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Allah the almighty says in the Holy Quran chapter 55: versus 19 – 21: 
 
 

He has lat free 
The two seas 

Meeting together: 
 

Between them is a barrier 
Which they do not transgress: 

 
Then which of the favors 

Of your lord will ye deny? 
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It is He Who has 
Let free the two bodies 

Of flowing water 
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And the other salt 
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Made a barrier between them  
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To be passed 
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ABSTRACT 
 
 
 
 

The main objective of this research is to produce high performance 

nanofiltration (NF) hollow fiber membranes for Cyclodextrin Glycosyltransferase 

(CGTase) separation. For the first stage of this study, three types of spinning solution 

had been formulated by using titration method. These spinning solutions were 

formulated close to its cloud point (binodal line) in order to speed up the coagulation 

of nascent fibers so that the relaxation effect of molecular orientation was reduced. 

The dry/wet spinning process was applied in hollow fiber fabrication with water as 

bore fluid. At the second stage, hollow fibers were fabricated at four different type of 

dope extrusion rate (DER) ranging from 2.0 to 3.5 cm3/min. It was found that the 

optimum condition occurred at DER 2.5 cm3/min, which yields an optimal 

performance of sodium chloride rejection and better membrane morphology. The 

results exhibited that as the DER increased, the rejection value increases until critical 

level is achieved but the flux value gradually reduced. The optimized DER, at 2.5 

cm3/min was selected to fabricate the fibers at different air gap length. Thus, by 

increasing air gap length, the rejection value is significantly increased. The results 

suggested that it is possible to separate the CGTase enzyme up to 99.11% with the 

flux of about 0.47 l/m2.h and enhance the NF hollow fiber membranes performance 

in CGTase separation by the approach proposed in this study. Finally, at the last 

stage, the produced NF membranes were characterized by using Scanning Electron 

Microscope (SEM) and Attenuated Total Reflection Fourier Transform Infrared 

(FTIR-ATR). Results revealed that phase inversion and rheological factors 

significantly influencing the separation performance of Polyethersulfone (PES) NF 

hollow fiber membranes. 
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ABSTRAK 
 
 
 
 

Objektif utama kajian ini adalah untuk menghasilkan membran gentian 

geronggang Nanoturasan (NF) untuk pemisahan Cyclodextrin Glycosyltransferase 

(CGTase) yang mempunyai prestasi pemisahan yang tinggi. Pada peringkat pertama 

kajian ini, tiga jenis larutan pemejaman telah dihasilkan mengunakan kaedah titratan. 

Larutan pemejaman dihasilkan sehingga menghampiri takat awan (garisan binodal) 

agar dapat mempercepatkan proses pembekuan membran gentian geronggang yang 

baru dan kesan santaian orientasi molekul dapat dikurangkan. Proses pemejaman 

kering/basah telah diaplikasikan untuk menghasilkan membran gentian geronggang 

dan air digunakan sebagai bendalir liang. Pada peringkat kedua, membran gentian 

geronggang dihasilkan pada empat jenis kadar penyerimpitan dop (DER) berbeza 

dari lingkungan 2.0 hingga 3.5 cm3/min. Didapati bahawa DER yang optimum 

berlaku pada 2.5 cm3/min dan menghasilkan prestasi pemisahan larutan garam yang 

optimum dan morfologi membran yang dikehendaki. Hasil ujikaji menunjukkan 

apabila DER meningkat, nilai prestasi pemisahan turut meningkat sehingga pada satu 

takat yang kritikal manakala nilai fluks pula didapati menurun dengan sekata. DER 

yang optimum pada 2.5 cm3/min telah dipilih untuk menghasilkan membran pada 

ketinggian sela udara yang berbeza. Oleh itu, dengan peningkatan ketinggian sela 

udara, nilai prestasi pemisahan turut meningkat. Kajian ini mencadangkan bahawa 

pemisahan CGTase boleh dilaksanakan dan berkemampuan untuk mencapai 

sehingga 99.11% dengan nilai fluks 0.47 l/m2.h di samping meningkatkan prestasi 

membran gentian geronggang NF di dalam pemisahan CGTase dengan menggunakan 

kaedah yang telah dicadangkan. Pada peringkat ketiga, membran NF yang telah 

dihasilkan akan dicirikan dengan menggunakan Kemikroskopan Elektron Imbasan 

(SEM) dan Spektroskopi Infra-merah Penukaran Fourier - Pemantulan Jumlah 

Terkecil (FTIR-ATR). Hasil ujikaji menunjukkan bahawa faktor fasa balikan dan 

faktor reologi amat mempengaruhi prestasi pemisahan membran gentian geronggang 

Polietersulfona (PES) NF.  
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CHAPTER I 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Membrane Separation Technology 
 
 

Membrane processes has become a new demanding separation technique in 

order to fulfill the requirement in many industrial processes based on separations.  

