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Abstract. Interface shear strength between concrete layers cast at different times plays an important 
role to provide monolithic behavior of composite concrete. In this paper, a computational modeling 
approach is used to study the concrete-to-concrete bond behavior between two concrete layers cast 
at different times; concrete base and concrete topping. The compressive strength of the concrete 
base is 40 N/mm2, while the concrete topping is 25 N/mm2. Finite Element Analysis (FEA) package 
ABAQUS 6.12 is used to model the bond interaction of concrete-to-concrete layers, which is then 
verified with the experimental test. Four specimens with different types of surface textures are 

- -brushing in transverse direction and projecting steel 
reinforcement crossing the interface. Failure of the bonded interfaces is modeled with cohesive zone 
model (CZM) approach with zero thickness interface element where the governing parameters are 

- eanwhile, the projecting steel surface is 
modeled with Modified Drucker-Prager/Cap-Plasticity Model (CPM) approach with 1 mm 
thickness of interface element. The parameters used in the analysis include interface shear strength, 
fracture energy and elastic shear stiffness for CZM approach. The CPM parameters for modeling 
projecting steel surface are cohesion, interface friction angle, cap eccentricity parameter, initial cap 
yield surface position, flow stress ratio, yield stress at interface. The study shows that the difference 
between the modeled and experimental results is relatively small and therefore shows the capability 
of the finite element analysis to carry out interface analysis. 
Introduction 

In recent years, the use of composite concrete-to-concrete applied to the precast concrete and 
cast-in-place concrete topping has been increased due to ease of application in bridge and building 
constructions. A key part of this structure is by developing the composite action between the 
concrete layers in order for the structure to have monolithic behavior. Therefore, the behavior of 
concrete-to-concrete interfaces plays an important role to provide stiffer and stronger composite 
structure. 

Design expressions of the interface shear strength in both Eurocode 2 [1] and CEB-FIB Model 
Code 2010 [2] considered the following parameters: concrete tensile strength, friction coefficient, 
concrete cohesion, steel reinforcement and normal stress at the interface. CEB-FIB Model Code 
2010 [2] used a roughness parameter on the average roughness, Ra to quantify the strength of 
concrete-to-concrete bond, while Eurocode 2 [1] is based on qualitative assessment. Previous 
researchers [3, 4] proved that friction coefficient and concrete cohesion can be quantified by the 
roughness parameter. Santos et. al. [5] modeled a 2-dimensional specimen with steel crossing the 
interface and identified each of the following parameters: elastic shear stiffness, internal friction 
angle, dilatancy angle, cohesion fracture energy and bond slip relation between steel and concrete.  

The study reported in this paper utilized a 3-dimensional finite element method to analyze 
h- -interface slip 

relationship. The modeling of concrete-to-concrete bond used Cohesive Zone Modeling (CZM) 
- -brushing in 

transverse direction surface textures. The models are determined for the following three parameters: 
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(i) interface shear strength, (ii) elastic shear stiffness and (iii) fracture energy. On the other hand, 
the projecting steel crossing the interface is modeled using a continuum approach of Modified 
Drucker-Prager/Cap Plasticity Model (CPM) with 1 mm thickness of interface element. The 
modeling parameters are determined by cohesion, interface friction angle, cap eccentricity 
parameter, initial cap yield surface position, flow stress ratio, yield stress at interface and stress-
strain steel reinforcement embedded in concrete.   

The CZM approach is a traction-separation based modeling in which suitable for surface textures 
without steel as the bond failure between concrete-to-concrete exhibits brittle behavior with a 
sudden failure. Meanwhile, CPM approach is a continuum based modeling for modeling the 
projecting steel crossing the interface where the interface failure exhibits elastic-plastic behavior. A 
3-dimensional model is used to analyze the interface bond behavior between the concrete layers. 
The models are analyzed without the applied normal stress ( n = 0 N/mm2), which is known as pure 
shear models in this study. 

The aim of this paper is to understand and clarifying the interpretation on the failure mechanism 
of concrete-to-concrete bond using analytical modelling. The results will then be verified with the 

-  
Finite Element Models 

In the following section, small-scale model fo -
such as continuum element, interface element and truss element. 
Specimen Description -
modeled in 3D Stress using FEA package ABAQUS 6.12 as shown in Figure 2. The dimension of 
the specimen is 300  300  100 mm for the concrete base and 300  300  75 mm for the concrete 
topping, which gives a total shear plane area of 90000 mm2. The 3D stress model is chosen because 
it could give an accurate representation of the specimen in the experimental work by including the 
parameters of the interface shear failure. The model is analyzed using displacement control for 
better simulation with the experimental results. 

