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ABSTRACT 

 

 

 

 

The recent development of the wireless market has increased the interest in 

the integrated inductor for Radio Frequency Integrated Chip (RFIC) applications. 

Though Electromagnetic (EM) simulation is available, it is usually expensive, slow 

and difficult to integrate into the RFIC design flow. Therefore, the alternative option 

of a generic, simple yet accurate procedure to design the inductor is very desirable. 

Based on the physical model, an integrated inductor synthesis procedure has been 

developed and implemented in Microsoft EXCEL. This synthesis tool is able to 

identify the maximum quality factor (Q) at the operating frequency (e.g. 1.8 GHz for 

mobile communication, 2.45 GHz for wireless Local Area Network (LAN)) of the 

desired inductor very quickly. An example of synthesizing a 3 nH inductor is 

demonstrated using this tool. Besides that, another type of integrated inductor model 

known as extracted model is also needed for circuit simulation. An improved model 

extraction procedure has been proposed in this research and has been embedded in 

another EXCEL file. This new procedure has reduced the number of terms required 

and proved to be more accurate even in the region beyond the Self-Resonant 

Frequency (SRF).  The above two types of integrated inductor modeling were then 

“combined” into a new global integrated inductor model in SPICE, which is a 

compromise of accuracy (extracted model) and scalability (physical model). This 

model is accurate up to ~2 GHz, within an average error of 10 %. Using this new 

model, one can have the freedom to choose the value of inductance and more 

flexibility in circuit design. In addition, the layout optimization and circuit 

optimization can be done using the same model thus saving time and reducing cost. 

This is a novel integrated type of model that has never been published in any other 

research. 
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ABSTRAK 

 

 

 

 

 Perkembangan terkini pasaran tanpa wayar telah meningkatkan minat 

terhadap induktor bersepadu untuk aplikasi litar bersepadu frekuensi radio (RFIC). 

Walaupun tedapat simulasi elektromagnet (EM), ini biasanya mahal, lambat dan 

susah diimplementasi dalam aliran rekabentuk RFIC. Oleh itu, pilihan alternatif 

tatacara tepat yang generik tetapi mudah sangat diperlukan. Tatacara sintesis 

induktor bersepadu berasaskan model fizikal telah dibangunkan dan diimplemen 

menggunakan EXCEL. Alatan sintesis ini berupaya menentukan faktor kualiti (Q) 

optimum dengan pantas pada frekuensi operasinya (seperti 1.8 GHz untuk 

telekomunikasi bergerak dan 2.45 GHz untuk rangkaian kawasan tempatan (LAN) 

tanpa wayar). Satu contoh untuk sintesis induktor 3 nH ditunjukkan menggunakan 

alatan ini. Selain itu, model induktor bersepadu yang dikenali sebagai model 

terekstrak juga dibangunkan untuk simulasi litar. Tatacara pengekstrakan model yang 

telah diperbaiki dicadangkan dalam kajian ini dan dimasukkan ke dalam satu lagi fail 

EXCEL. Tatacara baru ini telah berjaya mengurangkan beberapa sebutan dan 

terbukti lebih tepat walaupun dalam julat frekuensi selepas frekuensi resonan diri 

(SRF). Kedua-dua jenis model induktor ini telah “digabung” untuk menghasilkan 

model induktor global dalam bentuk SPICE, yang merupakan krompomi di antara 

ketepatan (model terekstrak) dan kebolehskalaan (model fizikal). Model ini 

mempunyai ralat dalam lingkungan 10 %, tepat sehingga ~2.0 GHz.  Dengan 

menggunakan model baru ini, seseorang boleh mengawal nilai induktan yang 

memberikan fleksibiliti rekabentuk litar. Tambahan pula, pengoptimuman bentangan 

dan pengoptimuman litar boleh dilakukan dengan model yang sama, seterusnya dapat 

menjimatkan masa dan mengurangkan kosnya. Ini merupakan model bersepadu baru 

yang belum pernah dilaporkan dalam kajian lain 
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Chapter I 

 

 

 

 

INTRODUCTION 

 

 

 

 

The demand of consumer products such as the mobile phone, personal digital 

assistant or mobile computer with wireless feature has seen a tremendous growth 

recently.  This has created a stronger demand for low cost, low power consumption, 

high volume implementation of radio frequency (RF) functions in consumer 

products.  

