

5

PROCEEDING BOOK 3rd International Science Postgraduate Conference 2015

Steering Innovation, Serving Society in Achieving Global Excellence Towards Science and Technology

24-26 FEBRUARY 2015 Synergy . Innovation . Excellence 8100 State S

innovative • entrepreneurial • global

3rd INTERNATIONAL SCIENCE POSTGRADUATE CONFERENCE 2015 (ISPC 2015)

CONFERENCE PROCEEDING

24 – 26 FEBRUARY 2015

UNIVERSITI TEKNOLOGI MALAYSIA

Edited by

Postgraduate Student Society Faculty of Science (PGSSFS)

ISBN: 978-967-0194-51-6

Organised by

Postgraduate Student Society Faculty of Science,

Faculty of Science

In collaboration with

School of Graduate Studies

UNIVERSITI TEKNOLOGI MALAYSIA

Website: www.utm.my/ispc2015/

EDITORIAL BOARD

PROF. DR. WAN AINI WAN IBRAHIM ASSOC. PROF. DR. ZAINAB RAMLI ASSOC. PROF. DR. NOR'AINI ARIS ASSOC. PROF. DR. YUSOF MUNAJAT SITI AFIQAH MOHAMMAD MOHAMAD AFIQ MOHAMED HURI SITI MUNIRAH ABD WAHIB NOR FAZILAH MUHAMAD MUHAMMAD AZRIN BIN AHMAD NOR ATHIRAH MOHD ZIN WONG SZE TING NOR AFIFAH HANIM ZULKEFLI ADNIN AFIFI BINTI NAWI

TABLE OF CONTENTS

CODE	TITLES	PAGES
KO05	Synthesis, Characterization and Antibacterial Activity of Hystatin Derivatives Muhamad Fadzli Abd Razak, Asnuzilawati Asari, Ahmad Sazali Hamzah and Siti Nor Khadijah Addis	1 – 11
KO06	Synthesis, Characterization and Catalytic Application of Lanthanum Modified Mcm-41 in Henry Reaction: Investigation on Temperature Effect <i>Kamelia Karimnezhad</i> , <i>Hamid Kazemi Esfeh and Salasiah Endud</i>	12 – 23
KO08	Comparison Pesticide Residue Levels in The Surface Water of Bertam River in Cameron Highlands, Pahang <i>Siti Humaira Haron, Ismail B. S.</i>	24 – 34
KO14	Adsorption of Copper (II) onto Activated Carbon Prepared From Dessicated Coconut Residue Nurul Izzah Mansor And C.W. Zanariah C.W. Ngah	35 - 45
KO18	Characterization of Getso Kaolin And Evaluation of Its Industrial Potentials Abdu Muhammad Bello, Abdul Rahim Yacob and Kamaluddeen Suleiman Kabo	46 - 55
KO20	Synthesis and Characterization of Eugenol Derivatives Nurul Hazwani Che Abdul Rahim, Asnuzilawati Asari, Noraznawati Ismail, Hasnah Osman and Fatin Nur Ain Abdul Rashid	56 - 65
KO22	Corrosion Inhibition of Crude Extracts of <i>Alpinia Galanga</i> on Mild Steel in Acidic Medium <i>Sunday Osinkolu Ajeigbe, Madzlan Aziz, Farediah Ahmad and Norazah Basar</i>	66 - 75
KO25	Sudanese Modified Clays for Catalytic Heterogeneous Transesterification of Castor Oil Ahmed Mahgoub Saied Mohmedahmed and Abdul Rahim Yacob	76 - 91
KO26	Gelatin-Alginate Coated Cellulose Acetate Membrane for The Extraction of Heavy Metal Ions From Water Samples Eviomitta Rizki Amanda, Mohd Marsin Sanagi, Wan Aini Wan Ibrahim and Yanuardi Raharjo	92 – 101
KO30	Solid Phase Extraction of Organophosphorus Pesticides Using Sorbent Material Based on Sol-Gel Cyanopropyltriethoxysilane Zahra Soutoudehnia Korrani, Wan Aini Wan Ibrahim, Abdolhamid Alizadeh and Mohd Marsin Sanagi	102 - 107
KO33	Natural Radioactivity From Non-Nuclear Power Generation Industries: Regulatory Control of Naturally Occurring Radioactive Material (NORM) for Environmental Sustainability.	108 - 118