The FEA modeling properties for interface concrete with and without projecting steel are shown 
in Table 1 and 2. The Modulus of Elasticity for both concrete base and concrete topping are 
assumed according to Eurocode 2 [1]. 3-dimensional solid element of an 8-node linear brick 
(hexahedral), reduced integration and hourglass control, C3D8R for smooth and projecting steel 
surfaces and a 6-node linear triangular prism, C3D6 for indented and wire-brushing in transverse 
direction surfaces are used in the model.  

The interface shear strength is modeled with interface element to connect the two surfaces of the 
concrete layers. A zero-thickness interface element is embedded in the model via shared nodes or 
tie constraints to connect the concrete base and concrete topping [5-9]. The 3-dimensional interface 
element used in the analysis is COH3D8.  

To evaluate the influence of interface shear strength and stiffness on the interface shear failure 
for different surface textures, four sets of interface shear-slip curves from experimental test were 
examined. The variations on the surface geometry depend on the surface textures at the interface. 

-
wire-brushing in transverse way and projecting steel crossing the interface. 

The surface with the projecting steel is modeled to an elastic-plastic behavior. This is based on 
the observation made in the experimental test where there is sufficient ductility behavior at the 
interface. Therefore, the interface is modeled with 1 mm thickness of interface element with 
continuum approach and the projecting steel is modeled as linear truss element that can carry tensile 
and compressive loads.  
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Table 1 FEA modeling properties for interface without the projecting steel 

Item Assumption 
Mode of analysis ABAQUS/Standard 

Surface element type (smooth surface) Hexahedral C3D8R (Continuum 8 node linear brick, reduced integration, hourglass control) Specimen element type (indented and transverse roughened surfaces) C3D6 (Continuum 6 node linear triangular prism) 
Interface element  COH3D8 Constitutive model Cohesive Zone Model (CZM) Modeling steps 3 steps +1 initial 

  
Table 2 FEA modeling properties for interface with the projecting steel 

Item Assumption 
Mode of analysis ABAQUS/Standard Surface element type Hexahedral C3D8R (Continuum 8 node linear brick, reduced integration,hourglass control) Truss element T3D2 (A 2-node linear 3D truss) Interface element COH3D8 Constitutive model Modified Drucker-Prager/Cap Model Modeling steps 3 steps +1 initial   

Material Behavior Table 3 shows the concrete properties used for the concrete base and concrete topping, while the 
steel properties for the projecting steel is shown in Table 4. The average stress-strain curve from 
theoretical of Wang and Hsu steel model [10] for the 6 mm diameter mild steel bar embedded in 
concrete is shown in Figure 2.  

 
Table 3 Concrete properties 

Concrete Properties Value 
Elastic Modulus 35 GPa (Concrete Base)  30GPa (Concrete Topping) Poisson ratio 0.20 (Concrete Topping)  0.17 (Concrete Base) 
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Table 4 Steel R6 properties 
Steel Properties Value 
Elastic Modulus 209 GPa Yield stress 250 MPa 

 

 
Figure 2 Theoretical tensile stress-strain relationships for 6 mm diameter mild steel bar using 

Wang and Hsu [10] model 
Interface Element Behavior Interface element plays an important role to predict the interface shear strength of concrete-to-
concrete bond. In this study, the model comprises two interface failure behaviors, which are brittle-
cracking and ductile. Therefore, two different types of interface behavior are applied using the 
traction-separation approach, which is (i) Cohesive Zone Modeling (CZM), and (ii) Modified 
Drucker-Prager/Cap-Plasticity model (CPM). Both approaches are represented as linear pressure 
dependent where the interface element is modeled with continuum approach. 
Cohesive Zone Modeling (CZM) 

separation law 
is applied as shown in Figure 3 where it is typically characterized by the interface shear strength, N 
and fracture energy, GTC. The area under the traction-separation curve shows the fracture energy, 
GTC. Linear elasticity with damage analysis is available in both ABAQUS/Standard and 
ABAQUS/Explicit. Modeling of damage analysis under the general framework is a) damage 
initiation, b) damage evolution, and c) removal of elements. From the experimental results, the 
critical fracture energy can be extracted using the following expression: 

 
          (1) 
where N is the load (N) and  the displacement (mm). 
 
