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ABSTRACT 

 

 

 

 

 Direct utilization of oil palm trunk (OPT) without chemical pretreatment for 

cellulases and xylanase production under solid state fermentation (SSF) was 

conducted in batch culture. A total of 12 fungal strains from Biorefinery Laboratory 

collections and 5 strains isolated from wooden board were able to secrete cellulases 

and xylanase based on the clear zones formed on selective agar plates. Aspergillus 

fumigatus SK1 showed significant enzymes productivities with the xylanase activity 

of 648.448 U g
-1

, CMCase of 48.006, FPase of 6.860, β-glucosidase of 16.328 U g
-1

 

and lignin peroxidase of 4.820 U g
-1

, respectively. Secretion of cellulases and 

xylanase by Aspergillus fumigatus SK1 was further confirmed by zymographic 

analysis. The crude cellulases-xylanase cocktail was highly stable at temperature 

lower than 40°C. The optimum temperature for FPase was 60°C and 70°C for 

CMCase, β-glucosidase, and xylanase. Statistical optimization of cellulases and 

xylanase production was carried out involving General Factorial Design (GFD), 2-

Level-Factorial Design (2LFD), and Central Composite Design (CCD). The GFD 

optimization demonstrated significant improvement of cellulases and xylanase 

production in medium supplemented with ammonium sulphate. The significant 

factors for xylanase production were incubation time and temperature, inoculum size, 

and ammonium sulphate concentration. These factors were optimized through CCD 

which produced approximately 4.28 fold higher xylanase activity (1792.43 U/g) 

compared to that before optimization. The enzymes cocktail produced from SSF was 

successfully applied in saccharification of chemical untreated OPT, producing a 

hydrolysate containing a maximum of 15.06 g/L reducing sugars after 24 hours 

incubation at 40ºC. Alcoholic fermentation of the hydrolysate by Candida tropicalis 

RETL-Crl and Saccharomyces cerevisiae were resulted in release of 3.067 g/L and 

3.151 g/L of ethanol, respectively. The higher ethanol productivity (0.263 g/L/h), 

Yp/s (0.476 g/g) and specific ethanol productivity (0.0947 g/L/h/g of biomass) of 

Saccharomyces cerevisiae showed a great potential to be used in ethanol 

fermentation process. 
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ABSTRAK 

 

 

 

 

Pengunaan batang kelapa sawit (OPT) secara terus tanpa prarawatan kimia 

untuk penghasilan sellulase dan xilanase melalui penapaian keadaan pepejal (SSF) 

telah dijalankan dalam kultur kelompok. Sebanyak 12 strain kulat daripada koleksi 

Makmal Biorefinery dan 5 strain kulat dipencilkan daripada papan kayu telah 

merembeskan sellulase dan xilanase berdasarkan kepada zon yang jelas atas plat-plat 

agar selektif. Aspergillus fumigatus SK1 telah menunjukkan produktiviti enzim 

signifikan dengan aktiviti xylanase 648.448 U g
-1

, CMCase 48.006, FPase 6.860, β-

glucosidase 16.328 U g
-1

 dan lignin peroksida 4.820 U/g. Rembesan sellulase dan 

xilanase oleh Aspergillus fumigatus SK1 juga telah disahkan oleh analisis secara 

zymographic. Koktel mentah sellulase-xilanase adalah sangat stabil pada suhu yang 

kurang daripada 40°C.  Suhu optimum untuk FPase adalah 60°C dan 70°C untuk 

CMCase, β-glucosidase, dan xilanase. Pengoptimuman statistik penghasilan enzim 

sellulase and xilanase terlibatkan General Factorial Design (GFD), 2-Level-

Factorial Design (2LFD), dan Central Composite Design (CCD) telah dijalankan. 

Pengoptimuman GFD menunjukan peningkatan yang ketara untuk sellulase dan 

xilanase dalam medium yang telah ditambahkan dengan ammonium sulfat. Faktor-

faktor signifikan adalah masa pengeraman dan suhu, saiz inokulum, dan kepekatan 

ammonium sulfat. Faktor-faktor ini telah dioptimumkan melalui CCD untuk 

menghasilkan aktiviti xilanase yang lebih kurang 4.28 ganda (1792.43 U/g) lebih 

tinggi daripada keadaan sebelum pengoptimuman. Koktel enzim yang dihasilkan 

melalui SSF telah berjaya digunakan untuk sakarifikasi OPT tanpa rawatan untuk 

menghasilkan hidrolisat yang mengandungi 15.06 g/L gula penurun selepas dieram 

pada 40ºC sebanyak 24 jam. Penggunaan hidrolisat tertentu untuk fermentasi alkohol 

