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ABSTRACT 

 

 

 

 

Steel beams restrained at their ends exhibit lower structural performance 

when subjected to thermally induce axial expansion. In this regard, the design of the 

connection plays an utmost essential role in restrained beams in order to dissipate the 

thermal force. Most existing studies on the thermal behaviour of connections have so 

far focused only on conventionally vertical end-plate type. This research describes 

mechanical behaviour of axially restrained steel beams with slant end-plate 

connection under thermal increase and gravity loads (symmetric and non-symmetric). 

The analytical, numerical and experimental approaches were used in this study. The 

analytical method was designed to simplify and simulate the proposed slant end-plate 

connections based on force equilibrium at the connection. The numerical approach 

was employed to expand the analytical simplified models by direct stiffness method 

and 3D finite element computer program (ABAQUS). As a verification, three 

specimens with different sizes and slanting angles were tested in the laboratory as 

well as studied using analytical and finite element models. The results of the 

analytical and numerical approaches as well as experimental tests proved that the 

slant end-plate connection can successfully reduce the extra thermal axial forces 

through small upward sliding at the end of the beam on the inclined end-plates. The 

results demonstrated that the steel beam with slant end-plate connections can reduce 

the thermal axial stress from 80% to 90% in comparison to the vertical end-plate 

connections. For the influence of pattern of loading it was concluded that the axial 

load-bearing of a steel beam under symmetric gravity load is higher than similar case 

under non-symmetric load at room temperature but, these values are the same at 

elevated temperature conditions. Based on the good agreement between theoretical 

and experimental methods, a series of design curves were developed as a safe-

practical range for the slant end-plate connections which depends on the geometrical 

and mechanical conditions of the connection.  
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ABSTRAK 

 

 

 

 

Rasuk keluli yang dihalang pada hujungnya mempamerkan prestasi struktur 

yang lebih rendah apabila dikenakan kenaikan haba menyebabkan pengembangan 

paksi. Dalam hal ini, reka bentuk sambungan memainkan peranan penting dalam 

rasuk dihalang di dalam menyerap daya disebabkan kenaikan suhu. Kebanyakan 

kajian ke atas kelakunan sambungan setakat ini hanya memberi tumpuan kepada plat 

hujung jenis tegak. Kajian ini menerangkan kelakunan mekanikal rasuk keluli 

dihalang paksi dengan sambungan plat hujung jenis condong dibawah kenaikan suhu 

dan beban graviti (simetri dan tidak simetri). Pendekatan analisis telah direkabentuk 

untuk memudahkan dan membuat simulasi keatas cadangan plat hujung condong 

berasaskan konsep keseimbangon daya pada sambungan. Pendekatan kaedah 

berangka telah digunakan untuk mengembangkan model analisis mudah dengan 

kaedah kekukuhan terus dan unsur terhingga 3D didalam program komputer 

(ABAQUS). Sebagai pengesahan tiga spesimen yang berbeza dari segi skala dan 

sudut condong telah diuji didalam makmal serta dikaji menggunakan analisis dan 

kaedah unsur terhingga. Keputusan dari kaedah analisis berangka serta ujikaji 

membuktikan bahawa sambungan plat hujung condong berjaya mengurangkan daya 

paksi disebabkan haba melalui gelongsor hujung rasuk pada plat hujung condong 

tersebut. Keputusan yang diperolehi menunjukkan bahawa rasuk keluli dengan 

sambungan plat hujung condong boleh mengurangkan daya paksi haba dari 80% 

hingga 90% jika dibandingkan dengan sambungan plat hujung tegak. Untuk kesan 

corak pembebanan, dapat disimpulkan bahawa daya paksi bagi rasuk keluli di bawah 

beban graviti simetri adalah lebih tinggi berbanding dengan beban tidak simetri pada 

suhu bilik tetapi bernilai sama pada keadaan suhu tinggi. Berdarsarkan kepada 

perbandingan yang baik diantara teori dan ujikaji, satu siri keluk reka bentuk telah 

dihasilkan yang memberikan julat selamat yang praktikal untuk sambungan plat 

hujung condong yang bergantung kepada keadaan geometri dan mekanikal 

sambungan itu.   
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CHAPTER 1 

INTRODUCTION 

1.1 General 

1.1.1 Overview of thermal effect hazard 

Thermal effects can be one of the most harmful conditions that any steel 

structures should expect throughout its service life. If not correctly considered, it 

