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Abstract 
 
The establishment and spread of dengue fever is a complex phenomenon with many factors 
that interact with each other. This report present a study on a mathematical model, the SIR 
(Susceptible, Infected and Recovered) that serve as a framework for understanding the 
spread of the infectious dengue fever. We begin with a brief discussion of the origin and 
historical development of the disease. This is followed by a review on the relation between 
the three compartments, susceptible, infected and recovered. The modeling steps that lead to 
the SIR model using ordinary differential equation is explained in detail. The solution gives 
the basic reproduction number R_0, and this basic reproduction number is use to determine 
whether the dengue fever will dies out or persists in human population in the long run. The 
disease-free equilibrium point is determined and R_0 is used to determine whether the 
disease free equilibrium is stable or unstable. Establishing the endemic equilibrium point 
determines when the dengue fever will become calm.  
 
Keywords: SIR model, Basic reproduction number, disease free equilibrium, endemic 
   equilibrium 
 
 
Introduction 
 
Dengue fever is a dangerous disease having huge social, economic and health burden. It is 
predominantly present in the tropical countries. Even though the disease has been checked 
out for long time ago, it still remains a major public health issue. Many researchers had 
model the dengue fever to investigate the spread of the disease. There are a lot of model that 
described the dengue fever, such as SIR model, SEIR model, MSIR model, and MSEIR 
model. The most important thing to build a model is identify the variable involve in the 
model. So, the variable must be determined correctly. In order to investigate the spread of 
disease, the most important aspect that we need to find out is basic reproduction number. 
Basic reproduction number is to determine whether the disease will die out or not. Moreover, 
basic reproduction number can use to find the disease free equilibrium point and endemic 
equilibrium point. 
 
 In this report, we study how a system of differential equation is used to model the 
spread of dengue fever. The main purpose of this study are, identify a deterministic 
dynamics model to represent the transmission of the disease in different compartments, study 
the dynamics of dengue fever in a deterministic model involving ordinary differential 
equations, explore the relation of basic reproduction number (𝑅�), disease free equilibrium 
(𝐸�), and endemic equilibrium (𝐸�). 
 
 
Literature Review 
 
We will review the studies of the researchers related to the dengue fever. The researches that 
were presented are SIA model, SEIR model, MSEIR model, SIS model, and statistically 
presented method. In modeling a model for spread of dengue fever, it is necessary to 
determine the variables involve in the system and understand the basic reproduction number. 
The variables are determined base on the situation of the system. Basic reproduction number 
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is to determine whether the disease is stable or not stable. Both the variables and basic 
reproduction number are important to study the spread of dengue fever. 
 
  
 A study about SIS model was carried out by Helmersson, Jing (2012) on 
Mathematical Modeling of Dengue -Temperature Effect on Vectorial Capacity. This research 
is aims at finding the best way to incorporate temperature effect on dengue transmission. 
Another research is carried out by Kiyeny, Silas Kipchirchir (2014) on SIA model. A 5-
dimensional system of ordinary differential equations (ODEs) is use to model the malaria 
disease. This is because the model contained of 5 different variables. The model was 
analyzed for the disease free equilibrium and endemic equilibrium. A research about 
modeling the spread of dengue in Singapore was done by K.C.Ang and Z.Li. In this research, 
they developed a model that describes the spread of dengue in Singapore. They considered 
S-E-I-R (susceptible→exposed→infectious→recovered) model for human population, while 
S-E-I (susceptible→exposed→infectious) model for mosquito population. Besides that, a 
model of dengue fever has been published by M Derouich, A Boutayeb, and EH Twizell. In 
this paper, they consider an S-I-R model. It is about medical research in terms of vaccination 
and antibiotics of dengue fever. 
 
 
Methodology  
 
In this report, we will emphasize on the SIR model, which the model is the easiest to 
understand. First, we need to identify the variables and parameters that need to take into 
consideration. Such as the birth rate, death rate, recovery rate, and so on. After that, we need 
to analyse the model to check whether it is adequate or not. If the dimension of the model is 
too large, then model order reduction is to be applied. Basic reproduction number is a must 
to find out for every modelling of infectious disease. With the basic reproduction number, 
we can determine the seriousness of the disease. The basic reproduction number can be use 
to find the disease free equilibrium point and endemic equilibrium point. 
 