telah dijalankan oleh Candida tropicalis RETL-Crl dan Saccharomyces cerevisiae 

dan menghasilkan sebanyak 3.067 g/L dan 3.1515 g/L etanol. Produktiviti etanol 

(0.263 g/L/h), Yp/s (0.476 g/g) dan produktiviti etanol tertentu (0.0947 g/L/h/g 

biojisim) yang tinggi telah diperolehi daripada Saccharomyces cerevisiae dan ini 

menunjukkan potensinya untuk digunakan untuk fermentasi etanol. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Problems 

 

 

Malaysia is one of the largest palm oil producer in the world with 18.2 

million tons of palm oil production in year 2011/2012 (Michael, 2012). In the year 

2012, an estimation of 4.56 million hectare land were planted with palm oil trees 

(Michael, 2012). Normally, after 25 to 30 years, the palm oil trees will be cleared off 

and replanted with new trees due to decreased yield. It is estimated that the 

replanting process for each hectare of oil palm trees produces about 66 tonnes of 

palm trunks and 14.4 tonnes of fronds (Lim, 1986). Therefore, according to some 

research, the replanting process can generate million tonnes of oil palm biomass 

including trunks, fronds, and empty fruit bunches (EFB) annually.  

 

 

Within these few decades, environmental issues and pollutions caused by 

agriculture wastes have gained public concerns, which in turn have boosted more 

researches on technologies that promote the reuse of these wastes as alternative 

materials for commodities production, particularly for chemical, energy and food 

applications. Most of these commodities are in fact more economical since they 

require less production energy (Nigam and Pandey, 2009). Due to these reasons, 

these readily available renewable and free resources have the potential to be 

transformed into value-added products such as biofuels, biochemical, biopesticides, 

biopulp, biobleach, biopromoters, and biofertilizer (Nigam and Pandey, 2009). 

Furthermore, the enforcement of zero burning and strict pollutants diminishing 

policies is forcing the industries to mitigate the disposal of these biomasses.  
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Oil palm trunk is a lignocellulose containing waste that is rich in cellulose, 

hemicellulose, and lignin. The cellulose and hemicellulose are known as reservoir of 

fermenting sugars due to their structures, remarked as polymers fractions of sugars. 

Degradation of this complex biomass into monomeric sugars requires a complete 

multiple hydrolytic enzyme cocktail including cellulases, hemicellulases, and 

ligninase to act synergistically. Yet, this degradation process can be prevented or 

limited in natural circumstances due to the existence of robust lignin layers, highly 

recalcitrant crystalline cellulose, and strong bonding in hemicellulose.  

 

 

To increase the accessibility of the fibres to enzyme action, some previous 

works suggested chemical pre-treatment using acid, alkaline or solvents. However, 

these harsh treatments can cause the losses of some valuable sources such as sugars 

from hemicellulose and cellulose, and the lignin can be degraded into other by-

products such as furfural, 5-hydroxymethyl-2 furfural, acetic acid, phenols, heavy 

metals, levulinic acid, and formic acid (Mussatto and Roberto, 2004) that have 

inhibition effects on fermentation yields (Mussatto and Teixeira, 2010). Therefore, 

the ultimate solution to prevent the formation of inhibitors and reduce the dispersion 

costs of chemical liquid wastes is to minimize the use of pre-treated biomass, and the 

use of enzyme-catalysed degradation in this case can provide good production yields 

without generating side products.  

 

 

Cellulase and xylanase are major enzyme groups responsible for 

biodegradation of lignocellulosic materials into polyoses. These cellulases, which 

include endoglucanase, exoglucanase, and β-glucosidase, work synergistically to 

degrade cellulose. Endoglucanase initiate the catalytic disruption of internal bonds 

within the cellulose crystalline structure to produce oligosaccharides. Exoglucanase 

attack non-reducing end of oligosaccharide chains to produce tetrasaccharides or 

cellobiose (disaccharides), and finally, β-glucosidase complete the hydrolysis process 

by converting cellobiose fragment into glucose (Miyamoto, 1997). Xylanase is a 

group of glycosidase enzymes that catalyse the xylanolytic endohydrolysis of 1,4-β-

D-xylosidic linkages in xylan, which is the principal constituent of hemicellulose to 

produce pentose sugars (xylose and arabinose) as well as hexane sugars (galactose 

and mannose). These in turn become the primary carbon source for cell metabolisms 
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and good substrates for bioethanol and chemicals production (Collins et al., 2005; 

Bisaria and Ghose, 1981).  

