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Abstract. In this paper, we address the issue of ordering exams by si-
multaneously considering two separate heuristics using fuzzy methods.
Combinations of two of the following three heuristic orderings are em-
ployed: largest degree, saturation degree and largest enrollment. The
fuzzy weight of an exam is used to represent how difficult it is to sched-
ule. The decreasingly ordered exams are sequentially chosen to be as-
signed to the last slot with least penalty cost value while the feasibil-
ity of the timetable is maintained throughout the process. Unschedul-
ing and rescheduling exams is performed until all exams are scheduled.
The proposed algorithm has been tested on 12 benchmark examination
timetabling data sets and the results show that this approach can pro-
duce good quality solutions. Moreover, there is significant potential to
extend the approach by including a larger range of heuristics.

1 Introduction

Examination timetabling is essentially the problem of allocating exams to a
limited number of time periods in such a way that none of the specified hard
constraints are violated. A timetable which satisfies all hard constraints is often
called a feasible timetable. In addition to the hard constraints, there are often
many soft constraints whose satisfaction is desirable (but not essential). The
set of constraints which need to be satisfied is usually very different from one
institution to another as reported by Burke et al. [12]. However, a common hard
constraint across all problem instances is the requirement to avoid any student
being scheduled for two different exams at the same time.

In practice, each institution usually has a different way of evaluating the
quality of a feasible timetable. In many cases, the measure of quality is calculated
based upon a penalty function which represents the degree to which the soft
constraints are satisfied.



Over the years, numerous approaches have been investigated and developed
for exam timetabling. Such approaches include constraint programming [30, 8,
26,34, 7], graph colouring [21, 16, 15], case based reasoning [18], hyper-heuristics
[15] and various metaheuristic approaches including greedy local search [23,19],
genetic algorithms [13, 28], tabu search [29], simulated annealing [41], the great
deluge algorithm [9], and hybridized methods [34] which draw on two or more
of these techniques. Discussions about other approaches can be found in papers
by Bardadym [4], Burke et al. [14], Burke and Petrovic [17], Carter [20], Carter
and Laporte [22], De Werra [27], Petrovic and Burke [35] and Schaerf [39].

Since being introduced by Zadeh in 1965 [43], fuzzy methodologies have been
successfully applied in a wide range of real world applications. In scheduling and
timetabling applications, fuzzy evaluation functions have been utilised in a num-
ber of different applications. For example, Dahal, Aldridge and McDonald [25]
considered such approaches in generator maintenance scheduling, and Abboud
et al. [1] used fuzzy target gross sales (fuzzy goals) to find ‘optimal’ solutions of
a manpower allocation problem, where several company goals and salesmen con-
straints need to be considered simultaneously. Fuzzy methodologies have been
investigated for other timetabling problems such as aircrew rostering [40], driver
scheduling [31] and nurse rostering [3].

In the specific context of examination timetabling, fuzzy methods have been
implemented for measuring the problem similarity in case based reasoning by
Yang and Petrovic [42]. In this work, a fuzzy similarity measure is used to retrieve
a good heuristic ordering for a new problem based on comparison with previous
problems that are stored in the case base. The selected heuristic ordering is then
applied to the new problem for generating an initial solution before applying the
Great Deluge Algorithm in the improvement stage. Their results indicated that
the performance of this algorithm is better when this fuzzy similarity measure
is applied in the initialisation stage compared to other initialisation approaches.

In [37], Petrovic et al. employed fuzzy methodologies to measure the satis-
faction of various soft constraints. The authors described how they modeled two
soft constraints, namely constraint on large exam and constraint on proximity
of exams, in the form of fuzzy linguistic terms and defined the related rule set.
A memetic algorithm was then implemented to evaluate their approach on the
same 12 benchmark problem instances that are considered in this paper.

