SORPTION BEHAVIOR OF ZEOLITE P AND ITS MODIFIED FORMS IN THE REMOVAL OF SOME HEAVY METALS AND OXYANIONS FROM AQUEOUS MEDIA

TAN SEE HUA

UNIVERSITI TEKNOLOGI MALAYSIA

To Jesus Christ, my Lord, Savior and Provider, And My Parents, Sis, and Nanny.

ACKNOWLEDGEMENT

I would like to thank my supervisor, Prof. Dr. Alias Mohd. Yusof for giving me the opportunity to do this research project and for his assistance throughout my studies. His encouragement, patience and academic guidance were crucial in the successful completion of this work. His diligence, dedication and vision are good examples for me to follow.

It has been a pleasure for me to work with many enthusiastic people as part of chemistry department. Many thanks to present and former members, especially to Mohammad Adil, Nik Ahmad Nizam, Lee Kian Keat, Jei Ching Yih, Wong Hon Loong and Chia Chai Har. Your great support and friendship during this period helped me to survive the long hours we spent together in the laboratory.

I would to extend my thanks to Ibnu Sina Institute for Fundamental Science Studies, UTM for allowing me to use the chemical instruments there. Special thanks dedicated to Mr. Lim Kheng Wei, for his willing help in operating the instruments. Besides that, I would like to grateful acknowledge the assistance of Prof. Dr. Hamzah Mohamad, Geology Department UKM, Kajang for XRF elemental analysis.

This thesis would not have been accomplished without the unconditional love and support of my family members as well as brothers and sisters in Christ. Their understanding and prayer make the work of thesis writing a lot more enjoyable.

The financial assistance from IRPA grant for this project is grateful acknowledged. A special thank to Universiti Teknologi Malaysia for providing the Research Student Grant for me.

ABSTRACT

Due to their toxicity and persistence, hazardous metal ions such as lead (Pb^{2+}) , cadmium (Cd^{2+}) and zinc (Zn^{2+}) as well as oxyanions like selenite, Se (IV) and selenate, Se (VI) pose a worrying threat to the environment and human health when released into water resources as constituents of waste. This study covers the synthesis, characterizations and analytical works on the development of an inexpensive and excellent inorganic sorbent, i.e. zeolite Na-P2 which was synthesized using local rice husk ash as the raw material. The product was well characterized with various sophisticated techniques and further modified into its nearly-homoionic sodium and calcium form zeolite through ion exchange in order to investigate the sorption behaviors of these cationic form zeolite samples towards the selected hazardous metal ions. The sorption of selected metals such as Pb^{2+} , Cd^{2+} and Zn^{2+} was proven to be ion-exchange process through batch adsorption studies. The removal efficiencies of these zeolite species were investigated via several variables such as time, concentration, pH and competition within the solutes. The binary ion-exchange isotherms were constructed using thermodynamic equilibrium model and the standard free energies of exchange were calculated as well. The selectivity sequence of zeolite Na-P2 was as Pb²⁺>Cd²⁺>Na⁺>Zn²⁺ whereas for Caexchanged garronite which denoted as Homo-Ca, the selectivity sequence was $Pb^{2+}>Ca^{2+}>Cd^{2+}>Zn^{2+}$. The multicomponent exchange of zeolite was also investigated. On the other hand, the original zeolite Na-P2 was loaded with aluminium ions using aluminium sulfate post desilication in order to investigate its capability in the removal of selenite and selenate species in water. Different variables of the selenium species adsorption onto aluminium-loaded zeolite Na-P2 such as time, concentration and ionic strength were also studied. The results showed that the aluminium-loaded zeolite Na-P2 (sample 10Al-P) performed well in the removal of selenium oxyanions from water compared to other materials. As conclusion, zeolite Na-P2 and its modified forms can be used as excellent metal-removing agents in the water purification process.

