.3308 0.4503 12.3180 
PThP 3.4061 1.7222 -3.4061 0.5807 9.99010 
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