Approaches which order the events prior to assignment to a period have been
discussed by several authors including Boizumault et al. [5], Brailsford et al. [6],
Burke et al. [11], Burke and Newall [16], Burke and Petrovic [17] and Carter
et al. [21]. In the context of the same benchmark data sets used in our exper-
iments, this sequencing strategy has been implemented by Carter et al. [21],
Burke and Newall [16] and Burke et al. [15]. In [21], the authors used four differ-
ent types of heuristic ordering to rank the exams in decreasing order to estimate
how difficult it is to schedule each of the exams. They considered largest degree,
saturation degree, largest weighted degree and largest enrollment. These heuris-
tics were used individually each time they wanted to order the exams. Then,
the exams were selected sequentially and assigned to a time slot that satisfied



all the specified constraints. If no clash free time slot was found, backtracking
was implemented. The process was continued until all the exams were sched-
uled and a feasible solution was produced. Burke and Newall [16] applied an
adaptive heuristic technique in which they start ordering by a particular heuris-
tic and then alter that heuristic ordering to take into account the penalty that
exams are imposing upon the timetable. Recently, Burke et. al [15] proposed a
new hyper-heuristic approach for solving timetabling problems. Instead of us-
ing a single heuristic to find solutions for course and examination timetabling
problems, a sequence of heuristics is applied. The authors used tabu search and
deepest descent local search in order to find the best list of heuristics to guide the
constructive algorithm in finding the ‘best solution’ for each problem instance.

In this paper, a fuzzy methodology is used to rank exams based on an assess-
ment of how difficult they are to schedule taking into account multiple heuris-
tics. This paper is motivated by the observation that the consideration of more
than one heuristic to rank the exams may lead to rankings that better reflect
the actual difficulty of placing the exam, as several factors are simultaneously
taken into account. The fuzzy multiple heuristic ordering method described in
this paper should not be confused with multi-criteria approaches to examination
timetabling, such as those described in Arani and Lotfi [2], Burke et al. [10], Lotfi
and Cerveny [33], and Petrovic and Bykov [36]. In our approach, two heuristic
orderings are simultaneously considered to rank the exams, whereas in [2, 10, 33,
36] they employ multi-criteria approaches to evaluate timetabling solutions and
describe approaches which can handle this.

In the following section, the proposed algorithm and the experiments carried
out are explained in detail. Section 3 describes the results obtained. These results
are discussed and some concluding comments presented in Sections 4 and 5
respectively.

2 Methods

2.1 The Basic Sequential Construction Algorithm

There is a well known analogy between a basic version of the timetabling problem
(no soft constraints) and the graph colouring problem (see [11]). Indeed, some of
the best known timetabling heuristics are based upon graph colouring heuristics
and these can be employed within a basic and simple timetabling algorithm (see
Fig. 1). We consider three different versions of the basic algorithm, which employ
three different heuristic orderings respectively and require the following steps to
assign all exams to a time slot. First, the exams are ordered (most difficult first)
by applying one of the ordering heuristics. The following heuristics are employed
as ordering criteria:

Largest Degree (LD) First. The degree of an exam is simply a count of the
number of other exams which conflict in the sense that students are enrolled
in both exams. This heuristic orders exams in terms of those with the highest
degree first.



Largest Enrollment (LE) First. The number of students enrolled for each
exam is used to order the exams (the highest number of students first).
Least Saturation Degree (SD) First. The number of time slots available is
used to order the exams. The basic motivation is that exams with less time
slots available are more likely to be difficult to be scheduled. The fewer time

slots that are available, the higher up the ordering is the exam.

Then, exams are selected sequentially from the ordering and assigned a valid
time slot that will cause the minimum penalty cost for that exam. If no clash free
time slot is available, the exam is skipped and the process continued with the
next exam. The skipped exams are then revisited and a process for scheduling
the unscheduled exams is carried out (see Fig. 2).

Sort unschedul ed exans using sel ected heuristic ordering;
Insert exans into the last tineslot with | east penalty;
Wil e there exist unschedul ed exam
Perform the process for scheduling the unschedul ed exans;
Sort unschedul ed exans using sel ected heuristic ordering;
End while

Fig. 1. Pseudo code for general framework of sequential construction algorithm

The sequential construction algorithm used here is similar to the approach
applied by Carter et al. [21] with some modification. Basically, there are three
differences between these two algorithms. The first difference is in the initial stage
of the algorithm. In our algorithm we apply the heuristic ordering to all exams,
whereas Carter et al.’s algorithm first finds the maximum-clique of examinations
and assigns them to different time slots, and then applies heuristic ordering to
the remaining exams. The second difference is in the selection of a free time slot.
A search is carried out to find the clash free time slot with least penalty cost in
order to assign each exam to a time slot. In our algorithm, if several time slots
are available, then the last available time slot in the list will be selected. (It was
found that the choice of assigning exams to the last available time slot or the
first available time slot did not make much difference, as the main purpose of
this was simply to spread out the student’s timetable.) In contrast, Carter et al.
chose the first clash free time slot found in which to assign the exam.