ABSTRAK

Disebabkan oleh ketoksikan dan kekekalan yang wujud, ion-ion logam merbahaya seperti plumbum (Pb^{2+}), Kadmium (Cd^{2+}) and Zink (Zn^{2+}) serta oksianion seperti selenit, Se (IV) and selenat, Se (VI) memaparkan sebagai ancaman terhadap alam sekitar dan kesihatan manusia apabila mereka dilepaskan ke dalam sumbersumber air sebagai bahan sisa. Penyelidikan ini merangkumi kerja-kerja sintesis, pencirian dan analisis ke atas pembangunan suatu penjerap tak organik yang murah dan cekap, iaitu zeolit Na-P2 di mana ia disintesis dengan menggunakan abu sekam padi tempatan sebagai bahan mentah. Produk itu dicirikan dengan pelbagai jenis teknik yang canggih dan seterusnya ia dimodifikasi kepada bentuk natrium dan kalsium hampir-homoionik agar dapat mengkaji tabiat penjerapan bagi sampel zeolit yang berbentuk kationik ini terhadap ion-ion logam merbahaya terpilih. Penjerapan ion-ion logam terpilih seperti Pb^{2+} , Cd^{2+} and Zn^{2+} telah dibuktikan sebagai proses penukargantian ion melalui kajian penjerapan berkelompok. Kecekapan penvingkiran bagi spesies-spesies zeolit ini telah dikaji melalui beberapa pembolehubah seperti masa, kepekatan, pH and persaingan di antara bahan terjerap. Isoterma penukargantian ion binari telah dibina dengan menggunakan model keseimbangan termodinamik dan tenaga bebas piawai bagi penukargantian juga telah dikira. Susunan kepilihan bagi zeolit Na-P2 adalah $Pb^{2+}>Cd^{2+}>Na^{+}>Zn^{2+}$ manakala bagi garronit tertukarganti kalsium yang dilabel sebagai Homo-Ca, susunan kepilihannya adalah $Pb^{2+}>Ca^{2+}>Cd^{2+}>Zn^{2+}$. Penukargantian komponen multi bagi zeolit Na-P2 juga dikaji. Di samping itu, zeolit Na-P2 asal dimuatkan dengan menggunakan aluminium sulfat selepas penyingkiran silika untuk mengkaji kecekapannya dalam penyingkiran spesies selenit and selenat dalam air. Pembolehubah bagi penjerapan spesies-spesies selenium ke atas zeolit Na-P2termuat-aluminium seperti masa, kepekatan dan kekuatan ionik juga telah dikaji. Keputusan menunjukkan zeolite Na-P2-termuat-aluminium (sampel 10Al-P) mempunyai prestasi yang baik berbanding dengan bahan-bahan lain dalam penyingkiran oksianion selenium daripada air. Sebagai kesimpulannya, zeolit Na-P2 dan bentuk-bentuk terubahsuai dapat digunakan sebagai agen penyingkiran logam yang cekap dalam proses penulenan air.

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

PAGE

TH	ESIS STATUS DECLARATION	
SUF	'ERVISOR'S DECLARATION	
TIT	LE PAGE	i
DEC	CLARATION	ii
DEI	DICATION	iii
ACI	KNOWLEDGEMENT	iv
ABS	STRACT	v
ABS	STRAK	vi
TAI	BLE OF CONTENTS	vii
LIS	T OF TABLES	xii
LIS	T OF FIGURES	xiv
LIS	T OF SYMBOLS	xviii
LIS	T OF ABBREVIATIONS	xxi
LIS	T OF APPENDICIES	xxiv
INT	RODUCTION	1
1.1	Background of Study	1
1.2	Research Description and Objectives	3
1.3	Organization of Thesis	6
LIT	ERATURE REVIEW	7
2.1	Hazardous Elements and Their Impact on Health	7
	2.1.1 Zinc (Zn)	11

	2.1.2	Cadmium (Cd)	12
	2.1.3	Lead (Pb)	13
	2.1.4	Selenium (Se)	14
2.2	Conve	entional and Advanced Methods for	15
	Hazar	dous Elements Removal from the	
	Conta	minated Water – A Brief Review	
2.3	Featur	res of Zeolites	19
	2.3.1	General Aspects of Hydrothermal	22
		Synthesis of Zeolites	
	2.3.2	Low Cost Synthetic Zeolites	23
2.4	Zeolit	es of the Gismondine Group (GIS)	24
	2.4.1	Zeolites P with GIS Framework	26
2.5	Sorpti	on Theory	27
	2.5.1	Adsorption	27
	2.5.2	Ion Exchange	30
	2.5.3	Surface Complexation	34
EXI	PERIM	IENTAL	37
3.1	The D	Determination of Silica in Untreated Rice	37
	Husk	Ash	
3.2	Synth	eses of Zeolite P	38
	3.2.1	Detailed Description of the Zeolite P	39
		Synthesis Condition with Starting	
		Compositions of 4Na ₂ O: Al ₂ O ₃ : 10 SiO ₂ :	
		130H ₂ O	
3.3	Modif	fication of Zeolites	40
	3.3.1	Desilication	40
	3.3.2	Ion exchange with Sodium or Calcium	41
		Ions	
	3.3.3	Loading of Aluminium	41
3.4	Chara	cterizations of Zeolite Samples	42
	3.4.1	X-ray Diffraction (XRD)	42

