Oxidative-Acidic Bifunctional Catalyst of Niobium-Phosphate-Titania Supported on Silica in Production of Diols
Jamilah Mohd Ekhsan and Siew Ling Lee
Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Niobium-phosphate-titania supported on silica as oxidative-acidic bifunctional catalyst has been synthesized via sol-gel and impregnation methods in different sequences namely, (i) TiO_{2}, $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{PO}_{4}{ }^{3-}$ impregnated stepwise onto silica ($\mathrm{P} / \mathrm{Nb} / \mathrm{Ti} / \mathrm{Si}$), (ii) mixture of TiO_{2} and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ impregnated onto silica, followed by impregnation of $\mathrm{PO}_{4}{ }^{3-}(\mathrm{P} /(\mathrm{Nb}+\mathrm{Ti}) / \mathrm{Si})$, and (iii) $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{PO}_{4}{ }^{3-}$ impregnated onto $\mathrm{TiO}_{2}-\mathrm{SiO}_{2}(\mathrm{P} / \mathrm{Nb} / \mathrm{Ti}-\mathrm{Si})$. The results indicated the different properties resulted from varied interactions among SiO_{2} support, TiO_{2} catalyst and its modifiers have greatly affected the bifunctional catalytic behavior of the synthesized materials. The XRD results showed an identified peak of titanium oxide in sample $\mathrm{P} / \mathrm{Nb} / \mathrm{Ti} / \mathrm{Si}$. Meanwhile, samples $\mathrm{P} /(\mathrm{Nb}+\mathrm{Ti}) / \mathrm{Si}$ and $\mathrm{P} / \mathrm{Nb} / \mathrm{Ti}-\mathrm{Si}$ were in amorphous form indicating that Ti and Nb were dispersed well on the surface of silica. UV-Vis DR results revealed that octahedral or polymeric Ti species was the dominant species in sample $\mathrm{P} / \mathrm{Nb} / \mathrm{Ti} / \mathrm{Si}$ while hydrated tetrahedral Ti species was predominant in samples $\mathrm{P} /(\mathrm{Nb}+\mathrm{Ti}) / \mathrm{Si}$ and $\mathrm{P} / \mathrm{Nb} / \mathrm{Ti}-\mathrm{Si}$. Besides of tetrahedrally coordinated Ti species, it has been demonstrated that the presence of $\mathrm{Nb}, \mathrm{PO}_{4}{ }^{3-}$ as well as the SiO_{2} support has contributed significantly in improving the oxidative catalytic activity. Meanwhile, interaction between PO_{4}^{3-} groups and Nb has generated Brönsted acidity for the high yield of diol. It has been shown that $\mathrm{P} / \mathrm{Nb} / \mathrm{Ti}-\mathrm{Si}$ was the best bifunctional oxidative-acidic catalystin consecutive transformation of 1-octene to 1,2-octanediol through formation of 1,2-epoxyoctane using aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ at 343 K . It was expected that synthetic method used in preparation of $\mathrm{P} / \mathrm{Nb} / \mathrm{Ti}-\mathrm{Si}$ has aided the effective interaction between PO_{4}^{3-} and Nb , leading to formation of more Brönsted acidity in this sample.

