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ABSTRACT 

 

 

 

Due to their toxicity and persistence, hazardous metal ions such as lead 
(Pb2+), cadmium (Cd2+) and zinc (Zn2+) as well as oxyanions like selenite, Se (IV) 
and selenate, Se (VI) pose a worrying threat to the environment and human health 
when released into water resources as constituents of waste.  This study covers the 
synthesis, characterizations and analytical works on the development of an 
inexpensive and excellent inorganic sorbent, i.e. zeolite Na-P2 which was 
synthesized using local rice husk ash as the raw material.  The product was well 
characterized with various sophisticated techniques and further modified into its 
nearly-homoionic sodium and calcium form zeolite through ion exchange in order to 
investigate the sorption behaviors of these cationic form zeolite samples towards the 
selected hazardous metal ions.  The sorption of selected metals such as Pb2+, Cd2+ 
and Zn2+ was proven to be ion-exchange process through batch adsorption studies.  
The removal efficiencies of these zeolite species were investigated via several 
variables such as time, concentration, pH and competition within the solutes.  The 
binary ion-exchange isotherms were constructed using thermodynamic equilibrium 
model and the standard free energies of exchange were calculated as well.  The 
selectivity sequence of zeolite Na-P2 was as Pb2+>Cd2+>Na+>Zn2+ whereas for Ca-
exchanged garronite which denoted as Homo-Ca, the selectivity sequence was 
Pb2+>Ca2+>Cd2+>Zn2+.  The multicomponent exchange of zeolite was also 
investigated.  On the other hand, the original zeolite Na-P2 was loaded with 
aluminium ions using aluminium sulfate post desilication in order to investigate its 
capability in the removal of selenite and selenate species in water. Different variables 
of the selenium species adsorption onto aluminium-loaded zeolite Na-P2 such as 
time, concentration and ionic strength were also studied.  The results showed that the 
aluminium-loaded zeolite Na-P2 (sample 10Al-P) performed well in the removal of 
selenium oxyanions from water compared to other materials.  As conclusion, zeolite 
Na-P2 and its modified forms can be used as excellent metal-removing agents in the 
water purification process.   
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ABSTRAK 

 

 

 

Disebabkan oleh ketoksikan dan kekekalan yang wujud, ion-ion logam 
merbahaya seperti plumbum (Pb2+), Kadmium (Cd2+) and Zink (Zn2+) serta oksianion 
seperti  selenit, Se (IV) and selenat, Se (VI) memaparkan sebagai ancaman terhadap 
alam sekitar dan kesihatan manusia apabila mereka dilepaskan ke dalam sumber-
sumber air sebagai bahan sisa.  Penyelidikan ini merangkumi kerja-kerja sintesis, 
pencirian dan analisis ke atas pembangunan suatu penjerap tak organik yang murah 
dan cekap, iaitu zeolit Na-P2 di mana ia disintesis dengan menggunakan abu sekam 
padi tempatan sebagai bahan mentah.  Produk itu dicirikan dengan pelbagai jenis 
teknik yang canggih dan seterusnya ia dimodifikasi kepada bentuk natrium dan 
kalsium hampir-homoionik agar dapat mengkaji tabiat penjerapan bagi sampel zeolit 
yang berbentuk kationik ini terhadap ion-ion logam merbahaya terpilih. Penjerapan 
ion-ion logam terpilih seperti Pb2+, Cd2+ and Zn2+ telah dibuktikan sebagai proses 
penukargantian ion melalui kajian penjerapan berkelompok.  Kecekapan 
penyingkiran bagi spesies-spesies zeolit ini telah dikaji melalui beberapa 
pembolehubah seperti masa, kepekatan, pH and persaingan di antara bahan terjerap.  
Isoterma penukargantian ion binari telah dibina dengan menggunakan model 
keseimbangan termodinamik dan tenaga bebas piawai bagi penukargantian juga telah 
dikira.  Susunan kepilihan bagi zeolit Na-P2 adalah Pb2+>Cd2+>Na+>Zn2+ manakala 
bagi garronit tertukarganti kalsium yang dilabel sebagai Homo-Ca, susunan 
kepilihannya adalah Pb2+>Ca2+>Cd2+>Zn2+.  Penukargantian komponen multi bagi 
zeolit Na-P2 juga dikaji.  Di samping itu, zeolit Na-P2 asal dimuatkan dengan 
menggunakan aluminium sulfat selepas penyingkiran silika untuk mengkaji 
kecekapannya dalam penyingkiran spesies selenit and selenat dalam air.  
Pembolehubah bagi penjerapan spesies-spesies selenium ke atas zeolit Na-P2- 
termuat-aluminium seperti masa, kepekatan dan kekuatan ionik juga telah dikaji.  
Keputusan menunjukkan zeolite Na-P2-termuat-aluminium (sampel 10Al-P) 
mempunyai prestasi yang baik berbanding dengan bahan-bahan lain dalam 
penyingkiran oksianion selenium daripada air.  Sebagai kesimpulannya, zeolit Na-P2 
dan bentuk-bentuk terubahsuai dapat digunakan sebagai agen penyingkiran logam 
yang cekap dalam proses penulenan air. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

The presence of hazardous metals such as lead, zinc, cadmium as well as 

some metalloids like selenium and arsenic in the environment particularly in water 

have been drawing more and more public concern due to their toxicity and acute 

impacts to the human health.  Pollution of the environment and the human exposure 

to these metallic or semi-metallic elements may occur naturally (e.g. erosion of 

surface deposits of metal minerals and natural weathering of rock), or from 

anthropogenic activities (mining, smelting, fossil fuel combustion and industrial 

application of metals).  