J. Suhana M. Rashid and M.H.S. Raja

KO36	Comparison of Different Methods on The Extraction of Moringa Oleifera Leaves Mohd Amzar Mohamed Zahari and Liza Md Salleh	119 – 132
КР03	Preparation and Characterization of Phosphate Glass Potentially as A Controlled Release Glass <i>Siti Hafizah Mohamad and Mohd Al Amin Muhamad Nor</i>	133 – 142
KP06	Limestone as Material to Reduce Sulphate and Arsenic Content in Acid Mine Drainage Anuar Othman, Azli Sulaiman and Shamsul Kamal Sulaiman	143 – 152
KP07	Preparation of Precipitated Calcium Carbonate Using Sorbitol ss Additive Anuar Othman, Nasharuddin Isa and Rohaya Othman	153 – 162
KP08	The Development of Microemulsion System as Sunscreen Based on Melaleuca Cajuputi Extract Muhammad Hanif Sainorudin, Mohd Zul Helmi Rozaini, Habibah Hamzah, Ainatul Azilah Mohamad Saupi, Nurfaezatil Farhana Norazemi, Zalikha Ismail, Jenny Sin Poh Ying and Mohd Hussin Zain	163 – 173
KP09	Phytochemical Constituents and Antioxidant Activity of The Stem Bark of <i>Garcinia Parvifolia</i> Miq <i>Muhammad Aizam Hassan</i> , <i>Norazah Basar and Farediah Ahmad</i>	174 – 180
MO01	One Dimensional Advection Diffusion of River Pollution in Semi Infinite Media. (Problem 1: Fast and Slow Flow) Using Inverse Laplace Transforms <i>Ahmad Zaki Mohamad Amin and Shamsuddin Ahmad</i>	181 – 187
MO06	Classification of Infectious Diseases Via Hybrid K-Means Clustering Technique Dauda Usman and Ismail Bin Mohamad	188– 196
MO07	Improving the Performance of <i>K</i> -Means Cluster Analysis Via Singular Value Decomposition Dauda Usman and Nuraddeen Sayyadi	197 – 207
MO09	Transient Analysis of M/M/1 Queuing Theory: An Overview Tan Yu Ting, Zaitul Marlizawati Zainuddin and Badrisyah Idris	208 - 217
MO10	Procedures for Estimating the Population Total in Unequal Probability Sampling Designs Ibrahim Elabid and Zuhaimy Ismail	218 - 228
MO11	Singular Spectrum Analysis for Forecasting of Malaysian Gold Price Norhafizah Yusof and Ani Shabri	229 - 235