3

	3.4.2	Fourier-	Transform Infrared Spectroscopy	42
		(FTIR)		
	3.4.3	Waveler	ngth Dispersive X-ray	43
		Fluores	cence Spectroscopy (WDXRF)	
	3.4.4	Scannin	g Electron Microscopy (SEM)	43
	3.4.5	Thermo	gravimetric-Differential Thermal	43
		Analysi	s (TG-DTA)	
	3.4.6	Surface	Analysis with Nitrogen	44
		Adsorpt	ion	
	3.4.7	Solid-St	ate Nuclear Magnetic Resonance	44
		Spectros	scopy (NMR)	
3.5	Batch	Sorption	Experiments	44
	3.5.1	Divalen	t Metals Removal	45
		3.5.1.1	Kinetic of Divalent Metal Ions	45
			Removal	
		3.5.1.2	Effect of pH towards Removal	46
			of Divalent Metal Ions	
		3.5.1.3	Binary Ion Exchange of Divalent	46
			Metal Ions with Indigenous Ions	
			in Zeolites	
		3.5.1.4	Multicomponent Ion Exchange	47
			of Divalent Metal Ions with	
			Indigenous Ions In Zeolites	
	3.5.2	Seleniu	n Oxyanions Removal	48
		3.5.2.1	Kinetic of Selenium Oxyanions	49
			Removal by Aluminium-loaded	
			Zeolite P	
		3.5.2.2	Construction of Adsorption	49
			Isotherm	
		3.5.2.3	Effect of Ionic Strength towards	50
			Removal of Selenium Oxyanions	
			by Aluminium-loaded Zeolite P	
3.6	Flame	Atomic A	Absorption Spectroscopy (FAAS)	50

4	RES	SULTS	AND DI	SCUSSION: SORBENTS	53		
	DE	DEVELOPMENT					
	4.1	Synthe	esis of Ze	colite P	53		
	4.2	Modif	fication of	f Zeolite Na-P2	60		
		4.2.1	Structur	al Change of Zeolite Na-P2 upon	61		
			Ion Exc	hange			
		4.2.2	Investig	ation of the Possibility of	69		
			Preparin	ng Protonated Zeolite P through			
			Calcina	tion			
		4.2.3	Loading	g of Aluminium onto Desilicated	72		
			zeolite 1	Na-P2			
5	RES	SULTS	AND DI	SCUSSION: SORPTION	76		
	STU	JDIES	ON THE	SORBENTS			
	5.1	Catior	n Remova	ıl	76		
		5.1.1	Kinetic	Studies of Ion Exchange on the	76		
			Zeolite				
		5.1.2	Charact	erization of the Ion Exchange	85		
			Product	S			
		5.1.3	Effect o	f Solution pH Value on the Metal	86		
			Uptake				
		5.1.4	Constru	ction of Binary Ion Exchange	90		
			Isothern	n			
			5.1.4.1	Exchanges with Pb^{2+} as the	90		
				Entering Cation			
			5.1.4.2	Exchanges with Zn^{2+} as the	91		
				Entering Cation			
			5.1.4.3	Exchanges with Cd^{2+} as the	92		
				Entering Cation			
		5.1.5	Kielland	d Plots	93		
		5.1.6	Multico	mponent Ion Exchange	98		
	5.2	Anion	Remova	1	101		

	5.2.1	Selection of Optimum Aluminium-Loaded	101
		Zeolite Na-P2 through Kinetic Studies	
	5.2.2	Modeling of Se (IV) and Se (VI)	106
		Adsorption Isotherm	
	5.2.3	Effect of Ionic Strength of Solution on the	109
		Selenium Uptake	
		5.2.3.1 Uptake of Selenite	109
		5.2.3.2 Uptake of Selenate	111
6	CON	CLUSION AND SUGGESTIONS	114
6.1	Concl	usion	114
6.2	Contri	butions	116
6.3	Sugge	stions for Future Studies	116
REFERENCES			117

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Biological significance of classification of metals based on	10
	the last electron subshell in the atom to be occupied	
3.1	Operating parameters of FAAS (Perkin-Elmer AAnalyst	52
	400) in the measurement of the desired elements	
4.1	Comparison of Si/Al ratio for original and desilicated	61
	zeolite Na-P2	
4.2	X-ray diffraction data of zeolite Na-P2 (Ori-P)	63
4.3	X-ray diffraction data of garronite (Homo-Ca)	64
4.4	Chemical compositions of zeolites determined by WDXRF	65
4.5	Unit cell compositions of zeolites (on the basis of 32	66
	oxygen)	
4.6	Assignment of ²⁹ Si NMR chemical shifts to the local Si	68
	environment in the zeolites	
4.7a	2θ values of desilicated zeolite Na-P2 and series of	74
	aluminium-loaded zeolite Na-P2	
4.7b	d-spacings of desilicated zeolite Na-P2 and series of	74
	aluminium-loaded zeolite Na-P2	
4.8	²⁷ Al chemical shift for aluminium-loaded zeolite Na-P2 in	75
	NMR spectra	
5.1	Pseudo-second-order rate constant, calculated q_e and	81
	experimental q_e values for the zeolites in the removal of	
	Pb^{2+} , Zn^{2+} and Cd^{2+} ions	
5.2	Intraparticle diffusion rate constant for the sorption of	84
	Pb^{2+} , Zn^{2+} and Cd^{2+} onto zeolites	