Thirdly, for reshuffling a scheduled exam, we randomly select a time slot from
the list of time slots with the same minimum number of scheduled exams that
needed to be ‘bumped back’, whereas Carter et al. used minimum disruption
cost to break any ties. A detailed overview of the ‘unschedule and reschedule
scheduled exams’ algorithm is shown in Fig. 2.

2.2 The Fuzzy Multiple Heuristic Ordering

In many decision making environments, it is often the case that several factors
are simultaneously taken into account. Often, it is not known which factor(s)



k := nunber of unschedul ed exans;
For u:=11to0 k
Sel ect exanfu];
Find tineslots where exanfu] can be inserted with m ni num nunber of
schedul ed exanms need to be renoved fromthe tinmeslot;
If found nore than one slot with the sane nunber of schedul ed exans
need to be renopved
Select a timeslot randomy fromthe candidate list of slots, ts;

End if
c := nunber of examin timeslot ts, that conflict with exanfu];
For m:=1toc

Sel ect exan{ni;
If found another tineslot with mninmmcost to nove exanfni
Move exanin] to the tineslot;
el se
Bunp back exani{n] to unschedul ed exam i st;
End if
End for
Insert exanfu] to timeslot ts;
Renove exanfu] from unschedul ed examli st;
End for

Fig. 2. Pseudo code for rescheduling the scheduled exams

need to be emphasised more in order to generate a better decision. Somehow
a trade off between the various (potentially conflicting) factors must be made.
The general framework of fuzzy reasoning facilitates the handling of such un-
certainty. A fuzzy set A of a universe of discourse X (the range over which the
variable spans) is characterised by a membership function pa : X — [0, 1] which
associates with each element x of X a number p4(x) in the interval [0, 1], with
wa(zx) representing the grade of membership of x in A. The precise meaning
of the membership grade is not rigidly defined, but is supposed to capture the
‘compatibility’ of an element to the notion of the set.

Fuzzy systems are used for representing and employing knowledge that is
imprecise, uncertain, or unreliable. They usually consist of four main intercon-
nected components: an input fuzzifier, a set of rules, an inference engine, and
an output processor (defuzzifier). Rules which connect input variables to out-
put variables in ‘IF ... THEN ...’ form are used to describe the desired system
response in terms of linguistic variables (words) rather than mathematical for-
mulae. The ‘IF’ part of the rule is referred to as the ‘antecedent’, the ‘THEN’
part is referred to as the ‘consequent’. The number of rules depends on the num-
ber of inputs and outputs, and the desired behaviour of the system. Once the
rules have been established, such a system can be viewed as a non-linear map-
ping from inputs to outputs. It is not appropriate to present a full description
of the functioning of fuzzy systems here; the interested reader is referred to Cox
[24] for a simple treatment or Zimmerman [44] for a more complete treatment.

The fuzzy inference process is illustrated for a three-rule system based on
two input variables, LD and LE. Each of the input and output variables are
associated with three linguistic terms; fuzzy sets corresponding to meanings of
small, medium and high. These membership functions are chosen arbitrarily to
span the universe of discourse of the variable. A rule set connecting the input
variables (LD and LE) to a single output variable, ezamweight, is constructed.



The following three rules are used to illustrate the behaviour of this example
system (note that this is only an illustrative example; the membership functions
and rules used in each actual experiment are described in Section 2.3 below):

Rule 1: IF (LD is small) AND (LE is medium) THEN (ezamweight is small)
Rule 2: IF (LD is medium) AND (LE is medium) THEN (ezamweight is medium)
Rule 3: IF (LD is medium) AND (LE is high) THEN (ezamweight is high)

The first stage is to normalise the input values within the range [0, 1]. The
transformation is as follows:

, (v —minA)

(maxA — minA)

where v is the actual value in the initial range [minA, maxA]. For example, if
v =10 in [0, 20], the normalized value v’ is 0.5 in the new range [0, 1].