MO13	A Numerical Simulation of Blood Flow Through Arterial Stenosis with Hall Current Effect Nik Nabilah Nik Mohd Naser and Ilyani Abdullah	236 - 247
MO23	Unsteady Flow of a Second Grade Fluid Between Two Oscillating Vertical Aiza Gul, Arshad Khan, Taza Gul, Ilyas Khan, Saeed Islam and Sharidan Shafie	248 - 263
MO30	An Integral Equation for Conformal Mapping of Multiply Connected Regions onto a Circular Region <i>Ummu Tasnim Husin and Ali Hassan Mohamed Murid</i>	264 - 273
MO34	On Some Abelian <i>p</i> -Groups and Their Capability Rosita Zainal, Nor Muhainiah Mohd Ali, Nor Haniza Sarmin and Samad Rashid	274 – 281
MO35	Improved Performance of Mcusum Control Chart with Autocorrelation Abbas Umar Farouk and Ismail Bin Mohamad	282 - 290
MO36	Multivariate Process Variability Monitoring For General Sampling Design Revathi Sagadavan, Maman Abdurachman Djauhari and Ismail Mohamad	291 - 300
MP03	Concentration Profile of Spherical Drops in Rotating Disc Contactor (Rdc) Column Using Finite Difference Method (Fdm) Nurul Nadiya Binti Abu Hassan and Jamalludin Talib	301 - 310
LO02	Strength Properties of Polymer Self-Healing Mortars Ghasan Fahim, Nur Farhayu Binti Ariffin and Mohd Warid Hussin	311 - 319
LO03	Microstructure and Mechanical Properties of Aluminum-Silicon Carbide Composite Fabricated By Powder Metallurgy <i>Mustafa Khaleel Ibrahim and Jamaliah Idris</i>	320 - 326
LO04	Isolation and Identification of Surfactin Producer From Local Isolates Of Bacillus subtilis Nurul 'Awatif Ahmad, Mohd Hafez Mohd Isa and Najeeb Kaid Al-Shorgani	327 - 337
LO05	Optical Remote Sensing and Geographic Information System Approach for Water Quality Modelling in Marsh Zones Hashim Ali Hasab, Anuar Bin Ahmad, Maged Marghny and Abdul Razzak Ziboon	337 - 347
LO07	Photocatalytic Inactivation of Escherichia Coli: Effect Of TiO ₂ Concentration In A Suspended Uv/TiO ₂ Reactor Mojtaba Khani, Nor Aishah Saidina Amin, Seyed Nezamedin Hosseini and Mahshid Heidarrezaei	348 - 354
LO08	Degradation of Dichloroacetic Acid Using Marine Bacteria Mahshid Heidarrezaei, Nor Aishah Saidina Amin, Fahrul Zaman Huyop and Mojtaba Khani	355 - 361

LO19	The Influence of Particle Size Distribution in Urban Environmental Pollution Mahadi Lawan Yakubu, and Zulkifli Yusop	362 - 372
LO20	Environmental Risk Assessment and Management: A Review Adilah Abdul Kadir, Zulkifli Yusop, Noor Bakhiah Baharim, Zainura Zainon Noor and Noor Ai'han Mujar	373 - 382
LO22	Energy Efficient Distillation Columns Sequence for Hydrocarbon Mixtures Fractionation Process Mohamad Firdaus Azizan, Mohd. Faris Mustafa, Norazana Ibrahim, Kamarul Asri Ibrahim and Mohd. Kamaruddin Abd. Hamid	383 - 390
LO23	Controversial Development for Shiraz City, a City in Iran Iraj Karimi, Baba Adams Ndalai And	391 - 400
LO28	Lecturers Instructional on Problems-Based Learning and The Relational with Critical Thinking and Generic Skills Ainun Rafieza Binti Ahmad Tajuddin, Shafarizan Binti Abd Samad and Abd Razak Bin Hashim	401 – 408
LP01	Pembudayaan Teknologi dalam Kalangan Guru Haiza Atmareni Harmenidan and Zolkepeli Haron	409 - 418
LP03	Hybrid Filter-Wrapper Feature Selection Methods for Detecting New Malware Variants Bushra M. Ali, Haitham A. Jamil, Sulaiman M. Nor and Ismahani Ismail	419 – 429
FO05	Assessment Of Natural Radionuclides In Rivers Of Pahang State Malaysia Gabdo H.T, Ramli A.T, Garba N.N, Saleh M.A and Sanusi M.S	430 - 440
FO06	Natural Environmental Radioactivity In The Soil Of Terengganu State, Malaysia Nuraddeen Nasiru Garba, Ahmad Termizi Ramli, Muneer Aziz Saleh, Hamman Tukur Gabdo, Mohd Syazwan Bin Mohd Sanusi and Abubakar Sadiq Aliyu	441 - 450
FO08	A Detecting Unit For A Visible Optical Time Domain Reflectometer Hannis Sazwani Abdul Wahid and Yusof Munajat	451 - 460
FO10	Assessment Of Natural Radionuclides At Kinta River, Malaysia: Relationship Between The Turbidity To Uranium And Thorium Concentrations Siti Syafika Selamat, Ahmad Termizi Ramli, Arien Heryansyah and Muneer Aziz Saleh	461 – 470
FO16	Ground State Energy, Electronic And Chemical Properties Prediction Of Acenes Derivatives For Organic Electronic: A Dft Insight Auwalu Musa, Mohammad Alam Saeed and Amiruddin Bn Shaair	471 - 482

