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ABSTRACT 

 

 

 Improving the transient response of power generation systems using the 

automation control in a precise manner remain challenging. Developing the 

Automatic Voltage Regulator (AVR) of the synchronous generator with a high 

potency and prompt response for the stable electric power service is ever-demanding. 

The proposed techniques for determining the Proportional Integral Derivative (PID) 

controller parameters of the AVR system such as Real-Coded Genetic Algorithm 

(RGA) and a Particle Swarm Optimization (PSO) have failed to achieve the desired 

precision. Enhancing the transient stability responses of synchronous generation 

using automation control remains the challenging issue. This thesis presents a novel 

design method for determining the PID controller parameters of an AVR system 

using combined Genetic Algorithm (GA), Radial-Basis Function Neural Network 

(RBF-NN) and Sugeno Fuzzy logic approaches for implementation in enhancing the 

transient stability responses. This new approach renders the design of synchronous 

generator voltage controller by introducing a complete and modified model of 

synchronous generator. The problem of obtaining the optimal AVR and PID 

controller parameters is formulated as an optimization problem and RBF-NN tuned 

by GA is applied to solve the optimization problem. Meanwhile, RBF-NN is used to 

enhance the PID parameters obtained from GA to design a fuzzy PID controller of 

the AVR system for various operating conditions namely Genetic Neural Fuzzy PID 

(GNFPID). GNFPID is further designed to transfer in Programmable Logic 

Controllers (PLCs) for implementing the practical AVR system in the experimental 

model. An inherent control interaction between the excitation current and terminal 

voltage is revealed. The simulation and experimental results demonstrate the 

proposed approach has superior features, including easy implementation, stable 

convergence characteristic, and good computational efficiency. The proposed GA is 

applied to optimize PID controller parameters. The algorithms for the proposed GA 

and RBF-NN are coded using MATLAB and executed on a laptop with Intel core 

(TM) 2 Duo CPU 5550@1.83 GHz with 3GB RAM laptop. This algorithm 

effectively searches for a high-quality solution to improve the system’s response 

(~0.005 sec) and transient response of the AVR system for 13.8 kV and 400 V are 

found to be 0.0025 and 0.001, respectively. Furthermore, the results of the numerical 

simulation offer a high sensitive response of the novel design compares to the RGA, 

LQR, PSO and GA. The GNFPID controller configures the control signal based on 

interaction and thereby reduces the voltage error and the oscillation in the terminal 

voltage. The GNFPID controller achieves an excellent voltage control performance 

by testing the proposed fuzzy PID controller on a practical AVR system in 

synchronous generator with the sizeable improved transient response. The proposed 

method is indeed more efficient and robust in improving the system’s response and 

the transient response of an AVR system. It is asserted that this novel approach may 

be useful for the development of voltage control of power systems in real industrial 

practices under severe fault. 
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ABSTRAK 

 

 
 Memperbaiki sambutan fana sistem penjanaan kuasa menggunakan kawalan 

automasi berkejituan tinggi masih menjadi cabaran. Membangunkan Pengatur Voltan 

Automatik (AVR) janakuasa segerak dengan sambutan potensi yang tinggi dan segera 

untuk perkhidmatan kuasa elektrik stabil sentiasa mendapat permintaan. Teknik yang 

dicadangkan untuk menentukan parameter yang Pekadaran Pengamiran Pembezaan 

(PID) sesuatu sistem AVR seperti Algoritma Genetik Kod Sebenar (RGA) dan 

Pengoptimaan Kerumunan Zarah (PSO) yang gagal mencapai kejituan yang 

dikehendaki. Meningkatkan tindak balas kestabilan sementara generasi segerak 

menggunakan kawalan automasi kekal isu yang mencabar. Tesis ini membentangkan 

satu kaedah reka bentuk baru bagi menentukan parameter PID sesuatu sistem AVR 

menggunakan gabungan Algoritma Genetik (GA), Rangkaian Neural Fungsi Berasaskan 

Jejari (RBF-NN) dan kaedah-kaedah logik Kabur Sugeno untuk perlaksanaan dalam 

meningkatkan sambutan kestabilan fana. Kaedah baru ini membawa kepada reka bentuk 