 

 

Most of the current radio frequency integrated circuits (RFIC) are 

implemented in the matured Gallium Arsenide (GaAs) technology.  However, the 

complementary metal-oxide-silicon (CMOS) process, which is currently in high 

volume production for digital signal processors, is also emerging as one of the 

options for RFICs [Larson, 1998]. The latest research development in the CMOS 

technology has seen an increasing effort to migrate the RF applications onto the 

silicon (Si) process.  Following this trend, higher level of integration of RF, analog 

and digital circuits using the conventional or innovative methods in CMOS process 

are expected to happen in the near future [Burghartz, 1997]. 
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 Previously, inductors were not considered as standard components, such as 

transistors, resistors or capacitors where models are included in the standard 

technology library. However, the demands for inductors models are increasing, as RF 

circuits on Si with acceptable performance are now feasible [Chan, et al., 2001] 

[Wang, et al. 2002][Steyaert, et al. 2000]. Inductor models that are able to predict the 

behavior of inductor over a broad range of frequency are important for circuit 

simulation and layout optimization. Thus has arisen the need to develop a generic 

procedure that is able to produce good inductor models for RFIC applications. 

 

 

 

 

1.1. Research Background 

 

 

As the CMOS technology continue to scale down to its next technology node, 

the performance of the transistor continue to improve, in term of cut-off frequency 

(ft) and maximum frequency (fmax). For example, ft for 0.18µm is reaching 50GHz, 

which allows for RF applications operating below 10GHz. Nevertheless, there are 

still some performance issues need to be solved, especially when the bottle neck 

passive element, the inductor, is included in CMOS process. In the next two sub-

sections, the inductor’s application, the issues due to the physical structure of the 

inductor in CMOS process and the motivation in this research will be discussed.  

 

 

 

 

a.) Inductor’s Application In RF Design 
 

 

The inductor is an indispensable part of many RF circuit block. One of the 

applications of inductors is found in impedance matching.  In RF systems, 

impedance matching is critical to ensure maximum power transfer from one circuit 

block to another circuit block when two circuit blocks are cascaded.  Maximum 
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power transfer is obtained when the output resistance is equal to the input resistance 

and the output reactive parts are conjugated with the input reactive parts. The 

inductor is used as one of the components in the impedance-transforming network, 

such as the LC and π networks shown in Figure 1.1 

 

 

 
(a) (b) 

Figure 1.1: Typical impedance matching networks (a) LC-Network (b) π-Network 

 

 

 

Besides that, inductors are also used in the design of the amplifier as tuned 

load, feedback circuit and shunt peaking element.  Figure 1.2 shows the use of 

inductor as the shunt peaking element to extend the bandwidth of amplifier.  

Inductors are used as the feed back circuit in a mixer as shown in Figure 1.3.  In 

Figure 1.4, the spiral inductor acted as an integral part of the switched resonator in a 

dual band monolithic CMOS voltage controlled oscillator. 

 
Figure 1.2: Shunt peaking in a common source amplifier [Mohan, et al., 2000] 

 

 



 4

 

 

 
Figure 1.3: Schematic of mixer [Wang, et al., 2002] 

 

 
Figure 1.4: Schematic of  a dual-band VCO [Yim, et al. ,2001] 

 

 

 The quality (Q) factor of the CMOS inductor is generally very low, around 8 

to 15, which is not suitable for filter that requires high Q passive elements.  

Nevertheless, if the inductor is combined with transistor, the Q of the inductor can be 

drastically improved. In this case, the transistor acted as the negative resistance 

generator, which will reduce the real portion of the impedance of the inductor when 

connected to the transistor and thus increased the Q. This is then enabled the on-chip 
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inductors to be used to implement the RF filters, for example the band pass filter as 

shown in figure 1.5 [Sooranpanth and Wong, 2001].  

 

 

  
Figure 1.5 : 2140±30 MHz, 3rd order Chebyshev filter [Sooranpanth and Wong, 

2001]. 