FO21	Silver Nanoparticles Assisted Spectral Features Enhancement Of Samarium-Zinc-Tellurite Glass <i>M.S.Affendy</i> , <i>S.K.Ghoshal</i> , <i>M.R. Sahar and A. Awang</i>	483 - 489
FO22	Optimization Of Thermoluminescence Response Of Copper Doped Zinc Lithium Borate Glass Co-Doped With Na ₂ O <i>A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajeram, H. K. Obayes, A.B.A.</i> <i>Kadir</i>	490 - 500
FO24	Spectral Characteristics Of Antimony-Phosphate Glass Soham Younis, M.R. Sahar and S.K. Ghoshal	501 - 510
FP04	Nanosecond Pulse Generator Using High Speed Comparator Amirul Ridhwan Bin Sazali, Hazri Bin Bakhtiar and Irosly Abdul Rahman	511 - 518
FP05	²²² Rn Concentration In Bottle (Mineral) Water Sold In Abu, Zaria - Nigeria Nuraddeen Nasiru Garba, Nasiru Rabiu, Bala Bello Muhammad Dewu, Sadiq Umar, Aminu Ismaila, Aminu Saidu	519 - 526
FP09	Impact Of Europium Concentration On Thermal And Absorption Features Of Amorphous Tellurite Media Khaidzir Hamzah, Ahmad Farhan Suffian, Sib Krishna Ghoshal	527 - 533

LIMESTONE AS MATERIAL TO REDUCE SULPHATE AND ARSENIC CONTENT IN ACID MINE DRAINAGE

^{1,2}ANUAR OTHMAN, ^{1,2}*AZLI SULAIMAN AND ²SHAMSUL KAMAL SULAIMAN

¹Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Darul Ta'azim, Malaysia ²Mineral Research Centre, Minerals and Geoscience Department Malaysia, 31400 Ipoh, Perak Darul , Malaysia

¹azli@kimia.fs.utm.my, ^{1,2}anuar@jmg.gov.my, ²shamsul@jmg.gov.my

*Corresponding author

Abstract. In this paper, limestone was used to reduce sulphate and arsenic content in acid mine drainage (AMD). The sample of acid mine drainage was collected from tailing tin mine pond located in Perak. The sulphate content in acid mine drainage was analysed before and after treatment with limestone by using DR 2800 spectrophotometer. ICP-OES was used to analyse water sample before and after treatment for arsenic content analysis. pH multi parameter was used to determine pH value, oxidation reduction potential and electrical conductivity (EC) of water sample before and after treatment. Limestone used was collected from a quarry in Simpang Pulai, Ipoh. The size of limestone used was less than 2 mm. The experiment was carried out by using experimental column. After treatment with limestone the result showed that the pH value increased from 2.4 to 6.5, whilst sulphate and arsenic content decreased. The best parameter was 500 g limestone with 75 minutes retention time.

Keywords Limestone; sulphate; arsenic; acid mine drainage; experimental column

Proceeding of 3rdInternational Science Postgraduate Conference 2015 (ISPC2015) © Faculty of Science, Universiti Teknologi Malaysia

1.0 INTRODUCTION

Acid mine drainage (AMD) is caused when sulphide minerals had exposed to oxygen and water [1] and assisted by sulphate oxidising bacteria (SOB). Acid mine drainage can be categorized as low pH and high concentration of toxic elements such as arsenic, copper, cadmium etc. The reaction is shown in equation 1.0:

$$2\operatorname{FeS}_{2(s)} + 7\operatorname{O}_{2(g)} + 2\operatorname{H}_2\operatorname{O}_{(1)} \longrightarrow \operatorname{FeSO}_{4(s)} + 2\operatorname{H}_2\operatorname{SO}_{4(aq)}$$
(1.0)

Limestone rock is a sedimentary deposition of calcium carbonate caused by combination of dissolved calcium ions and carbon dioxide. Limestone deposits cover about 10% on the land surface of earth and can be found around the world [2] especially in Malaysia. Limestone is a versatile material that can be used in many fields such as in construction, agricultural, environmental, and industrial material.