pengawal voltan janakuasa segerak dengan memperkenalkan satu model lengkap dan 

modifikasi bagi janakuasa segerak.  Adalah  menjadi masalah bagi mendapatkan 

parameter pengawal AVR dan PID optima kerana dibuat sebagai satu masalah 

pengoptimaan dan RBF-NN dilaras dengan GA yang diaplikasikan bagi menyelesaikan 

masalah pengoptimaan.  Sementara itu,  RBF-NN digunakan bagi  meningkatkan 

parameter PID yang diperolehi daripada GA untuk mereka bentuk pengawal kabur PID 

bagi sistem AVR untuk pelbagai keadaan operasi yang dinamakan  Genetik Neural 

Kabur PID (GNFPID). GNFPID selanjutnya direka bentuk untuk dipindahkan dalam 

Pengawal-Pengawal Logik kebolehprogram (PLCs) bagi melaksanakan sistem AVR 

praktikal dalam model eksperimen. Satu interaksi kawalan yang wujud di antara arus 

ujaan dan voltan terminal ditunjukkan. Keputusan simulasi dan eksperimen 

membuktikan kaedah dicadangkan mempunyai ciri-ciri yang lebih baik termasuk 

perlaksanaan yang mudah, sifat pertumpuan stabil dan keberkesanan pengiraan yang 

baik. GA yang dicadangkan diaplikasi bagi mengoptimumkan parameter pengawal PID. 

Algoritma GA yang dicadangkan dan RBF-NN dikod menggunakan MATLAB dan 

dijalankan dengan komputer riba Intel core(TM) 2 DuoCPU 5550@1.83GHz dengan 

3GB RAM. Algoritma ini secara efektif mencari satu penyelesaian bermutu tinggi bagi 

memperbaiki respon sistem (~0.005 saat) dan sambutan fana sistem AVR untuk 13.8 kV 

dan 400 V didapati sebanyak 0.0025 dan 0.001 setiap satu. Tambahan lagi, keputusan 

simulasi angka memberikan sambutan bersensitif tinggi bagi reka bentuk baru tersebut 

dibanding dengan RGA, LQR, PSO dan GA. Pengawal GNFPID mengkonfigur isyarat 

pengawal berdasarkan  interaksi dan seterusnya mengurangkan kesilapan voltan dan 

ayunan dalam voltan terminal. GNFPID menala prestasi kawalan voltan yang cemerlang 

dengan menguji pengawal PID kabur yang dicadangkan ke atas sistem AVR praktikal 

dalam janakuasa  segerak dengan sambutan fana diperbaiki dengan sangat ketara. 

Kaedah dicadangkan sesungguhnya lebih efisien dan lasak dalam yang sambutan sistem 

dan sambutan fana sesuatu sistem AVR. Maka dinyatakan bahawa kaedah baru ini 

mungkin berguna untuk pembangunan pengawal voltan sistem-sistem kuasa dalam 

amalan-amalan industri sebenar di bawah kesilapan yang serius. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

1.1   Overview 

 

 

Improving the stability, achieving high efficiency and enhancing the voltage 

response of electric power system even under disturbance in real industrial situation 

are ever-demanding quest. The stability of power system is defined as the ability to 

remain in a state of operational equilibrium under normal operating conditions and to 

recover a suitable state of balance in the presence of a disturbance. Instabilities in the 

power system are caused by many different ways depending on the operating mode 

and system configuration. The generation of electrical power depends on 

synchronous machines. Therefore, an essential condition for acceptable system 

operation is the synchronization of power systems. The feature of stability is 

critically guided by the power angle relationships and the dynamics of generator 

rotor angles. Instability which occurs in case of large disturbances is the relative 

angular instability which occurs because of large disturbances that cause loss of 

synchronisation among machines. Instabilities may also arise because of events that 

do not cause loss of synchronisation with a good protection system. A system 

containing a synchronous generator supplying an induction motor load during 

transmission may become unstable because of the failure of load voltage and current 

(active and reactive power). It is indeed customary to analyse the stabilities of a 

power system subjected to transient events. These events might be weak or strong 

depending upon the event types [1]. The transient voltage stability in electric power 
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systems is relatively a new domain of research and much of it are still unexplored.  

The voltage stability can be divided into short–term (transient), mid-term and long-

term stability phenomena.The mid-term phenomena represent the transition from 

short-term to long-term responses.  In mid-term stability studies the focus is on 

synchronizing power oscillation between machines including the effects of some of 

the slower phenomena and possibly large voltage or frequency excursions. Typical 

ranges of time periods are, (i) Short-term or transient: 0-10 seconds, (ii) Mid-term: 

10 seconds-few minutes and (iii) Long-term: few minutes-10’s of minutes [1]. The 

transient stability is primarily concerned with the maintenance of synchronism for 

large disturbances which is our main focus. There are two types of disturbance in 

voltage stability, namely the small and large-disturbances. The large one concerned 

with the system's ability to control voltages following a large disturbance such as 

system faults, loss of generation or circuit’s contingencies. 