Membranes are among the most important engineering component in use today, and 

each year more effective uses for membrane technologies are found for various 

applications.  This technology have wide industrial applications covering many 

existing and emerging uses in the chemical, petrochemical, biotechnological, 

petroleum, environmental, water treatment, pharmaceutical, medical, food, dairy, 

beverage, paper, textile and electronic industries.  The technology has emerge to be 

the most economical separation technique since it posses low capital investment as 

well as low energy consumption and operating cost.  Therefore, membrane 

separation technology can be used to satisfy many of the separation requirements in 

the process industries.  

 
 
Membrane performance can be defined in terms of two simple factors, flux 

and retention or selectivity.  Flux or permeation rate is the volumetric (mass or 

molar) flow rate of fluid passing through the membrane per unit area of membrane 

per unit time.  Selectivity is a measure of the relative permeation rates of different 

components through the membrane.  Retention is the fraction of solute in the feed 

retained by the membrane (Scott, 1995).  Therefore, membrane with the highest 

selectivity or retention and with a high flux or permeability is required although 
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typically attempts to maximize one factor are compromised by a reduction in the 

other. 

 
 

Membranes and separations have become a multimillion-dollar industry, 

growing at the rate of 10% to 20% per year.  Membrane technology can provide 

continuous operation and stable separation quality with the potential to remove 

targeted solutes in one stage.  However, recently membrane technology has improved 

and even widens up its applications in another field which promising very good 

prospects – biotechnology.  The results are tangible and a breathtaking array of basic 

discoveries having commercial potential in medicine, pharmaceutical, food, 

beverages, drinking water and waste water treatment.  This can be considered new in 

certain area, and therefore many research and development has been done in order to 

fulfill the demand and the market growth in this field.  To date, enzyme such as 

Cyclodextrin Glycosyltransferase (CGTase) is one the most important enzyme in 

industrial since it posses many advantages in pharmaceutical, medical, cosmetics, 

food processing, toiletry, pesticides and chemical industries.  

 
 

Recently, membranes have gained wide acceptance and made significant 

inroads against competing technologies in many areas, because of flexibility and 

performance reliability of membrane system, cost competitiveness, increasing 

demand and environmental awareness.  In biotechnology, membrane system could be 

potentially suitable for treating the dilute solutions and finely dispersed solids, 

especially those which are compressible, have a density close to that of the bulk 

phase, have high viscosity, or are gelatinous (colloidal suspensions); low molecular 

weight, non-volatile organics or dissolved salts; pharmaceutical and biological 

materials which are sensitive to their physical and chemical environment.  According 

to www.bccresearch.com the total market for biotechnology-enabling technologies 

and selected products (food, medicine and pharmaceutical) is estimated at nearly 

$12.5 billion in year 2000.  This market is expected to rise at an ‘Average Annual 

Growth Rate’ (AAGR) of 19.3% to 22.8% to as much as $34 billion in year 2005 

(Ismail et al., 2002). 
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The biotechnology industry, which originated in the late 1970s, has become 

one of the emerging industries that draw the attention of the world, especially with 

the emerged of producing medically important biological products (i.e protein, 

enzyme and insulin) by using membrane separation method.  Membrane separations 

have proven to show higher protein yields.  Two major interest applications in 

biotechnology are the separation and purification of the products.  Consequently, by 

using membrane separation technology especially hollow fiber membrane in enzyme 

separation, it could enhance the enzyme separation up to almost 100 percent.  The 

highest enzyme separation can be only achieved by fabricating the finest hollow fiber 

membrane especially in its separation performance and the membrane structure.  

 
 
 
 
1.2 Problem Statement 

 
 
 The fast growth in the field of biotechnology along with rapid 

commercialization of biological products has led to an increased for efficient 

separation technique.  Thus, the new type of separation technique should be 

developed although the separation efficiency of the conventional method (i.e. High 

performance liquid chromatography) is high.  Membrane materials with high 

permeability and selectivity, and advanced fabrication technologies to produce 

membrane with high separation performances are the primary focuses for most 

membrane scientists in the last two decades.  Therefore, membrane processes is 

believed and probably the most suitable method to replace the old conventional 

method.  

 
 

The effect of spinning conditions on the performance of nanofiltration 

membranes is discussed with strongly emphasis on the rheological effects.  Although 

many works have been done in the past 30 years there was not much research on 

rheological factors that affecting membrane performance.  Since then, this aspect has 

received great attention by membranologist in developing hollow fiber nanofiltration 

membrane.  Therefore, in this study the effect of both phase inversion and 

rheological factor in fabricating hollow fiber has been considered.  Significant 
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progresses have been made in membrane materials, dope preparation, and 

fundamental understanding of membrane formation mechanism.  The effect of 

spinning conditions such as dope extrusion rate (DER) and air gap length on the 

hollow fiber morphology and separation properties have been much discussed and 

reported; even though sometimes-contradictory results occurred.   