 
 
 
 
 
Figure 3 Typical traction-separation approaches 
 Since the interface element is zero-thickness, the cohesive section properties thickness, 

is taken as 1. The Elastic Modulus of the traction separation law is interpreted as penalty 
stiffness. The stiffness that relates interface shear strength to displacement is given as: 

 
          (2) 
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Modified Drucker-Prager/Cap Plasticity Model The model is assumed to be isotropic and its yield surface of the modified Drucker-Prager/Cap 
Plasticity model comprises of three parts (see Figure 4), which is (i) Drucker-Prager shear failure 
surface, (ii) elliptical cap, which intersects the mean effective stress axis at a right angle, and (iii) 
smooth transition region between the shear failure surface and the cap. The properties values for 
projecting steel surface are shown in Table 5. 

 
 
 
 
 
 
Figure 4 Yield surfaces of the modified cap model in the p-t plane   
 
Table 5 Cap Plasticity concrete model parameters 

Parameter Value 
Material cohesion, c (MPa) 0.71 

Material angle of friction,  (degree) 41 
Cap eccentricity parameter, R 0.1 

Initial cap yield surface position 0 
Flow stress ratio 1 
Cap hardening Yield stress: 2.06, strain: 0 

 

Results and Discussion The FE model is applied with horizontal load until the two concrete layers slide relative to each 
other. The loading position and model setup are the same to that of the experimental test. For each 
parameter, the main output from the analysis is the horizontal load and interface slip.  

 Four different surface textures with a total of 16 models of the horizontal load interface slip 
-

elements. These experimental curves are used to define the properties of the interface elements in 
the FEA model.  
Stress Distribution -
interface shear failure as shown in Figure 5 and 6. Failure occurred along the interface after both 
concrete layers slide and become separated. The horizontal load-interface slip relationship from the 
FEA for each surface texture is shown in Figure 7 and compared with the experimental test results. 
The differences between the FEA and experimental results are relatively small for each surface 

-
roughened at 0.04%, and (d) projecting steel at 3.74%.  

-cas -
separation behavior at the interface. The CZM approach is suitable for modeling with brittle 
behavior, which is the same case for the concrete-to-concrete bond without the projecting steel. The 
crack initiation point occurs at ultimate horizontal load before the sudden failure at interface which 
breaks apart the concrete layers. 

However, for the surface with projecting steel as shown in Figure 7(d), the FEA model 
relationship exhibits an elastic-plastic behavior. After the transition from elasticity to plasticity, the 
interface behavior is in perfectly plastic behavior. The interface behavior in this model is assumed 

Shear failure, Fs 

Transition 
surface, Ft t (d + pa tan ) 

Cap, Fc  d + pa tan  

R(d + pa tan ) 
pb pa d 

p 
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to be hardening after the failure of the interface bond. This is because the hardening takes place by 
the projecting steel. Therefore, the stress contour in Figure 5(d) is not visible as the projecting steel 
takes the stress after the failure of the interface bond. The visibility of the stress contour at the 
projecting steel is shown in Figure 6. 
 

 
 
 
 
 
 

  (a)         (b)          (c)             (d) 
- -

indented surface, (c) transverse roughened surface, and (d) surface with projecting steel  
 
 
 
 
 
 
 

Figure 6 Projecting steel taking the interface shear stress after the failure of the interface bond 

 
(a)                    (b) 

 
 
 
 

 
 

 
(c)                                  (d) 

Figure 7 Horizontal load- -
indented surface, (c) transverse roughened surface, and (d) surface with projecting steel  

 
Interface Shear Stress Distribution The changes of the interface shear stress distribution along the length of the interface element are 
shown in Figure 8. The interface shear stress distribution is plotted from the node at the middle of 
the interface element. All stress distributions are plotted at ultimate load for each of the surface 
texture.  
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-
of the crack tip in front of the loading point as shown in Figure 8(a). These nodes are at higher 
stress, which causes slipping between the interfaces. After undergone higher stress at the point 
where the crack initiated, the stresses started to decrease in which the crack propagated along the 
interface. As the stress goes beyond in the cohesive region and under the fracture region, sudden 
failure of the interface bond occurred. 

In Figure 8(b), the interface shear stress distribution of the indented surface first increases until it 
reached higher shear stress. Since the surface is irregular, the stress increases and decreases 
alternately. This shows that after the 200 mm length, the stress increases until at the highest point 
for the complete crack propagation at the interface. 