Chemical property of limestone gives pH values in water between 8.0 and 9.0 [2] and is suitable to be used in acid mine drainage treatment despite encrustation by iron and aluminium hydroxides [3]. A major anion, sulphate that present in natural waters and industrial effluents either in acid mine drainage or neutral mine drainage can be adsorbed by limestone because calcium ion on the solid surface can bind anion [4]. Sulphate is only mildly hazardous anion compared to other toxic elements [4] such as arsenic, cadmium, copper etc. However, sulphate can cause laxative effect and can affect the taste of water at concentration above 600 mg/L. Therefore, certain countries especially WHO and Europe countries have set maximum values of sulphate content in mine drainages and industrial effluents around 250 mg/L to 500 mg/L [4]. The reaction between limestone and sulphuric acid is shown in equation 1.1.

$$CaCO_{3(s)} + H_2SO_{4(aq)} \longrightarrow CaSO_{4(s)} + CO_{2(g)} + H_2O_{(l)}$$
(1.1)

Another toxic element that present in acid mine drainage is arsenic. Arsenic is an element with a name derived from the Greek word known *arsenikon* meaning potent [4]. The arsenic presents in an environment with different oxidation states such as As (V), As (III), As (0) and As (-III). Arsenic is very difficult to vanish

and it can only be transformed into insoluble compounds combined with other elements especially iron [5]. Arsenite, As (III) and arsenate, As (V) are the most toxic compounds compared to other arsenic oxidation states and both are the most abundance in water [6].

Other parameters studied besides pH were ORP and EC. Oxidation reduction potential (ORP) is a measure of the water cleanliness and an indicator the level of breakdown contaminants. Acidic water has positive ORP and alkaline water has negative ORP and is an antioxidant. Electrical conductivity (EC) is a measurement to determine the capability of water to pass electrical flow and its related to concentration of ions in water. These conductive ions exist from dissolved salts and non organic materials such as alkalis, sulphides, chlorides and carbonate compounds.

2.0 EXPERIMENTAL

2.1 Materials

The materials used in this study were limestone from quarry in Simpang Pulai, Ipoh and water sample from a tin mine pond tailing in Perak.

2.2 Method

2.2.1 Sampling

50 kg limestone was collected from a quarry in Simpang Pulai, Ipoh. Limestone was dried in a tray before sieving by using 2 mm sieve size. After sieving with 2 mm sieve the size of limestone less than 2 mm was used for acid mine drainage treatment.

Water samples from tailing pond of an active tin mine located in Perak were collected. In situ pH, ORP, EC and temperature values were recorded from this pond. pH values recorded were less than 4. The water samples were kept in 15 L jerry can and another two 2 L bottles samples were preserved in ice box before brought back to laboratory. The pond is a detention reservoir which is the overflow water from retention pond. The water of this pond was pumped from the nearest river and the discharge water from the tin processing plant.

2.2.2 Experimental Column

The experiments were carried out using experimental column as shown in Figure 2.0.

Figure 2.0: Experimental column

10 g glass wool was packed into the column. The limestone with size less than 2 mm and different weights 200 g, 300 g and 500 g were packed into the column one at a time. 500 ml water sampel was poured into the column. The retention times used for every weight of limestone were 15 minutes, 30 minutes, 45 minutes, 60 minutes and 75 minutes. pH, ORP and EC values of water sample before and after treatment were recorded. The experiment was carried out at room temperature. Water sample was analysed before and after treatment to detect sulphate and arsenic.

2.2.3 Instrumentations

ICP-OES (Optima 5300 DV, Perkin Elmer, USA) was used to detect arsenic, Portable spectrophotometer (DR2800, Hach, USA) was used to detect sulphate content in water samples and Portable multi parameter meter (A329, Thermo Scientific, Indonesia).

3.0 **RESULTS AND DISCUSSION**

Table 3.0 shows the values in situ parameters of pH, EC, ORP and temperature in the studied pond. The results showed that the values of pH, EC and ORP were 2.48, 699.2 μ s/cm and 681.8 mV respectively. The pH value 2.4 indicated that the AMD problem occurred in this pond because any pH value around 2 to 4 can be assumed as AMD problem [7].

Table 3.0: In situ reading of pH, EC and ORP.