 

Concerned for sustaining healthy water resources, public are calling for more 

and more environmental restriction.  Consequently, industries and scientists are 

searching for economic and efficient methods in protecting water resources from 

pollution.  Using the sorption process for the removal of harmful metals from 

wastewater has a relatively shorter history if compared to other water purification 

processes.  In 1785, Lowitz observed that charcoal would decolorize many liquids.  

This is the earliest documented use of carbon for the removal of impurities in 

solutions [1].  Nowadays adsorption on activated carbon is a recognized method for 

the removal of harmful metals from wastewater while the high cost of activated 

carbon production and application limits its use in adsorption.  A search for low cost 
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and easily available adsorbent has led to the investigation of materials of agricultural 

and biological origin as potential metal sorbents [2].   

 

Mineralogists have studied zeolites for two and half centuries beginning with 

the first member, stilbite, which was discovered in 1756 [3].  However their 

spectacular applications in industry have been developed only in the last 50 years.  

The openness of the anionic frameworks ensures the easier mobility both of cations 

in ion exchangers and of water molecules or other guest species.  Additions and 

removals of guest species can be fully reversible, and so zeolites may be excellent 

sorbents for gases, vapors and liquids.  

 

Considering the operation cost and efficiency, natural mineral zeolites such as 

chabazite, clinoptilolie, mordenite etc. with high exchange capacity and specific 

selectivity towards certain metal cations, have been utilized widely in water 

purification [4-9].  Nevertheless, an unavoidable problem of the utilization is the 

coexistence of the considerable impurities with the zeolitic tuffs, which interferes the 

exchange behavior of natural zeolites with the toxic elements.  As an alternative, 

synthetic zeolites which usually possess higher exchange capacity, controlled and 

known physicochemical properties relative to that for natural zeolites [10], have been 

emphasized.  Since the cost effectiveness is still the main consideration, low cost and 

locally available natural materials should be the first priority in the zeolite synthesis 

attempts. 

 

Among the available local natural materials, rice husk which contains high 

percentage of silica has drawn attention of researchers worldwide.  Rice husk is an 

agricultural waste material generated as by-product of rice refining process.  

According to the Food and Agriculture Organization of the United Nations (FAO), 

the annual world rice production amounts to 614,654,895 metric tons in the year of 

2005 [11], of which 10-23% is husk [12].  The big amounts of rice husk produced are 

treated as waste, causing disposal and pollution problem. 

 

Silica is one of the basic raw materials in zeolite synthesis.  Many authors 

[13-15] have characterized and concluded that rice husks are outstanding source of 

high-grade amorphous silica, approximately 92%-97% in the ash from the 
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combustion of this material at moderate temperature.  The utilization of rice husk ash 

as silica source in the synthesis of zeolite were well investigated by H. Hamdan et al. 

[16].  They showed that that amorphous silica extracted from the rice husk by the 

physical combustion with controlled temperature contains only *Si(OSi)4 tetrahedral 

units and is the most reactive silica source in the synthesis of zeolite Y. 

 

P.K. Bajpai and his co-workers [17-18] were the first group in the past who 

has successfully synthesized mordenite-type zeolite using rice husk ash as silica 

source.  Later, Ajay K. Dalai and his group [19] have synthesized sodium X zeolite 

by using this silica source for the first time.  The syntheses of other zeolite species 

with silica source from rice husk ash were carried on by other researchers.  For 

instance, zeolite Pc (cubic P), HS (hydroxysodalite), Z-21 (unknown structure, like 

Linde-N), analcime, ZSM-5, ZSM-48 etc. were attempted to be produced in last two 

decades [20-22].  Obviously, rice husk ash is suitable for low cost zeolite synthesis, 

and this advantage certainly decreases the cost needed in the water purification 

process, especially for drinking water resources.   

 

The superior selectivity properties of the zeolites and their modified forms 

towards hazardous substances deserve wide and further exploration and 

development.  In general, it must be recognized that relatively less attention has been 

given in the beginning to study the sorption behavior of synthetic zeolites toward d- 

and p-block metals and metalloids if compared to aspects of synthesis, gas separation 

and catalysis.  The comparative neglect was clearly biased since the incorporation of 

zeolite with metals is often an essential component in the preparation and/or 

manufacturer of zeolites for use either as sorbents or catalysts.  This has been 

motivating worldwide researchers to investigate the sorption behavior of zeolites 

including ion exchange and adsorption since the past two decades.  