Fig. 3 illustrates the inferencing of this system (a Mamdani inference process)
with normalised values for LD and LE of 0.4 and 0.65, respectively. For each rule
in turn, the fuzzy system operates as follows. The input component (‘fuzzifier’)
computes the membership grade for each input variable based on the membership
functions defined. That is, in Rule 1, the membership grade is computed for LD
in the fuzzy set small and for LE in the fuzzy set medium. As shown in the
figure, the determined grades of membership for each input variable are:

,Ufsmall(LD = 04) = 015, and
U’rnedium(LE = 065) =0.6

With these fuzzified values, the inference engine then computes the overall
truth value of the antecedent of the rule (Rule 1) by applying the appropri-
ate fuzzy operators corresponding to any connective(s) (AND or OR). In the
example, the fuzzy AND operator is implemented as a minimum function:

Rule 1 IF (LD is small) AND (LE is medium)

HRulel = Msmall(LD = 04) A Mmedium(LE = 065)
= min(0.15,0.6)
=0.15

Next, the inference engine applies the implication operator to the rule in order
to obtain the fuzzy set to be accumulated in the output variable. In this case,
inferencing is implemented by truncating the output membership function at
the level corresponding to the computed degree of truth of the rule’s antecedent.
The effect of this process can be seen in the consequent part of Rule 1 in which
the membership function for the linguistic term small was truncated at the level
of 0.15. The same processes are applied to the rest of the rules in turn.

Finally, all the truncated output membership functions are aggregated to-
gether to form a single fuzzy subset (labelled as Final Output in Fig. 3) by
taking the maximum across all the consequent sets. A further step (known as
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Fig. 3. A three-rule Mamdani Inference process




‘defuzzification’) is then performed if (as is usual) the final fuzzy output is to
be translated into a crisp output. We applied a common form of this process,
termed ‘centre of gravity defuzzification’ as it is based upon the notion of finding
the centroid of a planar figure, as given by:

(i) - i
zi: p(ws)

In the example of Fig. 3, the output for the fuzzy system (that represents how
difficult the exam is to be scheduled) is 0.48 for the given inputs (i.e an exam
with LD and LE of 0.4 and 0.65, respectively).

All exams in the given problem instance are evaluated using the same fuzzy
system, and the sequential constructive algorithm uses the crisp output of each
exam for ordering all exams. The exam with the biggest crisp value is selected
to be scheduled first, and the process continues until all the exams are scheduled
without violating any of the hard constraints.

2.3 Description of Experiments

A number of experiments were carried out in which progressively more sophis-
ticated fuzzy mechanisms were created to order the exams. In each experiment
this ordering is simply inserted into the basic general algorithm presented in
Fig. 1.

Single Heuristic Ordering In order to provide a comparative test, the al-
gorithm was initially run without implementing fuzzy ordering. That is, in this
approach, the exams in the problem instances were ordered based on a single
heuristic ordering. All the exams were then selected to be scheduled based on
this ordering.

Fixed Fuzzy LD+LE Model Next, a fixed fuzzy model that took into ac-
count multiple heuristic ordering was implemented. Two out of the three ordering
heuristics described in Section 2.1, namely largest degree (LD) and largest en-
rollment (LE) were selected as input variables. The membership functions used
in this experiment are shown in Fig. 4. The choice of these membership functions
was based on ‘trial and error’ to test how the algorithm would work when exams
were ordered with the aid of fuzzy reasoning.

The fuzzy rules used in this experiment are shown in Table 1. For simplicity,
the fuzzy rules are expressed as a linguistic matrix (see [32]). In such a linguistic
matrix, the left-most column and the first row denote the variables involved in
the antecedent part of the rules. The second column contains the linguistic terms
applicable to the input variable shown in the first column; those in the second
row correspond to the input variable shown in the first row. Each entry in the
main body of the matrix denotes the linguistic values of the consequent part
of a rule. For instance, the bottom-right entry in Table 1 is read as “IF LD is



high AND LE is high THEN examuweight is very high”. The same representation
is also used to express the fuzzy rule sets for the experiments explained in the
following sections. Note that, in addition to the three basic terms, the hedge
‘very’ was utilised to create two extra terms for the output variable. The ‘very’
hedge squares the membership grade p(x) at each x of the fuzzy set for the term
to which it is applied. Thus the membership function of the fuzzy set for ‘very
small’ is obtained by squaring the membership function of the fuzzy set ‘small’.