may result in destruction of the structures, followed by of repair cost and even injury 

or deaths. With the developing large cities and limitation in occupied field by 

buildings, it is inevitable to grow up structures to height. Therefore the risk of 

thermal effects hazard becomes higher. During a fire in a steel structure, temperature 

increase. It can induce a huge thermal axial force in the structural members before 

primary material melting. This phenomenon is the main cause of fast structural 

collapse during fire. For many years the ability of highly redundant steel framed 

structures to resist the effects of increase in temperature has been undervalued and 

largely misunderstood. This was first realized when, after a number of real fires in 

multi-storey composite steel structures structural failure did not occur. Before 1990, 

research on the thermal resistance of steel structures was mainly focused on isolated 

members, such as girders, columns and floor slabs, etc. In 1990, a fire occurred in a 

partly completed 14-storey office block at the Broadgate development in London 

(Engineering, 1991). From the investigation after the fire attack, it was found that the 

behaviour of the beams was strongly influenced by restraint provided by the 

surrounding structural components. 
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The most remarkable specified weakness of steel structures is reduction in its 

compressive strength during temperature increase. It is well established that the 

thermal behaviour has a key influence on steel structural behaviours. The search for 

an economical resistance method to improve the performance of steel structures due 

to elevated temperature remains a challenging task that captures the interest of 

structural engineers. Study on steel structures with confining of axial expansion in 

fixed beams has been quite intensive in the past decade. Commonly employed 

existing engineering solutions to address temperature related concerns are in the 

forms of increasing section area, provision of lateral supports (Usmani et al., 2001), 

cooling action by air-conditioning and watering (Bailey et al., 1996), and thermal 

break (Larson and Van Geem, 1987).  

1.1.2 Overview of conventional vertical end-plate connections in steel structures 

Steel connections play key role in structural behaviour of a steel structure.  

They provide strong links between the other principal structural components. These 

connections enable members to work together to guarantee building stability. End-

plates are categorized as ‘semi-rigid’ connections with the end-plate welded to the 

beam web. End-plate connections are generally used in the construction of multi-

storey steel structures because of simplicity in fabrication and assembling and speed 

of installation. Figure 1.1 shows the typical conventional (vertical) end-plate 

connections. The end-plate, which may be partial depth or full depth, is welded to the 

supported beam in the workshop. The beam is then bolted to the supporting beam or 

column on site. In this kind of connection, beam members need to be fabricated 

within tight limits. End plates are the most popular of the beam connections at 

present in use in the world. They can be utilized with slanted beams and be able to 

tolerate moderate offsets in beam to column joints. 
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Figure 1.1 Conventional (vertical) bolted end-plate connection (Dessouki et al., 

2013) 

1.1.3 Overview of thermal behaviour of vertical and proposed (slant end-plate) 

connections 

A steel beam with axially restrained supports tends to have an thermal 

expansion when it is subjected to temperature increase. Therefore, if the restraints 

resist against this expansion, the end-supports’ reactions will apply extra axial forces 

in the beam. Figure 1.2 shows the thermal behaviour of conventional end-plate 

connections at room and elevated temperatures conditions based on the end-supports’ 

reactions. As shown in Figure 1.2, after an increase in temperature, the steel beam 

tends to buckle due to increase in axial force (Pcr), because vertical end-plate 

connections resist against thermal expansion. The stages of thermal behaviour of the 

axially restrained steel beam with vertical end-plate connections are : a) beam 

connections before increase in temperature, b) beam connection after increase in 

temperature (contact two plates together) and c) beam connection after increase in 

temperature (buckling or yielding and decrease Young’s modules).  

On the other hand, when it is used proposed slant end-plate connections 

(Figure 1.3) instead of conventional connections the generated thermal axial force is 

reduced. After an increase in temperature, the supports reactions apply axial force to 

the beam through member expansion. The slant surfaces allow the beam to dissipate 

the generated axial force and expansion by linear crawling on the slant surface. Most 

of the times, the elongation of members in elastic range of material is very small 
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although, the induced axial force is significantly large. However, the slant end-plate 

connection can reduce this huge axial force.  