5.3	Maximum exchange capacity q_{max} , thermodynamic	98
	equilibrium constants K_A and standard free energy ΔG° of	
	investigated equilibria at $302 \pm 2K$	
5.4	Pseudo second-order rate constant, calculated q_e values	105
	and initial sorption rate h for sample 10Al-P in the removal	
	of Se (IV) and Se (VI)	
5.5	Intraparticle diffusion rate constant for the sorption of Se	105
	(IV) and Se (VI) onto sample 10Al-P	
5.6	The parameters for Langmuir and Freundlich isotherms for	108
	Se (IV) and Se (VI) removal	
5.7	Parameters for Langmuir and Freundlich isotherms for	111
	selenite removal with the presence of different	
	concentration of electrolyte	
5.8	Parameters for Langmuir and Freundlich isotherms for	112
	selenate removal with the presence of different	
	concentration of electrolyte	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Classification of elements based on the last electron	9
	subshell in the atom to be occupied	
2.2	Secondary Building Units (SBU) of Zeolites	21
2.3	Periodic building unit constructed from 4-fold connected	25
	D8Rs	
2.4	Connection mode and unit cell content in GIS seen along	25
	a. The bold part indicates a double crankshaft chain	
	which consists of 2-fold (1,2)-connected double 4-rings	
2.5	Fused intersections viewed along a (left) and b (right)	26
2.6	Isotherms typically found for a binary ion exchange	32
2.7	The three mechanisms of cation adsorption on a siloxane	35
	surface (e.g. montmorillonite)	
4.1	X-ray diffractogram for field-burnt rice husk ash	53
4.2	X-ray diffractogram of final products when field-burnt	54
	RHA was employed as silica source in synthesis	
4.3	X-ray diffractogram of zeolite Na-P2	55
4.4	X-ray diffractogram of zeolite Na-P1	55
4.5	FTIR spectra of (a) zeolite Na-P1 and (b) zeolite Na-P2	56
4.6	SEM image of zeolite Na-P2	57
4.7	SEM image of zeolite Na-P1	57
4.8	X-ray diffractogram of three stable phases appeared in	58
	product	
4.9	X-ray diffractogram of products with different ratio of	59
	reactant compositions	

4.10	X-ray diffractogram of zeolite Na-P2 after desilication at	60
1 11	SEM image of zeelite No P2 offer desiliented at 60 °C	61
4.11	V rev difference and decilianted colorium ion	61
4.12	X-ray diffractogram of desincated- calcium ion	02
4.10	exchanged zeolite (garronite)	
4.13a	²⁷ Si NMR spectra of zeolite Na-P2 and garronite	67
4.13b	² 'Al NMR spectra of zeolite Na-P2 and garronite	67
4.14	TG-DTA thermogram of sample Ori-P	69
4.15	TG-DTA thermogram of desilicated zeolite P2	70
4.16	TG-DTA thermogram of ammonium-exchanged	70
	desilicated-zeolite P2	
4.17	X-ray diffractogram for ammonium-exchanged	71
	desilicated zeolite P2 and its H-form product at different	
	temperature	
4.18	FTIR spectra for ammonium-exchanged desilicated	72
	zeolite P2 and its H-form product at different	
	temperature	
4.19	Comparison of the X-ray diffractogram between	73
	desilicated zeolite Na-P2 and aluminium-loaded zeolite	
	Na-P2	
4.20	²⁷ Al NMR spectra of (a) desilicated zeolite Na-P2 and	75
	(b) aluminium-loaded zeolite Na-P2	
5.1	Plot of sorbed amount versus time for Pb ²⁺ ions by the	77
	zeolites	
5.2	Plot of sorbed amount versus time for Zn^{2+} ions by the	77
	zeolites	
5.3	Plot of sorbed amount versus time for Cd ²⁺ ions by the	78
	zeolites	
5.4	Pseudo-second-order sorption kinetics of Pb^{2+} , Zn^{2+} and	80
	Cd^{2+} ions onto zeolites	
5.5	Morris-Weber kinetic plots for the untake of Pb ²⁺ ions	82
	onto zeolites	