 
 

For the past few years, the influences of rheological conditions on the 

permeation characteristics for gas separation hollow fiber membranes have been 

extensively studied in order to improve knowledge of membrane manufacture and 

performance.  It was reported by Ismail et al. (1997b) and Shilton et al. (1997) that 

increased shear rates during spinning of membranes produced hollow fibers with 

enhance (or high improvement) selectivity and flux for gas separation application  

Recently for liquid separation, Ani Idris et al. (2002b) has reported for reverse 

osmosis hollow fiber membrane that there is a fairly strong correlation between 

extrusion shear rate and the rejection rate of the membranes, whereby as the shear 

rate increases, the rejection rate increases, suggesting that there exists an optimum 

shear rate which yields optimal membrane morphology for reverse osmosis hollow 

fiber membranes.  It was clearly shown that extrusion shear have great effect on the 

hollow fiber membrane performance for gas or liquid separation.  

 
 
However, not much research has been done to study the rheological effects in 

producing nanofiltration hollow fiber membrane for CGTase separation.  Therefore, 

for this research, nanofiltration hollow fiber membranes were fabricated with 

specially formulated spinning solution at different compositions.  Variation in dope 

compositions provided us with the opportunity to investigate hollow fiber membrane 

with different morphology and structure.  Preparation of Polyethersulfone  (PES) 

nanofiltration hollow fiber membranes and detailed studies regarding the preparation, 

separation performances and characterizations by coupling the effects of phase 

inversion and rheological influences are still lacking.  Therefore, in order to further 

advanced the knowledge of nanofiltration hollow fiber membrane fabrication and its 

influence on separation performance, it is attempts to investigate the possibility of 

enhancing the nanofiltration separation performance by increasing DER experienced 

during the fabrication of nanofiltration hollow fiber membranes. 
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In commercial separation applications, membrane based on liquid separation 

is broadening up its usage especially in enzyme separation.  It is believed that 

membrane technology is one of the best separation methods because it offers many 

advantages during its operation.  It is economic viability and flexibility since they 

can be easily scaled down for operation at partial capacity or scale up by adding 

membrane modules in stages to accommodate higher capacities.  However, the 

ability of nanofiltration membrane to work at lower pressures than reverse osmosis is 

attracting more interest in the technology.  In addition, there is not much research has 

been done in order to separate enzyme by using membrane technique.  For CGTase 

enzyme separation, it is believed that the nanofiltration separation method can 

possibly replace the old conventional methods in enzyme separation.  If this process 

is capable, huge amount of energy and money saving can be expected.  

 
 
 
 
1.3 Objectives of Study 

 
 

The aim of this research is to develop high performance locally produced 

nanofiltration Polyethersulfone hollow fiber membrane for CGTase enzyme 

separation.  In order to achieve this target, several important matters should be 

accomplished. 

 
i) To design and formulate spinning solution composition for the fabrication of 

nanofiltration hollow fiber membrane.  

 
ii) To determine the effects of fabrication conditions on the separation 

performance and membrane structure by using Dry/Wet Spinning Process. 

 
iii) To evaluate nanofiltration hollow fiber membranes performances for 

Cyclodextrin Glycosyltransferase (CGTase) separation.  

 
iv) To characterize the hollow fiber membranes using Scanning Electron 

Microscope (SEM) and Attenuated Total Reflection Fourier Transform 

Infrared (FTIR-ATR). 
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1.4 Research Scopes 

 
 

To achieve the objectives of this research, some guidelines should be 

followed.  Five main scopes for this study have been recognized to be the guidelines 

in order to produce high performance nanofiltration hollow fiber membrane that 

support with high flux and rejection value. 

 

i) Spinning solutions were formulated from a composition consists of 

polymer/solvent/polymeric additives/non-solvent.  An optimized spinning 

solution formulation consists of Polyethersulfone (PES) as the polymer, 1-

Methyl-2-Pyrrolidone as the solvent, Polyethylene glycol 400 (PEG 400) and 

Polyvinyl-pyrrolidone K30 (PVP K30) as the polymeric additive and water as 

the non-solvent.  

 
ii) Hollow fiber membranes were spun and fabricated at the optimized spinning 

conditions.  During the membrane fabrication, two spinning parameters were 

studied, there are the dope extrusion rate (DER) and air gap height.  The best 

and optimum level of DER was investigated.  Then, fibers were spun at an 

optimized DER at different level of air gap height.  

 
iii) Measured the separation performances of developed nanofiltration hollow 

fiber membranes using sodium chloride (NaCl) solution, different molecular 

weight of polyvinyl-pyrrolidone (PVK K15, PVP K25 and PVP K30) and 

CGTase 67 K.   

 

iv) Morphological studies of the nanofiltration hollow fiber membrane surface 

and cross-section were determined by Scanning Electron Microscope (SEM).  

Direct measurement of molecular orientation in nanofiltration hollow fiber 

membranes were investigated by using (FTIR-ATR). 

 
 

 