It is noted that in the conventional end-plate connections, bolts with standard 

or oversize holes are generally used. In the proposed slant end-plate connections, it 

has been considered oval (slot) shape holes instead of circular to lubricate sliding 

movement. However, the magnitude of thermal expansion in a steel beam usually is 

too small and this elongation is measured a half of the overall expansion at each 

support. Hence, if we use oversized circular holes according to the standard (AISC, 

2013), the clearance between bolt and oversized hole is greater than the sliding 

displacements. Figure 1.4 shows the oval holes that used in the present study for 

various slant end-plate connections.  

The stages of thermal behaviour of the axially restrained steel beam with 

slant end-plate connections are: a) beam behaviour before increase in temperature, b) 

beam behaviour after increase in temperature (two plates are in contact), c) beam 

behaviour after increase in temperature (two plates contact together and in 

movement) and d) beam behaviour after increase in temperature (buckling or 

yielding and decrease in Young’s modulus).  
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∆T=0 

(a) 

(b) 

(c) 
 

Figure 1.2 Beam with vertical bolted end-plate connection subjected to temperature 

increase. a) Stage1, b) Stage2 and c) Stage3 

Although there is a clearance gap at the bolt hole in vertical end-plate 

connections, it is unable to absorb the expansion of two ends of the beam in 

horizontal direction. This is because the direction of expansion is perpendicular to 

the direction of moving surface. In the slant end-plate connection, there is a slanting 

tolerance between the surfaces such that it can absorb the expansion of two ends of 

the beam using crawling mechanism over the slanting faces, because the direction of 

horizontal expansion can be projected to the slanting plane of connection. 
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∆T=0 

(a) 

(b) 

(c) 

(d) 

Figure 1.3 Beam with slant bolted end-plate connection subjected to temperature 

increase. a) Stage 1 , b) Stage 2, c) Stage 3 and d) Stage 4 

 

 

 

Oval (slot) hole 

Clearance gap 

Clearance gap 

Bolt 

Slant end-plate 

 

Figure 1.4 Oval (slot) holes detail in a slant end-plate connection 
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1.2 Background of Problem  

In the presence of a real thermal effects on steel structures and an 

experimental study on the main members due to temperature increase (Bradford, 

2006; Heidarpour and Bradford, 2009), it was found that the axial thermal failure 

behaviour of members occurs in two principal steps: elastic and inelastic. In many 

cases, the first step is due to the initiation of failure that passes the tangential elastic 

modulus (Figure 1.5). Mourão and E Silva (2007) found that the expansion of beams 

due to uniform heating is one of the primary causes of elastic failure. Wong (2005) 

explored the influence of this expansion by investigating the axially restrained beams 

under elevated temperature by an analytical method. This analytical study showed 

that supports’ reaction and failure of a beam when subjected to temperature increase 

almost depends on the section area, boundary conditions, span, properties of 

material, and the amount of elevated temperature.   

 

 
Figure 1.5 Axially restrained beam subjected to elevated temperature (Armer and 

Moore, 1994) 

Thermal expansions of the materials are a vital behaviour that should be 

considered through the analysis of the heated beam. The steel beam is a structural 

member that is expected to carry gravity loads. For the beam which is completely or 

partially restrained axially, the expansion due to elevated temperature can cause a 
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huge axial force, because it is restrained from elongation (∆L) due to thermal 

increase. This force can be a demerit for the structural performance. The axial force 

(Pt) in a restrained heated beam with length L is given by Equation 1 to Equation 3:  

 
PL

ΔL                        1
AE

                                                                                
 
 
   

ΔL      L ΔT           (2)                                                                                        

t
P    A E ΔT         (3)                                                                                        

 

where ΔT is the elevated temperature, A is cross section area, E is Young’s 

modulus and α is coefficient of thermal expansion. From Equations 1 and 2, the axial 

load due to increase in temperature can be obtained as given in Equation 3. From 

Equation 3, a heated steel beam with a fully axially restrained supports must have 

enough strength against the additional axial force. In designing a non heated beam, 

increase in the section area has direct influence on the amount of member’s strength. 