5.6	Morris-Weber kinetic plots for the uptake of Zn ²⁺ ions	83
	onto zeolites	
5.7	Morris-Weber kinetic plots for the uptake of Cd ²⁺ ions	84
	onto zeolites	
5.8	X-ray diffractogram of sample Ori-P after exchanged	85
	with the targeted metal ions	
5.9	Concentration of metal ions in the working solutions with	87
	various pH value without the presence of zeolite	
5.10	The effect of initial pH on Pb ²⁺ ions removal by the	88
	zeolites	
5.11	The effect of initial pH on Zn^{2+} ions removal by the	89
	zeolites	
5.12	The effect of initial pH on Cd ²⁺ ions removal by the	89
	zeolites	
5.13	Binary ion exchange in zeolites for Pb^{2+} ions at 302 K \pm	91
	2K	
5.14	Binary ion exchange in zeolites for Zn^{2+} ions at 302 K ±	92
	2K	
5.15	Binary ion exchange in zeolites for Cd^{2+} ions at 302 K ±	93
	2K	
5.16	Kielland plots in zeolites for Pb^{2+} ions at 302 K \pm 2K	95
5.17	Kielland plots in zeolites for Zn^{2+} ions at 302 K \pm 2K	95
5.18	Kielland plots in zeolites for Cd^{2+} ions at 302 K ± 2K	96
5.19	Plot of sorbed amount of metal ions onto sample Ori-P	99
	versus initial concentration in the multi-metal solution	
5.20	Plot of sorbed amount of metal ions onto sample Homo-	100
	Na versus initial concentration in the multi-metal solution	
5.21	Plot of sorbed amount of metal ions onto sample Homo-	100
	Ca versus initial concentration in the multi-metal solution	
5.22	Plot of sorbed amount versus time for Se (IV) by the	103
	series of aluminium-loaded zeolites	
5.23	Plot of sorbed amount versus time for Se (VI) by the	103
	series of aluminium-loaded zeolites	

5.24	Pseudo-second order sorption kinetics of Se (IV) and Se	104
	(VI) onto sample 10Al-P	
5.25	Morris-Weber kinetic plots for the sorption of Se (IV)	105
	and Se (VI) onto sample 10Al-P	
5.26	Plot of sorbed amount of Se (IV) and Se (VI) onto sample	106
	10 Al-P versus equilibrium concentration, C_e	
5.27	Linearized Langmuir isotherms for Se (IV) and Se (VI)	107
	removal by sample 10 Al-P	
5.28	Linearized Freundlich isotherms for Se (IV) and Se (VI)	108
	removal by sample 10 Al-P	
5.29	Plot of sorbed amount of Se (IV) onto sample 10Al-P	109
	versus equilibrium concentration, C_e with the presence of	
	different concentration of electrolyte	
5.30	Linearized Langmuir isotherms for Se (IV) removal by	110
	sample 10Al-P with the presence of different	
	concentration of electrolyte	
5.31	Linearized Freundlich isotherms for Se (IV) removal by	110
	sample 10Al-P with the presence of different	
	concentration of electrolyte	
5.32	Plot of sorbed amount of Se (VI) onto sample 10Al-P	112
	versus equilibrium concentration, C_e with the presence of	
	different concentration of electrolyte	
5.33	Linearized Langmuir isotherms for Se (VI) removal by	113
	sample 10Al-P with the presence of different	
	concentration of electrolyte	
5.34	Linearized Freundlich isotherms for Se (VI) removal by	113
	sample 10Al-P with the presence of different	
	concentration of electrolyte	

LIST OF SYMBOLS

°C	-	Celsius degree
Κ	-	Kelvin degree
C_0	-	Initial concentration
C_e	-	Equilibrium concentration
C_t	-	Concentration, after a prescribed duration
cm	-	Centimeter
g	-	Gram
kg	-	Kilogram
L	-	Liter
m	-	Meter
μm	-	Micrometer
nm	-	Nanometer
М	-	Molar
mA	-	Miliampere
λ	-	Wavelength
meq	-	Miliequivalent
mg	-	Miligram
μg	-	Microgram
h	-	Hour
min	-	Minute
S	-	Second
μs	-	Microsecond
mL	-	Mililiter
mm	-	Milimeter
mmol	-	Milimol
Ν	-	Normal