 ` Generally, modelling consists of four steps. First of all, a flow diagram that 
describes the whole process is a must in order to do the modelling. Flow diagram represents 
the natural history and transmission of infection. After that, move to second step. Second 
step is to write a set of mathematical equations to express the transmission process based on 
the flow diagram that construct in first step. Then, the third step is to find proper values for 
the parameters used in the equations and make sure that the variable use is appropriate. 
Finally, we need to solve the equations algebraically or numerically with help of computer 
simulation programs since some of the equations are very complicated and need the help of 
computer programming. 
 
 The population can be classified into three compartments: 
 • Susceptible to the disease (Susceptible)– S, 
 • Currently Infectious (Infectious or Infective) – I, 
 • Recovered and immune (Recovered or Removals) – R. 
 
 Susceptible state means a person is under identify likely or liable to be influenced or 
harmed by dengue fever but not yet confirm that person is infected. Infectious state means a 
person is confirmed infected by dengue fever. Recovered state means a person is recovered 
from infectious. As stated above, every process needs a flow diagram to represent and 
describe the particular situation. Therefore, at here S, I, R, represent the number of 
individuals in each compartment. The total host population is N = S + I + R.  
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Each arrow in the flow diagram represents the flow rate at which individuals enter or leave a 
compartment per unit time, which is called the incidence rate. 
 
 Model order reduction is a technique for reducing the complexity of mathematical 
models in numerical simulation. In the real life process, many modern mathematical models 
are complicated when process in numerical simulation. This is due to the large size of the 
mathematical model’s dimension. The purpose of reduce the order of the model is to lower 
down the computational complexity of that model. 
 
 The basic reproduction number is useful because it helps determine whether or not 
an infectious disease can spread through a population. When R� < 1, the infection will 
slowly die out in the long time. When R� > 1, the infection will be able to spread in a 
population. Therefore, in generally, the larger the value of R�, the harder it is to control the 
epidemic. 
 
 Disease free equilibrium is to see whether the epidemic is stable or unstable when 
there is no more diseases presence. Disease free equilibrium point is a point where there is 
no more disease appears. The disease free equilibrium point is depends on the basic 
reproduction number, R� . When R� < 1, then the disease free equilibrium point is stable. It 
is, however if the basic reproduction number, R� > 1, then the disease free equilibrium point 
is unstable. Thus, R� is a threshold parameter for the model.  
 
 Endemic equilibrium point is a point where the disease is at the steady state. The 
endemic equilibrium is to determine whether the epidemic is stable or unstable when the 
disease is at the steady state. Similarly, endemic equilibrium is also depending on the basic 
reproduction number, R�. When R� < 1, the endemic equilibrium point is unstable, whereas 
the endemic equilibrium point is stable if R� > 1. 
 
 
Findings and Discussion  
 
 Our model is a mathematical simulation of transmission of dengue virus between 
host and vector (human and mosquito) where humans and mosquitoes interact and infect 
each other. Basically, the model is considered only on the susceptible, infectious and 
recovered or immune (SIR model). In the model, we let the notation of total population sizes 
of human and mosquito as Nh and Nv respectively. In the model of human population, it is 
divided into three classes; the Susceptible (Sh), the Infectious (Ih), and Recovered (Rh). In the 
model of mosquito population, it is divided into two classes; the Susceptible (Sv), the 
Infectious (Iv).  
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The equations representing the relationship between the population of host and vector are 
given as: 
 
𝑑𝑆�
𝑑𝑡

= 𝜆� − 𝑎𝑏�𝐼�
𝑆�
𝑁�

− 𝜇�𝑆� + 𝛾(𝐼� + 𝑅�) 

𝑑𝐼�
𝑑𝑡

= 𝑎𝑏�𝐼�
𝑆�
𝑁�

− (𝜇� + 𝛼 + 𝛿 + 𝛾)𝐼� 

𝑑𝑅�
𝑑𝑡

= 𝛿𝐼� − (𝜇� + 𝛾)𝑅� 

𝑑𝑆�
𝑑𝑡

= 𝜆� − 𝑎𝑏�𝑆�
𝐼�
𝑁�

− 𝑎𝑏�𝑆�
𝑅�
𝑁�

− 𝜇�𝑆� 

𝑑𝐼�
𝑑𝑡

= 𝑎𝑏�𝑆�
𝐼�
𝑁�

+ 𝑎𝑏�𝑆�
𝑅�
𝑁�

− 𝜇�𝐼� 

 
After that we analyse the model to test whether the equation is adequate or not.  
 