However, in a heated beam, increase in the section area only, cannot increase 

strength of beam (i.e. beam member) against the axial load. In such condition, axial 

force should satisfy by two equations where the first equation presents the stress in 

pure axial load and the second equation shows the axial load due to elevated 

temperature (Equation 3). Hence increase in section area has direct relation with 

strength of the steel beam. However it is just inversely for decreasing of thermal 

axial force (by increasing of section area, the thermal axial force will increase).   

In thermal conditions and after increase in temperature, the thermal behaviour 

of members’ connections can play vital role in failure or vice versa save a steel 

structure. So far the various steel connections subjected to elevated temperature were 

studied by many researchers. Simões da Silva et al. (2001) could find an analytical 

solution for behaviour of steel connection at elevated temperature. Heidarpour and 

Bradford (2009) improved this study by new 2-D analytical simulation. Saedi Daryan 

and Bahrampoor (2009) and Qian et al. (2008) validated the theoretical behaviour of 

steel connections by experimental method. Most of the times, finite element methods 

can cover various cases of studies in comparison to experimental method. Yang and 



9 

 

Tan (2012) and Díaz et al. (2011b) simulated various steel connections when they are 

in thermal effects by numerically method. 

The results of these studies show that, detail of connections can play an 

important role in carrying or damping thermal expansion of an axially restrained 

beam in steel structures. The use of a simplified model for a connection that is 

described using all effective components has attracted researchers to simulate with 

maximum efficiency the complicated thermal behaviour of joints. Thus far, most of 

the researches have focused on the strength and stiffness of moment connections 

within the elastic regime. Although extensive works have been carried out on the 

thermal behaviour of steel structures, limited information on the behaviour of slant 

end-plate connections has been revealed.  

1.3 Problem statement 

A beam with any type of supports tends to expand when subjected to 

temperature increase. Therefore when the supports do not allow the beam to have 

enough elongation, the supports' reaction will induce extra axial force in the beam. In 

designing steel structures, engineers have to think about ways against thermal effects. 

Nowadays, the following engineering solutions are common: increasing section area, 

provision of lateral supports, cooling system by air-conditioning and water, system 

covering by concrete or isolation and thermal break. These methods are however 

expensive and uneconomical. In some situations, especially under strong thermal 

effect due to increase in temperature, these effects can cause the structural damage or 

even collapse of structure. For the structures that have damping methods the 

likelihood of damage will be decreased. However, for structures subjected to thermal 

effects, the natural damping in the structure is not sufficient to decrease the structural 

response but by damping behaviour of some members such as beams and 

connections can control and dissipate elongation energy by friction and movement. 
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From the discussion in problem background, it can be summarised that, many 

elements should have enough strength against additional axial forces that often 

induced by elevated temperature. In normal case study on the beam-columns 

(without thermal effects), based on the basic stress equation, it can be estimated the 

optimum requirement of section area for designing against axial load. However in 

thermal case study on the beam-columns, from investigation of relation between 

axial load and elevated temperature, it is not linear estimation to find optimum 

section. For example, increasing the section area could not just increase the strength 

of beam-column against axial load due to increase in temperature, because relations 

should conform to both, static load stress equation and thermal stress equation. 

Although extensive works have been carried out on the thermal behaviour of steel 

structures, limited information on the behaviour of inclined end-plate connections 

has been revealed. In conjunction, there exists no research on the behaviour of slant 

end-plate connections subjected to elevated temperature. 

The results of this research will be useful for safety considerations on the 

thermal resistance system in steel structures. Therefore three main questions need to 

be answered from outcomes as follows:  

i) How to reduce the induced thermal axial force by use of a proposed 

connection (slant end-plate connection) in comparison with conventional 

connections?  

ii) How to protect an axially restrained steel beam from yielding due to 

elevated temperature under various gravity loads?  

iii) How to predict the thermal behaviour of an axially restrained steel beam 

with slant end-plate connections based on the equilibrium equations and virtual 

simulations? 

Although the number of economical structural solutions for a thermal 

resistance system are limited in building industry, it is believed that in future, finding 
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a thermal damping system  have good potential to reduce manufacturing cost of steel 

structures against thermal hazard.  