q_t	-	Sorbate uptake after a prescribed duration
q_e	-	Sorbate uptake at equilibrium
$q_{ m max}$	-	Maximum uptake capacity
K_A	-	Thermodynamic equilibrium constant
t	-	Time
V	-	Volume of solution
Å	-	Angstrom
2θ	-	2-Theta value in X-ray diffraction
%Т	-	Percent transmission
KHz	-	Kilohertz
MHz	-	Megahertz
k_1	-	Equilibrium rate constant of pseudo-first-order sorption
k_2	-	Equilibrium rate constant of pseudo-second-order sorption
r^2	-	Correlation coefficient
k _{id}	-	Rate constant of intraparticle diffusion
$\Delta H_{\rm hydr}$	-	Enthalpy of hydration
С	-	Concentration or activity of free metal in solution according to
		Langmuir and Freundlich model
S	-	Quantity of the metal ions sorbed according to Langmuir and
		Freundlich model
М	-	Maximum sorption capacity of the sorbent according to
		Langmuir model
b	-	Coefficient related to bonding energy according to Langmuir
		model
K _F	-	Freundlich empirical constant which related to adsorption
		capacity
n	-	Freundlich empirical constant which related to intensity of
		adsorbent
Z_i	-	Valency of ion <i>i</i>
М	-	Molar concentration
W	-	Zeolite mass
γ	-	Solution-phase activity coefficient
Ι	-	Ionic strength of solution

a_i	-	Ion size parameter
A and	-	Constants in the Debye-Hückel term
В		
$ ho_o$	-	Density of water
З	-	Dielectric constant of water
Т	-	Temperature
$\varDelta G^{\circ}$	-	Gibbs standard free energy
$\varDelta H^\circ$	-	Standard enthalpy
ΔS°	-	Standard entropy

LIST OF ABBREVIATIONS

FAO	-	Food and Agriculture Organization of the United
		Nations
XRD	-	X-ray diffraction
FTIR	-	Fourier-transform infrared spectroscopy
MAS/NMR	-	Solid- state nuclear magnetic resonance
		spectroscopy under magic angle spinning
WDXRF	-	Wavelength dispersive x-ray fluorescence
		spectroscopy
FAAS	-	Flame atomic absorption spectroscopy
SEM	-	Scanning electron microscopy
TG-DTA		Thermogravimetric-differential thermal analysis
EDAX		Energy dispersive x-ray microanalysis
Pb	-	Lead
Cd	-	Cadmium
Zn	-	Zinc
Se	-	Selenium
GIS	-	Gismondine
IUPAC	-	International Union of Pure and Applied Chemistry
DNA	-	Deoxyribonucleic acid
RNA	-	Ribonucleic acid
FIAM	-	Free ion activity model
HDL	-	High density lipoprotein
LDL	-	Low density lipoprotein
HgbA1C	-	Glycated hemoglobin
SLI	-	Staring-lighting-ignition

xxii

CNS	-	Central nervous system
РКС	-	Protein kinase C
AC	-	Alternate current
DC	-	Direct current
ELM	-	Emulsion liquid membrane
EC	-	Electrocoagulation
ETS-10	-	Engelhard titanosilicate-10
SBU	-	Secondary building units
ANA	-	Analcime
TLM	-	Triple layer model
IIS	-	Ibnu Sina Institute for Fundamental Science Studies
LOI	-	Loss of ignition
H_2SO_4	-	Sulfuric acid
HF	-	Hydrofluoric acid
NaOH	-	Sodium hydroxide
NaAlO ₂	-	Sodium aluminate
DDW	-	Distilled-deionized water
NaNO ₃	-	Sodium nitrate
KC1	-	Potassium chloride
$Ca(NO_3)_2$		Calcium nitrate
NH ₄ NO ₃		Ammonium nitrate
rpm		Revolution per time
KBr		Potassium bromide
CRM		Certified standard material
РР		Polypropylene
C_2H_2		Acetylene
HCL		Hollow cathode lamp
EDL		Electrodeless-discharged lamp
QCS		Quality control sample
RHA		Rice husk ash
PDF		Powder diffraction file
Ori-P		As-synthesized zeolite Na-P2
Homo-Na		Nearly-homoionic zeolite Na-P2

Homo-Ca	Calcium exchanged zeolite Na-P2 (corresponded to
	garronite)
CEC	Cation exchange capacity
H_2SeO_3	Selenious acid
10Al-P	Desilicated zeolite Na-P2 loaded with 10 mmol/L
	aluminium sulfate
NaCl	Sodium chloride
n.v	Negative value

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	National Drinking Water Quality	134
	Standards, 2000 of Malaysia for Some	
	Inorganic Species and Frequency of	
	Monitoring	
B-1	EDAX Spectrum for Zeolite Na-P1	136
B-2	EDAX Spectrum for Zeolite Na-P2	137
B-3	EDAX Spectrum for Desilicated Zeolite	138
	Na-P2	
С	X-ray Diffractogram of Well-Mixed	139
	Zeolite Na-P2	
D-1	Surface Analysis of Zeolite Na-P2	140
	Using Nitrogen Adsorption	
D-2	Calculation of Si/Al Ratio through ²⁹ Si NMR	141
E-1	Ion exchange Kinetics Data of Pb^{2+} ,	143
	Zn^{2+} and Cd^{2+}	
E-2	The Effect of Initial pH on Metal Ions	148
	Removal	
E-3	Binary Ion Exchange Isotherm Data for	152
	Pb ²⁺ Uptake by Zeolites	
E-4	Binary Ion Exchange Isotherm Data for	154
	Zn ²⁺ Uptake by Zeolites	