 

 

 

1.2 Research Description and Objectives 

 

With the view of long-term bioaccumulation risk of trace level harmful 

metals to the livings’ health, the aim of this research is to compare several types of 
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modified sorbents, originated from a known extremely good water softener called 

low silica zeolite P in the removal of some selected toxic metals and inorganic 

oxyanions from water.  The whole experimental design was based on the comparison 

basis in which sorption behavior of the sorbents were interpreted according to their 

batch sorption kinetic and equilibrium data in various conditions. 

 

The study was mainly divided to three major component including material 

development and characterization, cation exchange studies of the materials with 

some metallic cations as well as adsorption of one of its modified form with 

selenium oxyanions.  Considering the cost efficiency factor, the original low silica 

zeolite P was synthesized directly from the extremely low cost material, namely rice 

husk ash as the silica source.  The synthesis conditions were investigated and 

optimized in the system Na2O-Al2O3-SiO2-H2O.  Factors affecting the formation of 

products such as composition of starting materials, heating temperature and 

crystallization period were also studied.   

 

The as-synthesized zeolite P was converted to nearly homoionic sodium and 

calcium forms through exhaustively exchange with high concentration sodium and 

calcium salt solution. The original zeolite was also partially loaded with aluminium 

sulfate post modification step called desilication. Controlled desilication is an 

advanced technique where the framework silica of the zeolite is partially removed in 

basic medium. This technique has been introduced as an effective approach to create 

significant extraporosity in various zeolites [23-24] and increase cation exchange 

capacity [25-26].  

 

The zeolite samples were well characterized with appropriate techniques 

including structural analysis with x-ray diffraction (XRD), Fourier transformed 

infrared spectroscopy (FTIR), solid state NMR under magic angle spinning (MAS); 

elemental analysis either by wavelength dispersive x-ray fluorescence spectroscopy 

(WDXRF) or atomic absorption spectroscopy (AAS) post sample decomposition; 

morphological study with scanning electron micrography (SEM) and surface study 

with nitrogen adsorption analysis. 

 



 5

Comparisons of the metallic cation sorption behaviors were done among the 

nearly homoionic sodium and calcium form of the zeolites with the as-synthesized 

zeolite P.  Meanwhile, the aluminium-loaded zeolites P were tested and compared 

with the original one in the removal of inorganic metalloid species.  Divalent lead 

(Pb), cadmium (Cd), zinc (Zn) and inorganic species of selenium, i.e. Se (IV) and Se 

(VI) as well were chosen as the target adsorbates due to their toxicity and persistency 

in the aqueous environment.  

 

Batch mode studies were conducted throughout the whole research instead of 

column studies.  This is the most commonly used technique because of its ease of 

laboratory operation and ease of data handling.  This technique involves placing the 

known quantity of sorbent and solution containing the known concentration of the 

metals into a vessel and mixing the samples for a prescribed time.  The sorbent 

and/or solution phases are then analyzed by an accurate elemental analyzer (e.g. 

atomic absorption spectrophotometry or inductively coupled plasma emission 

spectrometry), after separation of the mixture with centrifugation and/or filtration.  

 

The goal of this research is to examine the interaction of rice husk ash-

synthesized zeolite P and its modified forms with various ions in solutions under 

ranging conditions to elucidate the mechanism of sorption and ion exchange.  The 

specific objectives of this research are to: 

 

• Optimize the synthesis of zeolite P with gismondine (GIS) framework by using 

local available rice husk ash as the silica source. 

 

• Investigate the physical and chemical changes of zeolite P after modification with 

different solid-state techniques. 

 

• To understand the sorption behavior of the as-synthesized and modified zeolites 

including exchange rate, equilibrium, and selectivity towards selected metallic 

elements and metalloids under different conditions. 

 

• To evaluate the performance of as-synthesized and modified zeolites in the 

removal of selected toxic metals and metalloids from aqueous media. 
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1.3 Organization of Thesis 

 

This thesis consists of six chapters.  Chapter 1 presents the general research 

background, research description, objectives and the thesis organization.  Chapter 2 

introduces the general nature of zeolites as well as metallic elements and metalloids 

as contaminants.  The following description emphasizes on the materials under study, 

i.e. gismondine (GIS) group zeolites generally and zeolite P particularly.  This 

chapter also presents extensive review of research relevant to the present study.  

Chapter 3 describes the synthesis method of material, characterization techniques and 

the experimental conditions employed in this work.  Discussions on the synthesis 

condition and characterization are the main body in chapter 4 whereas the sorption 

behaviors of the materials toward the hazardous metals and metalloid oxyanions are 

focused in chapter 5.  The last chapter contains the concluding remarks and also 

some recommendations for future studies.  




