,

A Series of α, β-unsaturated ketones (chalcones) have been synthesized by the ClaisenSchmidt condensation of substituted thiophene-2-carbaldehyde with 1-(2,5-dichlorothiophen-$3-\mathrm{yl})$ ethanone or 1-(5-chlorothiophen-2-yl) ethanone in the presence of alcohol as methanol and aqueous alkaline base as sodium hydroxide. The structures of chalcones were established by IR, ${ }^{1} \mathrm{H}$ NMR,,${ }^{13} \mathrm{C}$ NMR and MS spectral analysis.

IN-VITRO ANTIOXIDANT ACTIVITIES OF THE FRUITS PEEL OF CITRUS MACROPTERA MONT. VAR. ANNAMENSIS

Siti Nur Atiqah Md Othman ${ }^{1}$, Norazah Basar* ${ }^{* 1}$, Satyajit Dey Sarker ${ }^{2}$
${ }^{1}$ Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
${ }^{2}$ Department of Pharmacy, School of Applied Science, University of Wolverhampton, MM Building, Molineux Street, Wolverhampton WV1 1SB, West Midland, UK
*Corresponding author: norazah@kimia.fs.utm.my

In-vitro antioxidant activities of the fruit peels of Citrus macroptera were studied in the present work. Ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays were performed to evaluate the antioxidant properties of the fractions from n-hexane and methanol crude extracts from the fruit peels of this plant. Results suggested that all fractions from methanol crude extract showed good antioxidant activities. Meanwhile, all fractions from n-hexane extract exhibited as weak antioxidant properties. The results were comparable with standard ascorbic acid. The potency of antioxidant activities of the fruits peel of C. macroptera depends on the type of extracts.

C-CURARINE ANALOGOUS INDOLIC EPOXY-1,5-DIAZOCINES AS CANCERSELECTIVE CYTOTOXIC AGENTS

Hapipah Mohd Ali* ${ }^{* 1}$, Fadhil Lafta Faraj ${ }^{1}$, Hamid Khaledi ${ }^{1}$, Hamed Karimian ${ }^{2}$
${ }^{l}$ Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
${ }^{2}$ Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author: hapipah@um.edu.my

Dimerization of 2-(diformylmethylene)-3,3-dimethylindole by the action of tosyl chloride (TsCl) led to the creation of an epoxy-[1,5]-diazocine bicycle. The structure of the molecule resembles that of the naturally occurring C-curarine. The molecule showed significant cytotoxicity against four cancer lines, MCF-7, MDAMB-231, COAV and HT-29, but not toward the normal cell, CCD. A series of substituted 2-(diformylmethylene)-3,3dimethylindole were accordingly dimerized and the products were studied for their cytotoxic activities.