1.4 Objectives of study 

The purpose of this study is to investigate the performance of vertical and 

slant bolted end-plate connections subjected to temperature increase by experimental 

study on the behaviour of these connections in various cases study to compare and 

verify analytical and numerical methods. The objectives of study are:  

i) To determine the thermal performance of steel beams with slant end-plate 

connections under symmetric and non-symmetric gravity load by analytical method. 

ii) To determine thermal performance of steel beams with slant end-plate 

connections under symmetric and non-symmetric gravity load by numerical methods. 

ii) To validate the obtained results from analytical and numerical models by 

experimental method. 

1-5 Scope and range of study 

This study focuses on the behaviour of the axially restrained steel beams 

under various boundary conditions. The boundary conditions consist of gravity loads, 

temperature, various supports and connection’s bolts. The scopes of study for each 

case are:  

i) Temperature: in the thermal conditions the temperature is considered 

symmetric-uniform and the value of elevated temperature is limited from 0 °C to 100 

°C (elastic range of steel material). 
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ii) Gravity loads: two types of gravity loads are considered in this study first, 

symmetric gravity load and second, non-symmetric gravity load. The values of 

gravity loads in all illustrations and tests are considered based on the allowable range 

of elastic deflection and Euler Bernoulli beam theory. Therefore, it was ignored from 

large deflection in the beams.    

iii) Bolts: in this research the effects of two types of bolts on the performance 

of proposed connection is investigated first, normal bolt and second, friction bolt. 

iv) Clearance of holes in connection: according to primary assumptions the 

end-plates’ holes at connections are considered slot and oversize for free sliding on 

inclined plane. 

v) Study methods: in this thesis three methods are used to verify primary 

assumption. First, analytical and finite element approaches are employed to simulate 

and analyse the performance of proposed connection for various cases and boundary 

conditions. Second, by the use of obtained results from experimental tests, the 

determined outcomes from analytical and numerical analysis are validated. 

1.6 Significance of Study  

The most important benefits of this research that would be gained from the 

results of study include the following:  

i) Slant end-plate connection is a type of connection in steel moment frame 

structures that with compare as conventional (vertical) types of ones, it has enough 

ability to dissipate high axial force when a steel beam is subjected to increase in 

temperature. This ability can protect steel beams and also structures against primary 

failure in elastic field.  
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ii) A series of design curves that concluded from obtained results can employ 

as an application output for designing steel beams with slant end-plate connections in 

a safe-practical range. 

iii) Thermal resistance connection (slant end-plate) can reduce the size of 

beams’ section and also weight of structure to decrease total construction costing 

with thermal safety when a steel moment frame structure must be design against 

thermal effects. 

These advantages can be obtained just with changing connections' detail by 

using slant end-plate connection replacing that of vertical. In this study it is shown 

how this induced high thermal axial force can be damped by friction sliding and 

movement on the slope surface of end-plate. It will be obtained the optimum design 

that has enough ability to absorb the huge axial force induced due to temperature 

increase before any yielding can occur in the beam.  

1.7. Thesis Organization 

This thesis contains eight chapters which are arranged according to the 

sequence of the main objectives and illustrative of the study. A brief description on 

the structure of chapters is provided following: 

In chapter 1, it is described a brief background of influence of elevated 

temperature on steel structures, a reviewing of famous equations of thermal stress on 

members, definition of vertical and slant end-plate connection in frame and finally 

main hypotheses of thermal crawling damping behaviour of connections. The end of 

this chapter includes objective and scope of study and significance of research.   

In chapter 2, it is tried to find similar studies about influence of elevated 

temperature on members of a steel structure and also several methods of study and 

modelling of connections and latest solutions for thermal and fire resistance systems. 
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In chapter 3, it is focused on the research methodology and at first it is 

described about analytical and numerical methods with concentrate on equations and 

results before any experimental test because it seems to be necessary to estimate 

experimental results before real test to provide requirement measurement 

instruments.   

In chapters 4 to 6 it is described about three methods with three separate 

categories. In these three chapters, it is tried to mention details of deriving equations 

and solve an illustration in analytical methods next used finite element model for 

numerical method and finally make experimental sample like as illustration model of 

two previous methods.  

In chapter 7, it will be focused on comparison of three methods and verifying 

results by experimentally methods. In the end of this chapter will be mentioned to 

advantages and disadvantages of vertical and slant end-plate connections according 

to previous chapters and comparison.   

Finally, chapter 8 will be concluded the outcome of this study and highlights 

areas where further research can be carried out.  
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