small medium high small medium high
1

05

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 08 1 largest enrollment

largest degree

small medium high

0 02 o4 o6 o8 1
examw eight

Fig. 4. Membership Functions for Fixed Fuzzy LD+LE Model

Table 1. Fuzzy Rule Set for Fixed Fuzzy LD+LE Model

LE VS: very small
S M|H S: small
S|VS|VS| M M: medium
LDM|M H H: high
H{ S |M|VH VH: very high

Tuned Fuzzy LD+LE Model Fuzzy modeling can be thought of as the task
of designing a fuzzy inference system. The selection of important parameters
for the inference system is crucial as the overall system behaviour is highly
dependent on a large number of factors such as how the membership functions
are chosen, the number of rules involved, the fuzzy operator used, and so on.
For the purpose of finding a better fuzzy model, a relatively straight-forward
tuning procedure was implemented in order to investigate whether the initial
choice of fuzzy model was appropriate. This tuning procedure was then applied
to different combinations of multiple ordering heuristics.

As an initial extension to the Fized Fuzzy LD+LE Model, a restricted form
of exhaustive search was used to find the most appropriate shape for the fuzzy



membership functions in the system. There are very many alternatives that may
be used when constructing a fuzzy model. In our implementation, we arbitrarily
restricted the search based on the membership functions as shown in Fig. 5. Tri-
angular shape membership functions were employed to represent small, medium
and high. However, the fuzzy model was then altered by moving the point cp
along the universe of discourse. This single point corresponded to the right edge
for the term small, the centre point for the term medium and the left edge for
the term high. Thus, there was one c¢p parameter for each fuzzy variable (two
inputs and one output).

A search was then carried out to find the best set of ¢p parameters. During
this search, each point cp (for any of the fuzzy variables) can take a value between
0.0 and 1.0 inclusive. Increments of 0.1 were used (i.e. the values 0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) for data sets that have 400 and fewer
exams, and 0.25 increments (i.e. the values 0.0, 0.25, 0.5, 0.75 and 1.0) for data
sets that have more than 400 exams. The effect of varying the point ¢p from 0.0
to 1.0 is shown in Fig. 6.

small medium high

0.5

0 02 04 /P 06 08 1

Fig. 5. The Membership Function for Tuned Fuzzy Model

In this experiment, the combination of LD and LFE heuristics were again
used as the fuzzy input variables. The fuzzy rule set used is shown in Table 2.

Table 2. Fuzzy Rule Set for Tuned Fuzzy LD+LE Model

LE VS: very small
S M| H S: small
S|VS|S| M M: medium
LDM| S M| H H: high
H{M [H|VH VH: very high

Tuned Fuzzy SD+LE Model In this experiment, the same approach as above
was employed, but now the combination of SD and LE were used as the fuzzy
input variables. A new fuzzy rule set was required as the SD heuristic is reversed
compared to the LD and LFE heuristics. The fuzzy rule set is presented in Table 3.
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Fig. 6. Range of Possible Membership Functions

Table 3. Fuzzy Rule Set for Tuned Fuzzy SD+LE Model

SD VS: very small
S (M| H S: small
S|M|S|VS M: medium
LEM| H |[M| S H: high
H{VHH M VH: very high

3 Experimental Results

In this section the results obtained in each experiment are presented. In all
experiments, the basic algorithm of Fig. 1 was employed. The only difference was
the heuristic ordering used. The experiments were carried out with 12 benchmark
data sets made publicly available by Carter et al. Table 4 reproduces the problem
characteristics.