For human population; 

𝑁�(𝑡) =
𝜆�
𝜇�

+ 𝐶𝑒���� 

When 𝑡 is equal to 0, 𝑁�(0) = ��
��

+ 𝐶 

When 𝑡 are approaches to infinity, 𝑁�(∞) = ��
��

 
From the above, it implies that the human population is constant in the absence of the 
disease. Also implies that in the long time, the human’s population will become constant.  
 
For mosquito population; 

𝑁�(𝑡) =
𝜆�
𝜇�

+ 𝐷𝑒���� 

When 𝑡 is equal to 0, 𝑁�(0) = ��
��

+ 𝐷 

When 𝑡 are approaches to infinity, 𝑁�(∞) = ��
��

 
From the above, it implies that the population of mosquito is a constant and would not go to 
infinity.  
 

   Sh 

   Rh 

   Iv 

   Sv 

   Ih 
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 Since there are 5 differential equations, then we reduce the model to 4 equations. 
From the equation ���

��
= 𝜆� − 𝜇�𝑁� , we can see that the 𝑁� is only the one variable. That is 

mean the equation only depends on 𝑁� . Hence, by using Vidyasagar theorem, we can reduce 
the system to four equations.  
𝑑𝐼�
𝑑𝑡

= 𝑎𝑏�𝐼�
𝑆�
𝑁�

− (𝜇� + 𝛼 + 𝛿

+ 𝛾)𝐼�                                                                                             (1) 
𝑑𝑅�
𝑑𝑡

= 𝛿𝐼� − (𝜇�
+ 𝛾)𝑅�                                                                                                                     (2) 

𝑑𝐼�
𝑑𝑡

= 𝑎𝑏�𝑆�
𝐼�
𝑁�

+ 𝑎𝑏�𝑆�
𝑅�
𝑁�

− 𝜇�𝐼�                                                                                                  (3) 
𝑑𝑁�
𝑑𝑡

= 𝜆� − 𝜇�𝑁�
− 𝛼𝐼�                                                                                                                      (4) 

 
 After reduce the model order, now we can find the basic reproduction number by 
transform the differential equation to matrix form.  
 
 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝐼�
𝑑𝑡
𝑑𝑅�
𝑑𝑡
𝑑𝐼�
𝑑𝑡
𝑑𝑁�
𝑑𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−(𝜇� + 𝛼 + 𝛿 + 𝛾) 0 𝑎𝑏�

𝑆�
𝑁�

0

𝛿 −(𝜇� + 𝛾) 0 0

𝑎𝑏�
𝑆�
𝑁�

𝑎𝑏�
𝑆�
𝑁�

−𝜇� 0

−𝛼 0 0 −𝜇�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐼�

𝑅�

𝐼�

𝑁�⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝐼�
𝑑𝑡
𝑑𝑅�
𝑑𝑡
𝑑𝐼�
𝑑𝑡
𝑑𝑁�
𝑑𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎩
⎪⎪
⎨

⎪⎪
⎧

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0 𝑎𝑏�

𝑆�
𝑁�

0

0 0 0 0

𝑎𝑏�
𝑆�
𝑁�

𝑎𝑏�
𝑆�
𝑁�

0 0

0 0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

−  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(𝜇� + 𝛼 + 𝛿 + 𝛾) 0 0 0

−𝛿 (𝜇� + 𝛾) 0 0

0 0 𝜇� 0

𝛼 0 0 𝜇�⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

⎭
⎪⎪
⎬

⎪⎪
⎫

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐼�

𝑅�

𝐼�

𝑁�⎦
⎥
⎥
⎥
⎥
⎥
⎤
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝐼�
𝑑𝑡
𝑑𝑅�
𝑑𝑡
𝑑𝐼�
𝑑𝑡
𝑑𝑁�
𝑑𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= [𝐹 − 𝑉]

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐼�

𝑅�

𝐼�

𝑁�⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

With the matrices 𝐹 and 𝑉 at above, we can use this matrices to find the reproduction 
number, 𝑅�. The reproduction number, 𝑅� = 𝜆�, where 𝜆 is the eigenvalue of 𝐹𝑉��.  