 

 

Currently, cellulase, xylanase, and pectinase contribute almost 20% of world 

enzyme market (Polizeli et al., 2005). However, high enzyme production costs and 

low production yields have hindered its industrial applications (Kang et al., 2004). 

Cellulase and xylanase can be produced through submerged fermentation (SmF) 

(Tolan and Foody, 1999) and solid-state fermentation (SSF) (Pandey et al., 1999). In 

fact, most of the commercially available cellulase and xylanase are produced through 

SmF using pure substrates since it is easier to control and maintain the fermentation 

factors. Nevertheless, SSF is gaining more attentions due to its higher volumetric 

productivities, higher product stability, lower contamination risk, and lower 

operating costs (Mitchell et al., 2006). SSF has been reported as the successful 

method to produce huge amount of important enzymes such as cellulase, ligninase, 

xylanase, and amylase for industrial usage (Pandey et al., 2000). Therefore, to 

produce such high potential enzymes through degradation of lignocellulosic 

materials, filamentous fungi are the superior microbial group which has better 

adaption to SSF since the hyphae can grow on the surface of moist particles as well 

as penetrate into inter-particles spaces and colonize it (Pandey et al., 2011; Muller 

dos Santos et al., 2004).  

 

 

The production of thermostable cellulase and xylanase by fungi through 

various palm oil residuals such as palm kernel cake (Kheng and Omar, 2005), palm 

oil mill residual (Prasertsan et al., 1992), and oil palm empty fruit bunch (Bahrin et 

al., 2011) have been widely reported. Yet, none of these literatures have demostrated 

the use of untreated oil palm trunk as the sole carbon sources for fungi in SSF. The 

oil palm trunk used as sole carbon source in this research is highly suitable for 

industrial scale applications since it is cheap, readily available, easy to store, has low 

moisture content, and can be stored in aerobically stable storage (Mielenz, 2009). 

Therefore, by conducting some comprehensive and highly efficient optimization 

strategies on all physiochemical factors that can significantly affect the fermentation 

process, highly potential yet economical crude enzymes cocktail with high activities 
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of xylanases and cellulases can be produced; this is more plausible to accelerate the 

development of more sustainable biofuel production methods. 

 

 

 

 

1.2 Objectives 

 

 

The objectives of this research are: 

 

 

1. To screen, isolate, and identify the most effective fungi for cellulase and 

xylanase production in solid-state fermentation using untreated palm oil trunk 

as a substrate. 

2. To partially characterize the crude cellulase and xylanase enzyme by selected 

fungi. 

3. To screen and optimize factors influencing cellulases and xylanase 

production using general factorial design (GFD), two-level factorial design 

(2LFD) and central composite design (CCD).  

4. To optimize the production of polyoses during saccharification of untreated 

oil palm trunk using crude cellulases and xylanase. 

5. To conduct kinetic evaluation on bioethanol production process. 

 

 

 

 

1.3 Scope of Research 

 

 

The scope of this research is to study the biodegradation of untreated oil palm 

trunk using locally isolated fungi to produce high activities of cellulases and 

xylanase through solid-state fermentation. All of the selected fungi were screened 

through quantitative and qualitative analyses to identify the isolate that was capable 

of secreting extracellular cellulolytic and xylanolytic enzymes. The cellulases and 

xylanase production of selected fungi were optimized using statistical approaches. 

The best nitrogenous supplement in the basal medium was determined using general 

factorial design (GFD). The two-level factorial design (2LFD) was used to select the 

most significant parameters that influenced the cellulases and xylanase production, 
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and lastly CCD was used to determine their optimal values. The thermostability and 

acid-alkaline tolerant of crude cellulases and xylanase were characterized while the 

major components of cellulases (endoglucanase, exoglucanase, and β-glucosidase) 

and xylanase were observed in SDS-PAGE and zymogram. The presence of G11 

xylanase gene in the crude enzyme was further confirmed through molecular and 

SDS-PAGE analysis. The saccharification ability of crude cellulases-xylanase 

cocktails to degrade the untreated oil palm trunk for sugars production was evaluated. 

Through alcoholic fermentation of reducing sugars in OPT hydrolysates by 

fermented yeast, better understanding was obtained on the types of sugars that had 

contributed to ethanol production.  
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