A proximity cost function was used to measure the timetable quality. The
maximum capacity for each time slot was not taken into account. Only feasible
timetables were accepted. The penalty function is taken from Carter et al. [21]. Tt
is motivated by the goal of spreading out each student’s examination schedule. If
two exams scheduled for a particular student are ¢ time slots apart, the weight is
set to wy = 2°7! where t € {1,2,3,4,5}. The weight is multiplied by the number
of students that sit for both of the scheduled exams. The average penalty per
student is calculated by dividing the total penalty by total number of students.
The following formulation was used (adapted from Burke et al. [9]), in which the
goal is to minimize:

N—1 <N
dim1 Zj:i+1 SijWip; —p;|

T 9




Table 4. Examination Timetabling Problem Characteristics

Data Set  Number Number Number of Conflict
of slots of exams students  density

CAR-F-92 32 543 18419 0.14
CAR-S-91 35 682 16925 0.13
EAR-F-83 24 190 1125 0.27
HEC-S-92 18 81 2823 0.42
KFU-S-93 20 461 5349 0.06
LSE-F-91 18 381 2726 0.06
RYE-F-92 23 486 11483 0.08
STA-F-83 13 139 611 0.14
TRE-S-92 23 261 4360 0.18
UTA-S-92 35 622 21266 0.13
UTE-S-92 10 184 2750 0.08
YOR-F-83 21 181 941 0.29

where IV is the number of exams, s;; is the number of students enrolled in
both exam ¢ and j, p; is the time slot where exam ¢ is scheduled, and T is the
total number of students; subject to 1 < |p; — p;| < 5.

The algorithm was developed using java based object oriented programming.
The fuzzy inference engine developed by Sazonov et al. [38] was implemented.
The experiments were run on a PC with a 1.8 GHz Pentium 4 and 256MB of
RAM. In the case of the Single Heuristic Ordering and the Fized Fuzzy LD+LE
Model each instance was run five times. In the other experiments (that involved
tuning the fuzzy model), the aim was to search for the best fuzzy model to
guide the constructive algorithm. In order to reduce the size of the search space,
only the membership functions are tuned, whereas the fuzzy rule set is fixed.
In this tuning process, for problem instances that have 400 and fewer exams,
the algorithm was tested on 1331 (3 variables and 11 options - 113) membership
function combinations. Problem instances that have more than 400 exams were
tested on 125 (3 variables and 5 options - 5%) membership function combinations.
Because of this, each instance was only run twice. For all experiments, only the
best results are selected and presented in Table 5.

For comparison, the best results obtained by Carter et al. [21] when using
various different heuristics to order the exams are shown in column 2 of Table 5.
The results obtained for our three varieties of Single Heuristic Ordering are
presented in columns 3,4 and 5. The results obtained for the Fized Fuzzy LD+LE
Model are shown in column 6. In general, these results are worse than for the
best Single Heuristic Ordering, except for the STA-F-83 data set, where the
fixed fuzzy model obtained the best result. This observation suggested that there
might be promise in the fuzzy approach and prompted us to undertake further
investigations with tuned fuzzy models. The results for the Tuned Fuzzy LD+LE



Table 5. Experimental results for single and fuzzy heuristic orderings

Fixed Tuned Tuned

Data Set Carter Single Heuristic Ordering Fuzzy Fuzzy Fuzzy
et al. [21] LD LE SO LD+LE LD+LE SD+LE

Model Model Model

CAR-F-92 6.2 5.56 5.03 5.50 5.65 4.62 4.56
CAR-S-91 7.1 6.38 5.90 5.91 6.31 5.60 5.29
EAR-F-83 36.4 40.58 45.88 49.10 48.14 38.41 37.02
HEC-S-92 10.8 14.98 14.94 14.27 16.93 12.53 11.78
KFU-S-93 14.0 18.63 16.46 18.60 18.29 16.53 15.81
LSE-F-91 10.5 15.08 14.52 13.46 16.84 12.35 12.09
RYE-F-92 7.3 12.95 11.12 11.60 12.98 11.75 10.38
STA-F-83 161.5 173.09 171.87 178.24 161.21 160.42 160.75
TRE-S-92 9.6 10.98 9.93 10.81 10.36 9.05 8.67
UTA-S-92 3.5 4.48 4.78 3.83 5.16 3.87 3.57
UTE-S-92 25.8 35.19 28.80 33.14 30.54 28.65 28.07
YOR-F-83 41.7 45.60 43.53 45.27 46.41 41.37 39.80

Model are shown in column 7 and those for the Tuned Fuzzy SD+LE Model in
column 8.

The best fuzzy results obtained in Table 5 are highlighted in bold font. The
corresponding membership functions of the fuzzy model which obtained the best
result for each data set are presented in Fig. 7 and Fig. 8. It can be seen that the
membership functions differ in each case — i.e. there is no generic fuzzy model
which suits all the data sets.