E-5	Binary Ion Exchange Isotherm Data for	156
	Cd ²⁺ Uptake by Zeolites	
E-6	Multicomponent Ion Exchange Isotherm	158
	Data	
F-1	Sorption Kinetics Data of Se (IV) and	160
	Se (VI) by the Series of Aluminium-	
	Loaded Zeolites	
F-2	Sorption Isotherm Data of Se (IV) and	164
	Se (VI) by 10 Al-P	
F-3	Sorption Isotherm Data of Se (IV) and	166
	Se (VI) in NaCl Solution of Different	
	Ionic Strength	

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The presence of hazardous metals such as lead, zinc, cadmium as well as some metalloids like selenium and arsenic in the environment particularly in water have been drawing more and more public concern due to their toxicity and acute impacts to the human health. Pollution of the environment and the human exposure to these metallic or semi-metallic elements may occur naturally (e.g. erosion of surface deposits of metal minerals and natural weathering of rock), or from anthropogenic activities (mining, smelting, fossil fuel combustion and industrial application of metals).

Concerned for sustaining healthy water resources, public are calling for more and more environmental restriction. Consequently, industries and scientists are searching for economic and efficient methods in protecting water resources from pollution. Using the sorption process for the removal of harmful metals from wastewater has a relatively shorter history if compared to other water purification processes. In 1785, Lowitz observed that charcoal would decolorize many liquids. This is the earliest documented use of carbon for the removal of impurities in solutions [1]. Nowadays adsorption on activated carbon is a recognized method for the removal of harmful metals from wastewater while the high cost of activated carbon production and application limits its use in adsorption. A search for low cost and easily available adsorbent has led to the investigation of materials of agricultural and biological origin as potential metal sorbents [2].

Mineralogists have studied zeolites for two and half centuries beginning with the first member, stilbite, which was discovered in 1756 [3]. However their spectacular applications in industry have been developed only in the last 50 years. The openness of the anionic frameworks ensures the easier mobility both of cations in ion exchangers and of water molecules or other guest species. Additions and removals of guest species can be fully reversible, and so zeolites may be excellent sorbents for gases, vapors and liquids.

Considering the operation cost and efficiency, natural mineral zeolites such as chabazite, clinoptilolie, mordenite etc. with high exchange capacity and specific selectivity towards certain metal cations, have been utilized widely in water purification [4-9]. Nevertheless, an unavoidable problem of the utilization is the coexistence of the considerable impurities with the zeolitic tuffs, which interferes the exchange behavior of natural zeolites with the toxic elements. As an alternative, synthetic zeolites which usually possess higher exchange capacity, controlled and known physicochemical properties relative to that for natural zeolites [10], have been emphasized. Since the cost effectiveness is still the main consideration, low cost and locally available natural materials should be the first priority in the zeolite synthesis attempts.

Among the available local natural materials, rice husk which contains high percentage of silica has drawn attention of researchers worldwide. Rice husk is an agricultural waste material generated as by-product of rice refining process. According to the Food and Agriculture Organization of the United Nations (FAO), the annual world rice production amounts to 614,654,895 metric tons in the year of 2005 [11], of which 10-23% is husk [12]. The big amounts of rice husk produced are treated as waste, causing disposal and pollution problem.

Silica is one of the basic raw materials in zeolite synthesis. Many authors [13-15] have characterized and concluded that rice husks are outstanding source of high-grade amorphous silica, approximately 92%-97% in the ash from the

combustion of this material at moderate temperature. The utilization of rice husk ash as silica source in the synthesis of zeolite were well investigated by H. Hamdan et al. [16]. They showed that that amorphous silica extracted from the rice husk by the physical combustion with controlled temperature contains only ^{*}Si(OSi)₄ tetrahedral units and is the most reactive silica source in the synthesis of zeolite Y.

P.K. Bajpai and his co-workers [17-18] were the first group in the past who has successfully synthesized mordenite-type zeolite using rice husk ash as silica source. Later, Ajay K. Dalai and his group [19] have synthesized sodium X zeolite by using this silica source for the first time. The syntheses of other zeolite species with silica source from rice husk ash were carried on by other researchers. For instance, zeolite P_c (cubic P), HS (hydroxysodalite), Z-21 (unknown structure, like Linde-N), analcime, ZSM-5, ZSM-48 etc. were attempted to be produced in last two decades [20-22]. Obviously, rice husk ash is suitable for low cost zeolite synthesis, and this advantage certainly decreases the cost needed in the water purification process, especially for drinking water resources.

