Novel Visible Light-Driven Photocatalyst of Mesoporous TUD-1 Supported Chromium Oxide Doped Titania for Phenol Photodegradation Yee Khai Ooi¹, Leny Yuliati², Siew Ling Lee²* ¹ Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia, ² Center for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia *Corresponding author: sllee@ibnusina.utm.my ## **ABSTRACT** Novel visible light driven mesoporous photocatalysts of Technische Universiteit Delft-1 (TUD-1) supported 1 mol% Cr oxide doped TiO_2 (Cr- TiO_2) were synthesized. Low angle XRD and FTIR results confirmed the amorphous and mesoporous silicate framework of TUD-1 in the materials. The mesostructure was further confirmed via N_2 adsorption-desorption analysis showing type IV isotherm with narrow average pore size distribution (2.5 nm) and high surface area (864 m^2/g). TEM analysis results indicated the attainment of nanoparticles and the porous channels in the synthesized materials. An increase in band-gap energy was observed after loading of Cr- TiO_2 into TUD-1. As compared to the unsupported Cr-doped TiO_2 , all the TUD-1 supported Cr-doped TiO_2 photocatalysts showed higher photocatalytic activity for phenol degradation under visible light irradiation. Amongst, sample Cr oxide doped TiO_2 supported on TUD-1 with molar ratio Si/Ti = 30 exhibited the highest photodegradation of phenol (82%). The phenol photodegradation followed the Langmuir adsorption isotherm with first order kinetics. | Phenol | Mesoporous silica | TUD-1 | Adsorption | Photocatalyst | ## Novel Oxidative-Acidic Bifunctional Catalyst of Tungsten-Phosphate Modified Silica-Titania Salasiah Che Me¹, Hadi Nur², Siew Ling Lee² Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia *Corresponding author: sllee@ibnusina.utm.my ## ABSTRACT A novel oxidative-acidic bifunctional catalyst of tungsten-phosphate supported silica-titania was successfully synthesized and characterized. Different tungsten amount was impregnated into silica-titania followed by phosphoric acid treatment via sol gel method. The impregnation of WO_3 and $PO_4^{\,3-}$ into TiO_2 - SiO_2 followed by drying and calcination gave the greyish colour to the samples. X-ray diffractograms of the samples showed the structures of TiO_2 - SiO_2 remained as amorphous structure after loading of WO_3 and $PO_4^{\,3-}$. The catalytic performance of the samples of $PO_4^{\,3-}/xW/TiO_2$ - SiO_2 , (x=1- 5wt %) as bifunctional catalyst in the formation of 1,2-octanediol through conversion of 1-octene to of 1,2-epoxyoctane using aqueous H_2O_2 as an oxidant was evaluated. It has been demonstrated that $PO_4^{\,3-}/5W/TiO_2$ - SiO_2 was an active bifunctional oxidative-acidic catalyst in producing 1,2-octanediol from 1-octene. | Bifunctional catalyst | Oxidative | Brønsted acidity | Tungsten oxide | Phosphoric acid |