4 Discussion

Amongst the three single heuristics, it would appear that LE is the ‘best’ in this
context as it produced the best solution for 8 out of the 12 data sets, compared
to only one for LD (for EAR-F-83) and three for SD (for HEC-S-92, LSE-F-91
and UTA-S-92). It also can be seen that, when compared to Carter et al.’s best
results, our simplified version of their algorithm produced worse results in 10
out of the 12 data sets, but a slightly better timetable was obtained for the
CAR-F-92 and CAR-S-91 cases. The Fized Fuzzy LD+LE Model only achieves
a better result than the best Single Heuristic Ordering in 1 out of the 12 data
sets (STA-F-83). However, the rules and membership functions for this initial
fuzzy model were completely arbitrary, so it may be surprising that it achieved
a best result even once.

It is evident that the Tuned Fuzzy LD+LE Model produced better results
than the Fired Fuzzy LD+LE Model in all cases. Although entirely expected,
this observation was taken as confirmation that the fuzzy system was capturing
meaningful information and that the tuning procedure, although not finding the
truly optimal fuzzy model (in the sense of the globally best set of membership
functions for the given set of rules and other fixed aspects of the fuzzy system),
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Fig. 7. Best fuzzy model for data sets CAR-F-92, CAR-S-91, EAR-F-83, HEC-S-92,
KFU-S-93 and LSE-F-91
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was operating successfully. In comparison with best Single Heuristic Ordering,
the Tuned Fuzzy LD+LE Model obtained better results in all cases except for
the KFU-S-93, RYE-F-92 and UTA-S-92 data sets.

The Tuned Fuzzy SD+LE Model went on to produce better results than the
Tuned Fuzzy LD+LE Model for all cases except the STA-F-83 data set. When
compared to Carter et al.’s original results, the tuned fuzzy models operating on
two heuristics simultaneously (taking the best tuned fuzzy model for each data
set) obtained better results for 5 out of the 12 data sets. These were the CAR-F-
92, CAR-S-91, STA-F-83, TRE-S-92 and YOR-F-83 data sets. Although these
results have since been bettered by many authors (see the discussion of Table 6
below), these have been based on iterative improvement techniques rather than
the constructive approach employed by Carter et al. and ourselves.

Initially, the choice to use a combination of the LD and LE heuristics was
based on the fact that these heuristics are static in the sense that they only have
to be calculated once at the beginning of the ordering process. In contrast, the
SD heuristic must be recalculated after each exam is assigned to a slot. Thus, it
was felt that tuning the fuzzy model based on the LD+LE combination would
be quicker. The choice to use the SD+LE combination in the subsequent model
was based on the observation that the LE heuristic ordering, when used alone,
obtained the minimum penalty cost for 8 out of the 12 data sets while the SD
heuristic ordering obtained the minimum cost for 3 out of 12. Thus it was felt
that these offered the most promising combination of two heuristics.

The design of the fuzzy rule sets was based on three assumptions:

— if LD is High then examweight is High
— if LE is High then examweight is High
— if SD is Small then examweight is High

However, it must be emphasized that the rule sets specified in Tables 1 to 3
are only one possible instance (in the case of each experiment) out of a very
large number of alternatives. Due to the very large number of degrees-of-freedom
in any fuzzy model, it is very rare that the first fuzzy system constructed will
perform at an acceptable level. Usually some form of optimisation or performance
tuning of the system will need to be undertaken. The most significant influences
on performance of a fuzzy system are likely to be the number and location
of the membership functions and the number and form of the rules. In our
implementation, the number and form of the rules are kept fixed in all cases.
Although the fuzzy membership functions were, to a certain extent, tuned to
obtain good performances, there was no attempt in the current work to tune
the rule sets. It is highly likely that, given sufficient time to perform the tuning,
a set of fuzzy rules leading to better performance of the fuzzy models could be
obtained.

In Table 5, we have demonstrated that, in all cases, tuning the fuzzy model
produces better results, as might be expected. This confirms our hypothesis that
simultaneous ranking of multiple heuristic ordering can produce better results.
The fact that the best fuzzy results are all obtained using different fuzzy mem-
bership functions, as shown in Figs. 7 and 8, means that no generic fuzzy model



has been obtained at this stage. Such a generic model would be necessary if the
approach is to be applied quickly and efficiently to novel data sets. The lack
of such a generic fuzzy model may cast doubt regarding the usability and flex-
ibility of this approach. This indicates that care must be taken when applying
fuzzy techniques: it is certainly not the case that just because it is fuzzy it is
necessarily better.