						U	1 /								
	р	pH EC (μs/cm) ORP (mV)					(mV)	Temperature (°C)							
1	2	3	mean	1	2	3	mean	1	2	3	mean	1	2	3	mean
2.49	2.47	2.48	2.48	2425	2338	2399	2387	699.2	696.9	649.4	681.8	36.1	36.1	36.1	36.1

Table 3.1, Table 3.2 and Table 3.3 show the result of experimental column carried out by using different weights of limestone 200 g, 300 g and 500 g respectively. The size of limestone used in this study was less than 2 mm and

retention times used in this study were 15 minutes, 30 minutes, 45 minutes, 60 minutes and 75 minutes.

Retention	Weight of		Be	fore		After							
Time (min)	Limestone (g)		p	Н			P	Н					
		1	2	3	Mean	1	2	3	Mean				
15	200	2.56	2.56	2.55	2.56	5.94	5.95	5.95	5.95				
30	200	2.58	2.60	2.58	2.59	5.93	5.91	5.91	5.92				
45	200	2.56	2.55	2.54	2.55	6.00	6.01	6.02	6.01				
60	200	2.58	2.59	2.60	2.59	6.08	6.08	6.09	6.08				
75	200	2.57	2.56	2.55	2.56	5.80	5.79	5.81	5.80				

 Table 3.1(a): Reading of pH value

Table 3.1(b): Reading of EC value

Retention	Weight of		Be	fore		After				
Time (min)	Limestone (g)		EC (j	us/cm)			EC (j	us/cm)		
		1	2	3	Mean	1	2	3	Mean	
15	200	2684	2682	2679	2682	2449	2451	2452	2451	
30	200	2707	2708	2709	2708	2456	2457	2456	2456	
45	200	2702	2703	2704	2703	2473	2469	2471	2471	
60	200	2674	2674	2674	2674	2438	2438	2438	2438	
75	200	2689	2688	2688	2688	2433	2433	2444	2433	

Table 3.1(c): Reading of ORP value

Retention	Weight of		Be	fore			At	fter	
Time (min)	Limestone (g)		ORP	(mV)			ORP	'(mV)	
		1	2	3	Mean	1	2	3	Mean
15	200	780.2	779.1	779.2	779.5	455.4	455.3	454.4	455.0
30	200	733.4	732.7	731.9	732.7	343.4	343.2	341.8	342.8
45	200	786.7	785.9	785.2	785.9	483.6	481.5	482.5	482.5
60	200	741.3	742.1	742.2	741.9	359.2	358.7	356.9	358.3
75	200	775.5	774.3	774.0	774.6	418.5	418.3	417.8	418.2

Table 3.2(a): Reading of pH value

Retention	Weight of		Be	fore		After				
Time (min)	Limestone (g)		p	Н			P	Н		
		1	2	3	Mean	1	2	3	Mean	
15	300	2.49	2.50	2.51	2.50	6.12	6.12	6.13	6.12	
30	300	2.46	2.47	2.46	2.46	6.21	6.20	6.22	6.21	
45	300	2.48	2.48	2.48	2.48	5.99	6.00	6.01	6.00	
60	300	2.48	2.49	2.47	2.48	5.87	5.87	5.85	5.86	
75	300	2.48	2.47	2.47	2.47	6.07	6.08	6.09	6.08	

Proceeding of 3rdInternational Science Postgraduate Conference 2015 (ISPC2015) © Faculty of Science, Universiti Teknologi Malaysia

Retention	Weight of		Be	fore					
Time (min)	Limestone (g)		EC (j	us/cm)			EC (j	us/cm)	
		1	2	3	Mean	1	2	3	Mean
15	300	2753	2754	2753	2753	2515	2514	2513	2514
30	300	2760	2762	2763	2762	2532	2533	2535	2533
45	300	2708	2708	2708	2708	2396	2395	2394	2395
60	300	2750	2749	2752	2750	2438	2437	2436	2437
75	300	2751	2749	2748	2749	2463	2462	2463	2463