The superior selectivity properties of the zeolites and their modified forms towards hazardous substances deserve wide and further exploration and development. In general, it must be recognized that relatively less attention has been given in the beginning to study the sorption behavior of synthetic zeolites toward dand p-block metals and metalloids if compared to aspects of synthesis, gas separation and catalysis. The comparative neglect was clearly biased since the incorporation of zeolite with metals is often an essential component in the preparation and/or manufacturer of zeolites for use either as sorbents or catalysts. This has been motivating worldwide researchers to investigate the sorption behavior of zeolites including ion exchange and adsorption since the past two decades.

1.2 Research Description and Objectives

With the view of long-term bioaccumulation risk of trace level harmful metals to the livings' health, the aim of this research is to compare several types of

modified sorbents, originated from a known extremely good water softener called low silica zeolite P in the removal of some selected toxic metals and inorganic oxyanions from water. The whole experimental design was based on the comparison basis in which sorption behavior of the sorbents were interpreted according to their batch sorption kinetic and equilibrium data in various conditions.

The study was mainly divided to three major component including material development and characterization, cation exchange studies of the materials with some metallic cations as well as adsorption of one of its modified form with selenium oxyanions. Considering the cost efficiency factor, the original low silica zeolite P was synthesized directly from the extremely low cost material, namely rice husk ash as the silica source. The synthesis conditions were investigated and optimized in the system Na₂O-Al₂O₃-SiO₂-H₂O. Factors affecting the formation of products such as composition of starting materials, heating temperature and crystallization period were also studied.

The as-synthesized zeolite P was converted to nearly homoionic sodium and calcium forms through exhaustively exchange with high concentration sodium and calcium salt solution. The original zeolite was also partially loaded with aluminium sulfate post modification step called desilication. Controlled desilication is an advanced technique where the framework silica of the zeolite is partially removed in basic medium. This technique has been introduced as an effective approach to create significant extraporosity in various zeolites [23-24] and increase cation exchange capacity [25-26].

The zeolite samples were well characterized with appropriate techniques including structural analysis with x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), solid state NMR under magic angle spinning (MAS); elemental analysis either by wavelength dispersive x-ray fluorescence spectroscopy (WDXRF) or atomic absorption spectroscopy (AAS) post sample decomposition; morphological study with scanning electron micrography (SEM) and surface study with nitrogen adsorption analysis. Comparisons of the metallic cation sorption behaviors were done among the nearly homoionic sodium and calcium form of the zeolites with the as-synthesized zeolite P. Meanwhile, the aluminium-loaded zeolites P were tested and compared with the original one in the removal of inorganic metalloid species. Divalent lead (Pb), cadmium (Cd), zinc (Zn) and inorganic species of selenium, i.e. Se (IV) and Se (VI) as well were chosen as the target adsorbates due to their toxicity and persistency in the aqueous environment.

Batch mode studies were conducted throughout the whole research instead of column studies. This is the most commonly used technique because of its ease of laboratory operation and ease of data handling. This technique involves placing the known quantity of sorbent and solution containing the known concentration of the metals into a vessel and mixing the samples for a prescribed time. The sorbent and/or solution phases are then analyzed by an accurate elemental analyzer (e.g. atomic absorption spectrophotometry or inductively coupled plasma emission spectrometry), after separation of the mixture with centrifugation and/or filtration.

The goal of this research is to examine the interaction of rice husk ashsynthesized zeolite P and its modified forms with various ions in solutions under ranging conditions to elucidate the mechanism of sorption and ion exchange. The specific objectives of this research are to:

- Optimize the synthesis of zeolite P with gismondine (GIS) framework by using local available rice husk ash as the silica source.
- Investigate the physical and chemical changes of zeolite P after modification with different solid-state techniques.
- To understand the sorption behavior of the as-synthesized and modified zeolites including exchange rate, equilibrium, and selectivity towards selected metallic elements and metalloids under different conditions.
- To evaluate the performance of as-synthesized and modified zeolites in the removal of selected toxic metals and metalloids from aqueous media.

1.3 Organization of Thesis

This thesis consists of six chapters. Chapter 1 presents the general research background, research description, objectives and the thesis organization. Chapter 2 introduces the general nature of zeolites as well as metallic elements and metalloids as contaminants. The following description emphasizes on the materials under study, i.e. gismondine (GIS) group zeolites generally and zeolite P particularly. This chapter also presents extensive review of research relevant to the present study. Chapter 3 describes the synthesis method of material, characterization techniques and the experimental conditions employed in this work. Discussions on the synthesis condition and characterization are the main body in chapter 4 whereas the sorption behaviors of the materials toward the hazardous metals and metalloid oxyanions are focused in chapter 5. The last chapter contains the concluding remarks and also some recommendations for future studies.