𝑅� = 𝜆� =
𝑎�𝑏�𝑁�[𝑏�(𝜇� + 𝛾) + 𝛿𝑏�]

(𝜇�𝑁�)(𝜇� + 𝛾)(𝜇� + 𝛼 + 𝛿 + 𝛾) 

 
 The disease free equilibrium point is 𝐸� = (0,0,0, ��

��
). The purpose of doing this 

analysis is to determine if the disease free equilibrium point is stable. First of all, we analyze 
the stability of the disease free equilibrium by linearize the above differential equations (1), 
(2), (3), and (4) to a Jacobian matrix.  

𝐽��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−Α 0 𝑎𝑏� 0

𝛿 −(𝜇� + 𝛾) 0 0
𝑎𝑏�𝜆�𝜇�
𝜇�𝜆�

𝑎𝑏�𝜆�𝜇�
𝜇�𝜆�

−𝜇� 0

−𝛼 0 0 −𝜇�⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Next, we want to determine the eigenvalues of this Jacobian matrix. The eigenvalues of this 
Jacobian matrix can determine whether the disease free equilibrium point, 𝐸� is stable.  
 

𝑃(𝜆) = |𝐽��� − 𝜆𝐼| =
�

�

−(Α + 𝜆) 0 𝑎𝑏� 0

𝛿 −(𝜇� + 𝛾 + 𝜆) 0 0
𝑎𝑏�𝜆�𝜇�
𝜇�𝜆�

𝑎𝑏�𝜆�𝜇�
𝜇�𝜆�

−(𝜇� + 𝜆) 0

−𝛼 0 0 −(𝜇� + 𝜆)

�

�
= 0 

𝜆� + 𝜆�[2(𝜇� + 𝛾) + 𝛼 + 𝛿 + 𝜇�] + 𝜆 �Α(𝜇� + 𝛾 + 𝜇�) + (𝜇� + 𝛾)𝜇� −
𝑎�𝑏�𝑏�𝜆�𝜇�

𝜇�𝜆�
�

+ �(𝜇� + 𝛾)𝜇�Α−
𝑎�𝑏�𝜆�𝜇�[(𝜇� + 𝛾)𝑏� + 𝑏�𝛿]

𝜇�𝜆�
� = 0 

 
We can write the equation into third order polynomial, which is equivalent to the above 
equation.  
 
𝐶�𝜆� + 𝐶�𝜆� + 𝐶�𝜆 + 𝐶� = 0 
 
𝐶� = 1 > 0 
𝐶� = 2(𝜇� + 𝛾) + 𝛼 + 𝛿 + 𝜇� > 0 

𝐶� = Α(𝜇� + 𝛾 + 𝜇�) + (𝜇� + 𝛾)𝜇� −
𝑎�𝑏�𝑏�𝜆�𝜇�

𝜇�𝜆�
 

      = Α(𝜇� + 𝛾) + (𝜇� + 𝛾)𝜇� +  Α𝜇� −
𝑎�𝑏�𝑏�𝜆�𝜇�(𝜇� + 𝛾)

𝜇�𝜆�(𝜇� + 𝛾)
−
𝑎�𝑏�𝑏�𝛿𝜆�𝜇�
𝜇�𝜆�(𝜇� + 𝛾)

+
𝑎�𝑏�𝑏�𝛿𝜆�𝜇�
𝜇�𝜆�(𝜇� + 𝛾)
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      = (𝜇� + 𝛾)(Α + 𝜇�) +
𝑎�𝑏�𝑏�𝛿𝜆�𝜇�
𝜇�𝜆�(𝜇� + 𝛾)

+ Α𝜇� �1 −
𝑎�𝑏�𝜆�𝜇�[𝑏�(𝜇� + 𝛾) + 𝛿𝑏�]

(𝜇��𝜆�)(𝜇� + 𝛾)Α
� 

      = (𝜇� + 𝛾)(Α + 𝜇�) +
𝑎�𝑏�𝑏�𝛿𝜆�𝜇�
𝜇�𝜆�(𝜇� + 𝛾)

+ Α𝜇�[1 − 𝑅�] 

𝐶� is always greater than zero when 𝑅� is less than 1. 