Table 6 shows the performance of our algorithm in comparison with selected
recently published results on Carter et al.’s benchmarks. The best result amongst
the compared techniques for each data set is highlighted in bold font. Collec-
tively, these results have been selected to show the best known results for each
data set. Although our algorithm has not beaten the best known result for any
data set, its performance is broadly competitive with the others in the sense that
it it not the worst in 6 out of the 12 data sets. It is also worth pointing out that
our algorithm produces solutions for all 12 data sets, and that in two of the cases
where ours produces the worst result, at least one of the other papers did not
quote any result. However, it has to be kept in mind that our method is a simple
constructive initial solution, compared to the other methods which are itera-
tive improvement approaches. Although our results are well behind more recent
results, especially those of Caramia et al., interestingly our fuzzy constructive
algorithm can beat Caramia’s results for data sets CAR-F-92, CAR-S-91 and
TRE-S-92.

Table 6. Results Comparison

Our Best Burke and Burke Caramia Casey and Merlot
Data Set Results Newall [7] et al. [9] et al. [19] Thompson [23] et al. [34]
CAR-F-92 4.56 4.10 4.2 6.0 4.4 4.3
CAR-S-91 5.29 4.65 4.8 6.6 5.4 5.1
EAR-F-83 37.02 37.05 35.4 29.3 34.8 35.1
HEC-S-92 11.78 11.54 10.8 9.2 10.8 10.6
KFU-S-93 15.81 13.90 13.7 13.8 14.1 13.5
LSE-F-91 12.09 10.82 10.4 9.6 14.7 11.0
RYE-F-92 10.35 - 8.9 6.8 - 8.4
STA-F-83 160.42 168.73 159.1 158.2 134.9 157.3
TRE-S-92 8.67 8.35 8.3 9.4 8.7 8.4
UTA-S-92 3.57 3.20 3.4 3.5 - 3.5
UTE-S-92 27.78 25.83 25.7 24.4 25.4 25.1
YOR-F-83 40.66 37.28 36.7 36.2 37.5 37.4

Finally, some remarks should be made concerning the time required for our
algorithm. In doing so, it is vital that a distinction must be made between
the time taken to perform the tuning of the fuzzy models and the time taken to
construct a solution once each fuzzy model is fixed. Once the fuzzy model is fixed,
the time taken to construct a solution is no longer (in a practical sense) than
the time taken when using a single heuristic ordering — that is, the additional



time taken for the fuzzy system to perform its ordering is negligible. Indeed,
there is some evidence (which we are investigating further at present) that, once
the fuzzy model is fixed, solutions are constructed more quickly using the fuzzy
ordering. It seems that this may be due to the lack of required backtracking
when the fuzzy ordering is used. However, the time taken in tuning each fuzzy
model is very significant. Of course, if a generic fuzzy model could be found —
that is a single fuzzy model that produces good quality initial solutions for all
data sets (including the 12 benchmark data sets used here and novel data sets)
— then the approach could be widely adopted, with significant impact.

5 Conclusions

As far as the authors are aware, no other published work has described the
exploration of fuzzy methodologies for simultaneously ordering exams in the
construction of examination timetables. In this study, we have investigated a
fuzzy methodology to use multiple heuristic ordering simultaneously. Our eval-
uation indicates that better solutions can be produced by this approach when
compared against each of the heuristics alone. This is the key point of the paper.
Our method does not produce any of the best benchmark results, but we only
used a limited number of heuristics to demonstrate the potential. This paper has
established that there is significant potential in taking this approach further by
adding more heuristics.

We are encouraged by these promising initial results and aim to extend this
work further. Future research avenues may include:

— investigating other combinations of heuristic ordering (using combinations
of three or more heuristics),

— investigating different sets of fuzzy rules and fuzzy membership functions,

— exploring the use of more sophisticated optimization algorithms when tuning
these and other fuzzy models, and

— testing the algorithms on course timetabling problems.
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