The transverse roughened surface is irregular small since it is roughened by wire-brushing. 
Therefore, the stress increases and decreases alternately as shown in Figure 8(c). This shows that 
after the 285 mm distance, the stress increases at the highest point for the complete crack 
propagation at the interface. At this point, the resistance from the rough surface at the end of crack 
tip causes higher stress in order to break apart the concrete layers. 

For the surface with projecting steel shown in Figure 8(d) the interface shear stress decreases and 
increases in an ascending manner until the 200 mm distance. After this distance, the stresses are 
maintained at the end of crack tip. At this point the stresses are then transferred to the projecting 
steel as the interface bond is broken. 
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Figure 8 Interface shear stress distributions along the -
surface, (b) indented surface, (c) transverse roughened surface, and (d) surface with projecting steel. 
Conclusion 

FEA package using ABAQUS/Standard was used to model and analyze analytically the interface 
shear s -
experimental test. The aim of the study is to understand and clarifying the interpretation on the 
failure mechanism of concrete-to-concrete bond using analytical modeling. The findings from the 
study can be concluded as follows:  

 
a) The concrete-to-concrete bond is modeled using the CZM approach at the interface concrete 

without the projecting steel, while the CPM approach for the interface concrete with the projecting 
steel.  

b) The stress contour of the interface shear failure and interface shear stress distributions at 
ultimate load show are analyzed on different surface textures.  

c) The results of the FEA model and experimental results meet an agreement with less 
percentage differences.  

d) The model and analysis procedure can be used to predict the behavior of composite concrete 
layer cast at different times with and without the projecting steel. 
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Abstract. Aggressor attack using improvised explosive not the only source for blast load. Some 
commercial equipment and daily activities can contribute as well, such as electrical transformers, 
gas pipelines and industrial plants. Normally, reinforced concrete wall is used as the protection. 
Therefore, it is vital to estimate the structure damage. In this paper, the behaviour of cantilevered 
reinforced concrete (RC) wall subjected to blast load is investigated through numerical simulation. 
A three-dimensional solid model, including explosive, air and RC wall is simulated. The wall has a 
cross-sectional dimension of 1829 mm  1219 mm with wall thickness of 152 mm and 305 mm 
thickness of strip footing. It is subjected to 13.61 kg Trinitrotoluene (TNT) explosive at 1.21 m 
standoff distance from the centre. Concrete and steel material model behaviour considers the high 
strain rate effect and dynamic loading. The Arbitrary Langrange Euler (ALE) coupling interface 
between air and solid are applied to simulate the damage mechanism of RC wall. A Comparison 
between experimental data on blast pressure and damage pattern shows a favourable agreement. 
The numerical result shows, the displacement-time history on each side is in a contrary direction. A 
permanent deformation is occurred and, the blast pressure near to the wall base is the highest.  
Introduction 

Study on the structure with the capable of withstanding blast load in the construction industry 
around the world became important since the last decade due to the September 11, 2001 attacks in 
New York.  Besides the terror attacks and other acts of war, accidental explosions due to civilian 
accident and commercial equipment occurring in urban areas or close to facilities such as building 
and protective structures may cause tremendous damage and loss of life. Due to space constraint, 
residential homes, commercial and utilities building are developed just next to traffic access such as 
road, highway and railways in the most major cities. Those mentioned situations are prone to 
dynamic loading due to transformer explosion, vehicle and train accident. As one of the effective 
approaches, barrier walls can be constructed to ensure the safety of civilian. Experimental and 
numerical analysis have demonstrated that a barrier wall can effectively protect nearby building 
from external explosion [1] [3].   

RC is widely used as the principal construction material for urban environment, infrastructure or 
as different types of civilian and military facilities. Generally, plain concrete is known to have a 
relatively high blast resistance compared to other construction material. However, the plain concrete 
of higher strength will lead to a more brittle failure compared to ordinary concrete. Therefore the 
combination of using proper amount of steel reinforcement and the right concrete strength will 
result a ductile concrete, hence limit the structural damage in RC structural element. Series of the 
experimental and numerical have been conducted to investigate the damage due to blast load in 
different scope of works. The investigation lead to the scope for strengthening the strength of 
ordinary reinforced concrete structure with different method such as retrofitted the concrete material 
with steel fiber [4] [7]; replaced the normal strength steel with enamel coated steel [8] or retrofit 
the structure with different material such as aluminium foam [9]. However, in the attention to 
strengthen the reinforced concrete, some of the experimental test show a mixed result or worse than 