 

 

 Conversely, the small-disturbance voltage stability deals with the system's 

ability to control voltages following small perturbations such as incremental changes 

in system load. Many issues related to the voltage stabilities under disturbances are 

far from being understood due to lack of comprehensive models and careful 

simulation. One of the outstanding and challenging problems in this area is in the 

control of the voltage response with the associated severe faults, where the voltage at 

the terminals of the synchronous generator can drop significantly. Consequently, this 

temporary drop in the terminal voltage is a reduction in the all-important ability or 

overall efficiency to transfer synchronizing power out of the generator. Therefore, 

the solution to this problem is to achieve the terminal voltage return as soon as 

possible depending on generator’s Automatic Voltage Regulator (AVR) inside the 

excitation system. The essential function of an excitation system is to provide direct 

current to the synchronous generator machine field winding. In addition, the 

excitation system performs control and protective functions essential to the 

satisfactory performance of the power system by controlling the field voltage and 

field current. 
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The control functions include the control of voltage and reactive power flow, 

and the enhancement of system stability. The factors responsible for the precise 

control of voltage and current response need in-depth studies. The protective 

functions ensure that the  capability limits of the synchronous machine system and 

other equipment are not exceeded [1]. The performance requirements of the 

excitation system are determined by considering the synchronous generator and the 

power system [1]. The basic requirement is that the excitation system supply and 

automatically adjusts the field current of the synchronous generator. This maintains 

the terminal voltage as the output varies within the continuous capability of the 

generator. In addition, the excitation system must be able to respond to a transient 

disturbance with field, forcing consistent with the generator instantaneous and short-

term capabilities. From the power system viewpoint, the excitation system should 

contribute to effective control of voltage and enhancement of the system stability. It 

must be capable of responding rapidly to a disturbance to enhance the transient 

stability and also modulates the generator field to improve small-signal stability. The 

excitation systems are classified into three broad categories based on the excitation 

power source used [1]. These excitations are Direct Current (DC), Alternating 

Current (AC) and static structures. 

 

 

The  DC excitation  utilizes DC generators as a source of excitation power 

and provides current to the rotor of the synchronous machine through slip rings. The 

exciter may be driven by a motor or the shaft of the generator. It may be either self-

excited or separately excited. The separately excited, the exciter field is supplied by a 

pilot exciter comprising a permanent magnet generator. The AC excitation systems 

utilize alternators (ac machines) as sources of the main generator excitation power. 

These excitation systems of this category utilize alternators (ac machines) as sources 

of the main generator excitation power. Usually, the exciter is on the same shaft of a 

turbine generator. The AC output is rectified either by controlling or non-controlled 

rectifiers to produce the direct current needed for the generator field.There are two 

types of AC excitation systems such as stationary rectifier and rotating rectifier. The 

other  broad category  called Digital Excitation Systems (DECS) comprised of 

microprocessor–based control device intended for generator power management. 

Programmability of system parameters and regulation settings enables the DECS to 
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 be used in a wide range of application which provides greater flexibility [1]  in 

excitation system optimization. The excitation system supply and automatically 

adjusts the field current of the synchronous generator and keep constant generator 

terminal voltage by AVR. The main objective of the AVR is to control the terminal 

voltage by adjusting the generator exciter voltage. The AVR must keep track of the 

generator terminal voltage all the time under any load condition and maintains the 

voltage within pre-established limits. Meanwhile, the Proportional Integral 

Derivative (PID) inside the AVR is responsible for the optimal control of AVR 

system.  PID controller possesses three coefficients namely differential, proportional 

and integral coefficients. In most modern system, AVR is a controller that senses the 

generator output voltage (and sometimes the current) and then initiates corrective 

action by changing the exciter control in the desired direction.  

 

 

Thus, the AVR plays a crucial role with respect to transient stability by 

attempting to maintain terminal voltage under faulty conditions. It also ensures a fast 

terminal voltage recovery profile after the fault is cleared under transient conditions. 

Determining the mechanisms responsible for transient response and speedy voltage 

recovery are the key issues in power systems. 