𝐶� = (𝜇� + 𝛾)𝜇�Α−
𝑎�𝑏�𝜆�𝜇�[(𝜇� + 𝛾)𝑏� + 𝑏�𝛿]

𝜇�𝜆�
 

      = (𝜇� + 𝛾)𝜇�Α �1 −
𝑎�𝑏�𝜆�𝜇�[(𝜇� + 𝛾)𝑏� + 𝑏�𝛿]

(𝜇��𝜆�)(𝜇� + 𝛾)Α
� 

      = (𝜇� + 𝛾)𝜇�Α[1 − 𝑅�] 
𝐶� is always greater than zero when 𝑅� is less than 1. 
 
Therefore, the disease free equilibrium point 𝐸� is stable if 𝑅� < 1. If 𝑅� > 1, then the 
disease free equilibrium point 𝐸� is unstable.  
 
 The endemic equilibrium point is 𝐸� = (𝐼�� ,𝑅�����, 𝐼�� ,𝑁�����). When the disease has 
reached its equilibrium point, then the differential equations are equal to zero. Therefore, we 
can write the differential equation into; 
 
𝑎𝑏�𝐼��(𝑁����� − 𝐼�� − 𝑅�����) − (𝜇� + 𝛼 + 𝛿 + 𝛾)𝐼��𝑁�����

= 0                                                                           (5) 
 

𝛿𝐼�� − (𝜇� + 𝛾)𝑅�����
= 0                                                                                                                                (6) 

 
𝑎𝑏�(𝑁� − 𝐼��)𝐼�� + 𝑎𝑏�(𝑁� − 𝐼��)𝑅����� − 𝜇�𝐼��𝑁�����

= 0                                                                               (7) 
 
𝜆� − 𝜇�𝑁����� − 𝛼𝐼��
= 0                                                                                                                                  (8) 
 
Solve 𝐼�� , 𝑅�����, 𝐼�� , 𝑎𝑛𝑑 𝑁����� in terms of  𝐼��  by using the above equations, equation (5), (6), (7), 
and (8). Hence we get: 
 

 𝐼�� =
−𝐵 ± √𝐵� − 4𝐴𝐶

2𝐴
 

 

𝑅����� =  
𝛿

(𝜇� + 𝛾) 𝐼�
�  

 

𝐼�� =
(𝜇� + 𝛼 + 𝛿 + 𝛾)(𝜆� − 𝛼𝐼�� )(𝜇� + 𝛾)𝐼��

𝑎𝑏�[𝜆�(𝜇� + 𝛾) − [(𝜇� + 𝛾)(𝛼 + 𝜇�) + 𝜇�𝛿]𝐼�� ] 

 

𝑁����� =
𝜆� − 𝛼𝐼��

𝜇�
 

 
 
Conclusion and Recommendation  
 
We have studied the modeling of dengue disease in a 5-dimentional system of ordinary 
differential equations. We analyzed the differential equations, and showed that the model 
that we use is adequate because the population of human and mosquito are both converge to 
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a constant. The system was then reduced to 4-dimentional system of ordinary differential 
equation. This is due to by solving the 5-dimentional system of ordinary differential equation 
has a very tedious computation.  
 
 After that, we have defined the basic reproduction number, 𝑅� in terms of 
parameters. 𝑅� must be find correctly because it is greatly use in finding the disease free 
equilibrium and endemic equilibrium. We also established that if the basic reproduction 
number 𝑅� < 1, the disease free equilibrium point is stable and the disease will dies out after 
some period of time. However, if the 𝑅� > 1, the disease free equilibrium point is unstable 
and the disease will become more serious and continuously spread. We also establish the 
endemic equilibrium point.  
 
 From the results above, the basic reproduction number we obtained is 𝑅� = 1.9689 , 
which the 𝑅� > 1. This number is quite high because it is greater than one. This meaning 
that in the long run, the dengue fever will not dies out, but it will continuously spread. Such 
number is not ideal in the future. We can describe the situation from the graph (figure 4.2). It 
is clearly showed that in the long period of time, the population of human will keep 
decreasing. Therefore, we need to do change the parameters to reduce the 𝑅� . For example 
we can reduce the mosquito birth rate by killing the mosquito, and create a better vaccine to 
increase the recovery rate.  
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