Table 3.2(b): Reading of EC value

Table 3.2(c): Reading of ORP value

Retention	Weight of		Be	fore		After				
Time (min)	Limestone (g)		ORP	(mV)			ORP	' (mV)		
		1	2	3	Mean	1	2	3	Mean	
15	300	806.0	806.1	806.6	806.2	485.3	484.2	484.1	484.5	
30	300	804.5	805.4	805.9	805.3	477.6	477.5	477.8	477.6	
45	300	805.7	803.3	803.1	804.0	487.9	486.3	479.5	484.6	
60	300	808.9	807.4	806.9	807.7	490.8	489.2	487.9	489.3	
75	300	808.2	809.1	808.8	808.7	470.0	469.9	469.3	469.7	

Table 3.3(a): Reading of pH value

Retention	Weight of		Bet	fore		After				
Time (min)	Limestone (g)		р	Н		рН				
		1	2	3	Mean	1	2	3	Mean	
15	500	2.50	2.49	2.48	2.49	6.46	6.47	6.48	6.47	
30	500	2.50	2.48	2.49	2.49	6.34	6.35	6.35	6.35	
45	500	2.45	2.45	2.46	2.45	6.42	6.41	6.42	6.42	
60	500	2.48	2.47	2.48	2.48	6.35	6.36	6.36	6.36	
75	500	2.47	2.48	2.49	2.48	6.59	6.59	6.58	6.59	

Table 3.3(b): Reading of EC value

Retention	Weight of		Be	fore		After				
Time (min)	Limestone (g)		EC (j	us/cm)		EC (µs/cm)				
		1	2	3	Mean	1	2	3	Mean	
15	500	2788	2789	2794	2790	2495	2495	2495	2495	
30	500	2788	2789	2790	2789	2511	2512	2512	2512	
45	500	2797	2796	2797	2797	2538	2537	2538	2538	
60	500	2782	2781	2782	2782	2544	2545	2546	2545	
75	500	2744	2745	2746	2745	2537	2536	2536	2536	

Proceeding of 3rdInternational Science Postgraduate Conference 2015 (ISPC2015) © Faculty of Science, Universiti Teknologi Malaysia

Retention	Weight of		Be	fore		After					
Time (min)	Limestone (g)		ORP	(mV)		ORP (mV)					
		1	2	3	Mean	1	2	3	Mean		
15	500	810.0	811.5	813.3	811.6	482.3	480.6	480.5	481.1		
30	500	815.6	815.4	815.5	815.5	447.3	446.9	446.0	446.7		
45	500	816.6	817.3	815.7	816.5	470.2	470.3	471.3	470.6		
60	500	810.9	811.1	811.2	811.1	449.9	450.0	451.2	450.4		
75	500	811.9	813.3	812.2	812.5	457.2	456.4	455.6	456.4		

Table 3.3(c): Reading of ORP value

Tables 3.1, 3.2 and 3.3 show that reaction had occurred between water sample and limestone. There were demonstrated by the increase in the pH values and decrease in electric conductivity (EC) and oxidation reduction potential (ORP) The highest pH value achieved after treatment was 6.59 by using 500 g limestone with retention time 75 minutes.

Table 3.4 and Table 3.5 show the result of sulphate content and arsenic content respectively in water sample before and after treatment by using experimental column.

Retention	Weight of		Be	efore		After				
Time	Limestone		Sulpha	te (mg/L)		Sulphate (mg/L)				
(min)	(g)	1	2	3	mean	1	2	3	mean	
15	200	1400	1400	1300	1367	1390	1304	1252	1315	
30	200	1400	1400	1300	1367	1287	1313	1364	1321	
45	200	1400	1400	1300	1367	1322	1397	1273	1331	
60	200	1400	1400	1300	1367	1340	1362	1267	1323	
75	200	1400	1400	1300	1367	1447	1371	1445	1421	
15	300	1400	1400	1300	1367	1240	1383	1358	1327	
30	300	1400	1400	1300	1367	1378	1368	1385	1377	
45	300	1400	1400	1300	1367	1355	1364	1328	1349	
60	300	1400	1400	1300	1367	1352	1332	1351	1345	
75	300	1400	1400	1300	1367	1371	1335	1261	1322	
15	500	1400	1400	1300	1367	800	1400	1200	1133	
30	500	1400	1400	1300	1367	1100	1000	900	1000	
45	500	1400	1400	1300	1367	1000	900	1100	1000	
60	500	1400	1400	1300	1367	1100	1200	1300	1200	
75	500	1400	1400	1300	1367	1385	1378	1355	1373	

 Table 3.4: Sulphate content in water samples before and after treatment

The results from Table 3.4 show that the content of sulphate decreased slightly after treatment with limestone. The use of 500 g limestone seems more effective compared to others especially with retention times of 30 minutes and 45

minutes. The content of sulphate in these retention times had decreased from 1400 mg/L to 1000 mg/L after treatment.