 

 

 

 

1.2   Research Background  

 

 

It is a prerequisite for stable electric power service to develop the AVR of the 

synchronous generator with a high potency and a prompt response. The foremost 

purpose of the AVR is to control the terminal voltage and regulate the generator 

exciter voltage by maintaining the stability of the generator terminal voltage all the 

time under any load and operating conditions. On most modern systems, the AVR is 

a controller that senses the generator output voltage (sometime current) and initiates 

corrective action by changing the exciter control in the desired direction. 
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 These investigations concerning the improvement of the research process in 

the control system engineering propose different approaches to achieve better 

solutions.  

A design method for determining the PID controller parameters of the AVR 

system using the real coded genetic algorithm (RGA) method has been proposed [2].           

A hybrid Genetic Algorithm (GA) and bacterial foraging method has been developed 

to precisely tune the PID controller of an AVR [3]. The application of fuzzy system 

propose a replacement of the PI controller by a fuzzy logic controller to improve the 

transient performance of the DC link under fast load variations [4]. In another 

proposal a new fuzzy logic control based under frequency load shedding scheme has 

been implemented in mini hydro type-DG operating inislanded mode [5]. The 

transient stability enhancement of the power system interconnected with wind      

farm by Generalized  Unified Power Flow Controller (GUPFC) having grid 

frequency switching similar multi-pulse converters has been demonstrated [6]. 

 

 

 The performance of current hybrid fuzzy PID controller is somewhat poor 

and the changes in the system parameters require a new adjustable variable of PID 

controller. To overcome this difficulty, a hybrid system of fuzzy and fuzzy self-

tuning PID controller have been  developed [7]. The  power system stabilizer for 

damping both local and global modes of an interconnected system based on the 

neuron fuzzy (hybrid) system has been developed [8]. An adaptive-network-based 

fuzzy logic Power System Stabilizer (PSS) is [9]. Propose the application of an 

adaptive fuzzy logic controller to both single and multi-machine power system 

simulation is previously reported [10]. The design and stability analysis of Takagi-

Sugeno-Kang (TSK) -type full-scale fuzzy PID controller has been introduced [11]. 

 

 

There is a pressing need for the inclusion of on-line dynamic security 

assessment capabilities in energy management systems. The nonlinear time series is 

used to predict the transient stability of the system [12]   as a possible solution. In 

this method, first the post-fault state trajectory is predicted with nonlinear time series 

forecasting algorithm and then by Controlling Unstable Equilibrium Point (CUEP) 

concept and kinetic and potential energies at CUEP clearing time, the transient 
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stability of the system is assessed. A distributed computing approach for piecewise 

analysis of synchronous fault in Transient Stability (T/S) studies for large-scale 

electrical network exploitation has been reported [13]. The increasing stability 

related complication in power systems involve electromechanical oscillations that 

need to be controlled. A systematic approach to design an optimal controller to damp 

the electromechanical oscillations based on bioinpired GA and Particle Swarm 

Optimization (PSO) techniques have been  proposed [14]. An emergency  control  

scheme known as the combined Under Frequency Load Shedding (UFLS) and 

generator tripping has been  developed in order to stabilize the system when unstable 

faults occurred in a power system [15]. The performance of the combined Under 

Frequency Load (UFL)  Sand generator tripping scheme has been  compared with the 

conventional control scheme and found to be efficient.  

 

 

Computational techniques such as GA and fuzzy logic have been  used for 

analytic solution [11, 16-18] which resulted the control field for implementing the 

real time manipulation based on the neural network. Furthermore, it has been  

established that Radial-Basis Function Neural Network (RBF-NN) has the ability to 

approximate any continuous function with any arbitrary accuracy [19, 20]. A tuning 

fuzzy logic approach to determine the optimal PID controller parameters in the AVR 

system by developing a fuzzy system can give the PID parameters on-line for 

different operating conditions [21]. A Linear-Quadratic Regulator (LQR) method has 

been  implemented to improve the PID controller for a universal second-order system 

which required a good selection of weighting functions for acceptable performance 

[22].  An RGA and a PSO algorithm with new fitness function methods have been 

proposed to design a PID controller for the AVR system [23, 24]. 

 

 

A design method for determining the PID controller parameters of the AVR 

system using the PSO method has been proposed [25-27]. PSO is a population-based 

optimization technique, which is enthused  by social performance patterns of 

organisms such as bird flocking and fish schooling. Undoubtedly, both GA and PSO 

are subjected to computational burden and memory expenses and are not appropriate 

for online applications. Nowadays, the most popular controller techniques are fuzzy 
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controllers in which expert knowledge can be incorporated into the design [21, 28, 

29]. Most fuzzy controllers that are used in industry have the same structure of 

simulated PID as incremental PD or PID controllers. The drawback of both fuzzy 

logic control and Lyapunov-like madman type FLC is that the parameters associated 

with the FLC are heuristically updated. Neural networks have been widely used in  

the identification, estimation, and control of nonlinear systems offline estimation. 

