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     Abstract 
 This paper presents a comparison study between radial basis function neural network (RBFNN), feed forward 
multilayer perceptron neural network (MLPNN) and adaptive neuro-fuzzy (ANFIS) technique to model the activated 
sludge process (ASP). All of these techniques are based on the nonlinear autoregressive with eXogenous input 
(NARX) structure. The ASP inputs and outputs data are generated from activated sludge model 1 (ASM1). This 
work will cover the dissolved oxygen (DO), substrate and biomass modeling. The performances of the model are 
evaluated based on R2, mean square error (MSE) and root mean square error RMSE. The simulation result shows that 
ANFIS with NARX structure given a better performance compared with the other modeling techniques. 
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Introduction  

Activated sludge process (ASP) is widely used in waste water treatment plant (WWTP). This process is a 
multivariable and it has a nonlinear characteristic. Obtaining a good model with simpler structure is 
demanded because the simplified model can be used for the plant performance prediction and model 
based control. By nature, the ASP model is highly nonlinear with multivariable parameters. However, the 
existing ASM model in [1] is too complex. The developed model included too many biological 
parameters that need to be calibrated and consider [2]. Thus, reliable and simple model are needed for 
prediction ASP in WWTP system. 

Many works was attempted in order to produce high accuracy as an alternative to ASM model likes [3] 
that used neural network to model the full scale ASP in WWTP. [4] used optimized support vector 
machine (SVM) as the alternative model for ASP. A few works by Gaya et. al [5][6][7]  model the ASP 
process for WWTP using ANFIS and feed forward neural network technique. The application of self 
organizing fuzzy neural network was introduce by [8] to model chemical oxygen demand (COD) for ASP 
in WWTP. The same group developed a self organizing RBF neural network to model the ASP in and 
further work in [9] shows that the model is capable to be used in predictive control[2]. 
 
In this work, RBFNN, MLPNN and ANFIS are chosen with NARX structure and will be applied to 
model a multivariable ASP. The modeling results are evaluated based on standard model evaluation 
method techniques which are R2, mean square error (MSE), root mean square error (RMSE).  
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Methods 

Data Collection 

 
The simulation works was done by applying random signal to the ASP simulator. The system has two inputs 
(airflow rate and dilution rate) and four outputs (XB, H, is the heterotrophic biomass, SS is the substrate, SO is the 
dissolved oxygen, XB,H, r is the recycled biomass.). The data then is divided into training and testing (prediction) 
set. In this work, 50% data for training and another 50% data for testing are used. Figure 1 shows the inputs data 
while Figure 2 presents four output signals from the ASP simulator. 
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              Figure 1 Inputs of the ASP plant                            Figure 2 Inputs of the ASP plant 

Model Development 

 
The NARX structure was employed in the model development where the selected lag from input outputs 

variables is train using three different modeling technique such as MLPNN, RBFNN and ANFIS.  The result 
was evaluated using three performance indicators which are R2, mean square error (MSE), root mean square 
error (RMSE). 

Results and Discussion 

 From the simulation result it shows all modeling techniques are capable to model the ASP process. 
Heterotrophic modeling the training simulation results are shown in Figure 3. However, based in the 
performance evaluation criteria, ANFIS model gives superior performance compared with the others for both 
training and testing. Figure 4 shows the XB,H testing result. 
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           Figure 3 Training result for XH,B                                               Figure 4 Testing result for XH,B 
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In term of the individual performance criteria as shown in Table 1, ANFIS has better R2 training followed by 
MLPNN and RBFNN.  For MSE and RMSE, ANFIS has better prediction compare with MLPNN and RBFNN. 

Table 1. XH,B  Model Evaluation 

Training 
 R2 MSE RMSE 
NARX-ANFIS 99.9942 8.9305e-4 0.0299 
NARX-MLPNN 99.9802 0.0032 0.0563 
NARX-RBFNN 99.6822 0.0492 0.2219 
Testing 
 R2 MSE RMSE 
NARX-ANFIS 99.7631 0.0220   0.1484 
NARX-MLPNN 99.3180 0.0625 0.2500 
NARX-RBFNN 98.8187 0.1083   0.3291 

 
In substrate modeling, the same performance was observed which ANFIS model give the higher accuracy. 

However, the MLPNN also shows a good modeling performance in training and testing where the residuals are 
almost similar with the ANFIS model. Based on the simulation result, the all the methods give R2 more than 
99%. Only for RBFNN testing result gives only 76.0251%. Full performances of Ss are shown in Table 2.  

Table 2. SS Model Evaluation 

Training 
 R2 MSE RMSE 
NARX-ANFIS 99.9980 3.9819e-6 0.0020 
NARX-MLPNN 99.9975 4.4540e-4 0.0211 
NARX-RBFNN 99.7297 0.0601 0.2452 
Testing 
 R2 MSE RMSE 
NARX-ANFIS 99.9923 9.0178e-4 0.0300 
NARX-MLPNN 99.9897 8.8947e-2 0.0889 
NARX-RBFNN 76.0251 2.7992 1.6460 

 
Training and testing result for DO shows a great performance for using ANFIS and MLPNN with both of the 

techniques give more than 99% R2. MSE and RMSE result shows very minimum error for training and testing. 
However, the RBFNN give poor R2 value for DO testing. Summary of the performances of the training and 
testing result are presented in Table 3. 

Table 3. DO   Model Evaluation 

Training 
 R2 MSE RMSE 

NARX-ANFIS 100.000 4.3175e-7 6.5707e-4 
NARX-MLPNN 99.8209 0.0023 0.0479 
NARX-RBFNN 97.9523 0.0353 0.1880 

Testing 
 R2 MSE RMSE 

NARX-ANFIS 99.9697 2.5321e-4 0.0159 
NARX-MLPNN 99.7178 0.0031 0.0554 
NARX-RBFNN 66.8685 0.2768 0.5261 

 
The simulation results for XH,B,r shows that the ANFIS with NARX structure give almost identical result with 

NARX-MLPNN. However, ANFIS has smallest error compared with MLPNN. The RBFNN has significant 
residual for training and testing simulation. Table IV shows the modeling performance of XH,B,r . 
 



Zakariah Yusuf., et al. 
 

IICIST 2015 Proceedings   587 
20th April 2015, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia 
 

Table 4. XH,B,r  Model Evaluation 

Training 
 R2 MSE RMSE 
NARX-ANFIS 99.9998 1.1574e-4 0.0108 
NARX-MLPNN 99.9993 4.1537e-4 0.0204 
NARX-RBFNN 99.5338 0.2694 0.5190 
Testing 
 R2 MSE RMSE 
NARX-ANFIS 99.9253 0.0246 0.1567 
NARX-MLPNN 99.7607 0.0756 0.2749 
NARX-RBFNN 98.6404 0.4473 0.6688 

Conclusion 

This work presented the comparisons study of ASP modeling using ANFIS, MLP and RBF neural network 
based on the NARX structure.  The data is divided based on first 50% for training and the last 50% for testing. 
Performances of the modeling techniques are follow several criterions which are R2, MSE and RSME. The 
result shows ANFIS with NARX structure gives the higher fitting value and less error for training and testing 
simulation. However, MLPNN can also be very reliable model prediction for all outputs. However, RBFNN in 
the simulation results has shows some noticeable deviation even though the output paten stills similar with the 
actual output, it might be caused by insufficient training data 
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