Retention	Weight of		Bef	ore	-	After				
Time	Limestone		Arsenic	(mg/L)		Arsenic (mg/L)				
(min)	(g)	1	2	3	mean	1	2	3	mean	
15	200	2.368	2.405	2.527	2.433	-0.002	0.001	0.000	0.001	
30	200	2.368	2.405	2.527	2.433	0.003	-0.002	0.003	0.003	
45	200	2.368	2.405	2.527	2.433	0.000	0.004	-0.003	0.004	
60	200	2.368	2.405	2.527	2.433	0.002	0.000	-0.001	0.002	
75	200	2.368	2.405	2.527	2.433	0.011	0.005	0.008	0.024	
15	300	2.368	2.405	2.527	2.433	0.006	0.003	0.001	0.003	
30	300	2.368	2.405	2.527	2.433	0.007	0.005	0.006	0.006	
45	300	2.368	2.405	2.527	2.433	0.005	0.009	0.010	0.008	
60	300	2.368	2.405	2.527	2.433	0.007	0.005	0.002	0.005	
75	300	2.368	2.405	2.527	2.433	0.004	0.008	0.003	0.005	
15	500	2.368	2.405	2.527	2.433	0.007	0.006	0.011	0.008	
30	500	2.368	2.405	2.527	2.433	0.008	0.004	0.010	0.007	
45	500	2.368	2.405	2.527	2.433	0.011	0.009	0.010	0.010	
60	500	2.368	2.405	2.527	2.433	0.006	0.008	0.009	0.008	
75	500	2.368	2.405	2.527	2.433	0.010	0.015	0.013	0.013	

Table 3.5: Arsenic content in water samples before and after treatment

Table 3.5 shows that limestone was capable to reduce arsenic content in water sample after treatment in all experiments that had been carried out.

4.0 CONCLUSIONS

The results show that limestone can reduce sulphate content in water sample but the concentrate value is much more than international standard (WHO standard 500 mg/L; Europe standard 250 mg/L). However, limestone can reduce arsenic content in water sample effectively based on the ICP-OES analysis result. Overall result indicated that arsenic content in water sample after treatment had complied with Environmental Quality Act 1974 (Standard A 0.05 mg/L; Standard B 0.10 mg/L). The highest pH value recorded in this experiment after treatment was 6.59.

REFERENCES

- Akcil, A. and Koldas, S. (2006). Acid Mine Drainage (AMD) : causes, treatment and case studies. J. Clean. Prod. 14, 1139-1145.
- [2] Oates, J.A.H. (1998). Lime and Limestone; Chemistry and Technology, Production and Uses. German: Wiley-VCH.
- [3] Cravotta III, C.A. and Trahan, M.K. (1999). Limestone drains to increase pH and remove dissolved metals from acid mine drainage. *Appl. Geochem.* 14, 581-606.
- [4] Silva, A. M., Lima, R.M.F. and Leao, V.A. (2012). Mine water treatment with limestone for sulphate removal. J. Hazardous Mat. 221-222, 45-55.
- [5] Chong, T.S.Y., Chuah, T.G., Robiah, Y. Gregory Koay, F.L. and Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. *Desalination* 217, 139-166.
- [6] Lievremont, D., Bertin, P.N. and Lett, M.C. (2009). Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes. *Bio.* **91**, 1229-1237.
- [7] Pradhan, A. and Deshmukh, J. P. (2008). Utilization of Fly Ash for Treatment of Acid Mine Drainage. J. of Environ. Res. and Devel. 3, 137-142.

ISBN 978-967-0194-51-6