 

 

The following conclusions are summarised in Table 1.1. A critical review is 

presented describing the advantages and disadvantages of the previous methods and 

some review to overcome much of the existing complexity by combining GA, RBF-

NN, and Sugeno fuzzy logic approaches to determine the optimal PID controller 

parameters in the AVR system.  

 

Table 1.1 : Critical review to describe the advantages and disadvantages of the 

previous methods. 

Author year Proposed Technology Advantages Disadvantages 

Mohammadi  

2009[30] 

New evolutionary 

methods for optimal 

design of PID 

controllers for AVR 

system 

Successful in providing 

globally optimal results, 

due to high efficiency 

and lower computation 

time. 

Off-line 

computational 

burden and 

algorithm 

complicated 

Ahmed 

2006[31] 

Simulated Annealing 

Optimized and Neural 

Networks Self-Tuned 

PID Voltage Regulator 

for a Single-Machine 

Power System 

The optimization 

search is based on a 

suitable objective 

function. 

ANN is trained 

off-line. 

Ramya  

2013[32] 

Optimization of 

synchronous generator 

excitation controller 

parameters 

Good response of the 

excitation controller 

tuning by RGA. 

Computational 

burden and 

require large 

memory storge  

Hasanien  

2013[33] 

Design Optimization of 

PID Controller in AVR 

system using Taguchi 

combined GA method 

The PID controller in 

the AVR system 

minimize the swing of 

the terminal voltage. 

The analysis of 

variance depends 

on selection of 

the influential 

design variables. 

Madinehi 

2011[34] 

Optimum design of PID 

controller in AVR 

system using intelligent 

methods 

Intelligent controller 

design in an AVR 

system by using two 

techniques. 

Long controller 

time response. 
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The limitations of the existing work are the design of the novel fuzzy 

controller by combining GA and RBF-NN approaches in order to maintain the 

terminal voltage within pre-established limits and enhancing the transient response of 

synchronous generator under severe disturbances. The effective maintenance of the 

terminal voltage within pre-established limits and enhancing the transient response of 

the synchronous generator under severe disturbances is accomplished by using 

proposed fuzzy PLC controller in industrial control. This work addressing rang 

issues by using optimal PID gains obtained by combined GA and RBF-NN for 

various operating conditions are used to develop the rules based on the Sugeno fuzzy 

system. This algorithm effectively searches for a high-quality solution and improves 

the transient response of the AVR system. 

 

 

 

 

1.3   Problem Statement  

 

 

The transient voltage stability in electric power systems is significant and 

challenging issue requires to be addressed. The precise control of transient (short-

term) stability primarily concerned with the maintenance of  synchronism for large 

disturbances remains a major challenge. An  important problem associated with 

severe faults, where the voltage at the terminals of the synchronous generator can 

drop significantly. The consequence of this temporary drop in terminal voltage is a 

reduction in the all-important ability to transfer synchronizing power out of the 

generator.  

 

 

Therefore the solution is to get the terminal voltage back up as soon as 

possible. This depends on generator’s AVR. The generator’s AVR works through the 

excitation system to maintain constant generator terminal voltage.Despite some 

studies, the design of efficient AVR (AVR with genetic, neural and fuzzy voltage 

controller) system is still lacking and not much work is carried out to develop the 

mechanism of voltage recovery and to improve transient response in the AVR system 
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by using the combination of genetic, neural and fuzzy technics. Thus, the AVR   

plays a crucial role with respect to transient stability in maintaining terminal voltage 

under fault conditions. The controller system also ensures a fast terminal voltage 

recovery profile after the fault is cleared under transient conditions.  

 

 

The modern power systems are non-linear and highly complex with 

continuous variations in their operating conditions over a wide range. The role of 

nonlinearity requires further attention. Lately, the most popular controller techniques 

are called intelligent and   are developed with expert knowledge incorporated into the 

design. No comprehensive model, simulation, or systematic experiments yet exist to 

determine the mechanism of controller response, transient voltage stability 

enhancements, and efficiency.  

 

 

Generally, AVR controls the terminal voltage by adjusting the generator 

exciter voltage, while the AVR system optimal control is performed by the PID 

inside the AVR. The drive of the approach is to design a high-sensitivity fuzzy PID 

controller depending on a hybrid model by combining the GA, RBF-NN, and Sugeno 

fuzzy logic and insert instead of traditional PID controller (PID or lead–lag 

controllers) of the AVR.  

 

 

A novel Genetic Neural Fuzzy Proportional Integral Derivative (GNFPID) 

controller is used to achieve high stability, fast response and keeps track of the 

generator terminal voltage continually and under any load condition. It maintains the 

voltage within pre-established limits for enhancing the transient response of 

synchronous generator under severe disturbances. A novel Genetic Neural Fuzzy 

Proportional Integral Derivative (GNFPID) controller is used to achieve high 

stability, fast response and keeps track of the generator terminal voltage continually 

and under any load condition. It maintains the voltage within pre-established limits 

for enhancing the transient response of synchronous generator under severe 

disturbances. 
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1.4   Research Objectives  

 

 

The objectives  of  the study are the  following: 

 

i. To design novel, Fuzzy Controller tuned genetically via Genetic-Neural 

Algorithm (GNFPID) for improving  the AVR responses. 

ii. To enhance the transient stability responses for the synchronous generator 

voltage controller (GNFPID). 

iii. To develop Simulink and experimental models of synchronous generator suitable 

in studying the transient stability response of the large scale power system.  

iv. To compare and validate the results of novel approaches (GNFPID) with other 

intelligent methods such as LQR, PSO, RAG and binary-coded GA. 

v. To determine the mechanism of improved transient response, voltage stability 

enhancements and efficiency under severe fault. 

 

 

 

 

1.5   Scope of the Research  

 

 

The scope of the research is as follows: 

 

i. The GA integrated by RBF-NN has been applied to generate the optimized 

parameter values of the fuzzy rule base and also in tuning the associated 

membership function parameters.  

ii. The RBF-NN is used to enhance the PID parameters obtained from GA. 

iii. The enhanced PID parameters are used to design the fuzzy PID controller 

(GNFPID) one-time tuned by excitation parameters (Ke,τe) and a second time 

tuned by generator parameter (Kg,τg). 

iv. The proposed GNFPID controllers are inserted in the AVR system to 

enhancement the transient response of the synchronous generator terminal 

voltages. 
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v. These enhancements are well investigated through the simulated results by using 

MATLAB.  

vi. The experimental result is achieved by transfer of data design of the GNFPID 

controller from MATLAB to programmable logic controllers (PLC) for 

implementing the practical AVR system in the experimental model.  

vii. Detailed analysis includes a compare-and-validate of the results of the novel 

approach GNFPID with other intelligent methods. 

 

 

 

 

1.6   Significance of The Study  

 

 

The prime focus of this research is to design and characterize an intelligent 

system for a synchronous generator voltage controller highly suitable for industrial 

AVR system application. Through the fuzzy PID controller tuned by genetic and 

neural-network algorithms, a modified powerful controller called GNFPID is 

achieved, which is further used in a synchronous generator AVR system. The 

transient voltage stability enhancements obtained from this novel fuzzy controller are 

comparable with other conventional methods. By using this novel fuzzy controller 

with a complete model of synchronous generator it is possible to study the transient 

stability response of a synchronous generator in a large-scale power system. This 

methodology is beneficial for improving  the power system operation control in 

terms of  their stability, generator terminal voltage and enhancing the transient 

response of synchronous generator. 
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1.7   Thesis Organization 

 

 

The thesis is organized as follows:  

 

Chapter 1 begins with a general introduction and a brief overview showing 

the importance and growing demand of research on the power system stability. The 

main objectives, problem statements, scope and significance of the research are 

highlighted in this chapter. 

 

 

Chapter 2 deals with the literature review related to intelligent control system. 

The classified control methods for overall intelligent control such as fuzzy, neural 

and GA are reviewed at length. 

 

 

In Chapter 3 the research methodology is described by incorporating relevant 

schematic diagrams and theory relevant to our research. The MATLAB Simulink and 

data transfer design from MATLAB to PLC implemented in the AVR in 

experimental setups are described in detail for the diagnostics and measurements. 

 

 

Chapter 4 presents the simulation results and discussions on simulation based 

on the novel design GNFPID controller, model, and present the experimental results 

and discussions on implementing novel design controller GNFPID by PLC type 

SIMATIC IPC427C. Simulation and experimental results are compared and 

validated with  existing  conventional methods. 

 

 

 Chapter 5 summarizes the main findings signifying the strength of the 

research, major contribution, fulfillment of the objectives and a few suggestions for 

further work in this important research domain. 
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