 

 

 

 

 

b.) Inductor On Silicon 

 

 

Researchers are investigating the possibility in migrating the expensive GaAs 

process to the cheaper Si IC technology for RF applications.  Inductor is one of the 

key devices in such an investigation.  Unlike other devices, such as the capacitors 

and the transistors, the integrated inductor is relatively “new” in RFIC. Previously, 

the inductor is either realized off-chip or bond-wire.  This has made the whole circuit 

to become bulky, difficult to control (for the case of bond-wire), less integrated and 

thus more expensive.  The integrated inductors in CMOS usually have lower Q 
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factor, in the order 5 to 15, compared to capacitors, which are usually in the order of  

few hundreds in 1 to 2 GHz range.   

 

 

A typical IC process in 0.18µm CMOS technology has six layers of 

Aluminum (Al) interconnects, as shown in Figure 1.6 shows the cross-sectional view 

of six layer metal in CMOS process.  At the first glance, some may think that the 

inductor can be fabricated using any of the six layers.  However, in reality, it is 

usually only the top layer or only a few layers at the top are used. Inductor on Si 

substrate suffers a few intrinsic Q limiting factors. 

 

 

Figure 1.6: Cross-section of metal 6 layers aluminum metal in a typical IC process   

 

 

Inductors are formed on the top metal to reduce the parasitic capacitance of 

the inductor. For example, to fabricate the circular spiral shown in Figure 1.7, metal 

6 is used to draw the circular spiral inductor and metal 5 is used to draw the 

underpass metal.  
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Figure 1.7: Circular spiral inductor 

 

 

Most of the IC manufacturers, which are the foundries, also offer thicker top 

metal option for the construction of inductor, in 0.18 µm CMOS analog process, top 

metal (Aluminum) thickness is 2 µm, resulting the sheet resistance, around 15  mΩ/□ 

(mili-Siemen per square) [Keating, et al., 2002].   Other metal layer, such as metal 5 

and below, the metal thickness is more than 50% thinner.  Higher resistances are 

expected for these metals and it is therefore going to cause the increase of the metal 

loss and subsequently decrease the Q-factor. 

 

 

At higher frequencies, current crowding due to two effects, namely the skin 

effects and proximity effects. These effects will cause an uneven current distribution 

in the metal. In the skin effects, the center portion of the conductor will be enveloped 

by a greater magnetic flux than those on the outside. Consequently the self induced 

back electromagnetic flux will be greater towards the center of the conductor, thus 

causing the current density to be less at the center than the conductor surface. This 

extra concentration at the surface results in an increase in the effective resistance of 

the conductor as the frequency increases. 

 

 

 



 8

As for the proximity effects, it happens when there are two conductors 

arranged close proximity to one another, which is usually the case in the spiral 

inductor design. The proximity effect is associated with the magnetic fields of two 

conductors, which are close together. If each carries a current in the same direction, 

the halves of the conductors in close proximity are cut by more magnetic flux than 

the remote halves. Consequently the current distribution is not even throughout the 

cross-section, a greater proportion being carried by the remote halves. If the currents 

are in opposite directions, the halves in close proximity will carry the greater density 

of current.   

 

 

In addition to resistance loss there is also substrate loss.  In CMOS process, 

typically low resistivity substrate is used to prevent latch up in transistor, typically 10 

Ohm-cm in p-type Si substrate as opposed to semi-insulating material in GaAs.  This 

conductive nature of the Si substrate leads to two loss mechanisms.  Firstly, the 

conductive nature of the Si substrate is causing capacitive current to flow to the 

nearby ground. The substrate is usually tied to a ground, and there is a potential 

difference between the inductor and the ground.  A capacitive-like structure will 

exists between the inductor plane and ground and will cause capacitive coupling loss.  

Secondly, the eddy current is induced from the time-varying magnetic fields (from 

the inductor) and penetrates the substrate to ground.[Niknejad and Meyer, 2000]. 

 

 

The spiral inductor on Si substrate does not perform as good as the spiral 

inductor on high resistance substrate, such as in organic substrate or ceramic 

substrate.  However, the idea of system-on-chip or application-on-chip that leads to 

very high integration IC design is pushing the industry toward implementation of 

inductor on CMOS process. CMOS process is relatively cheaper process compared to 

other process. With the advantage of current mature and mass production process, 

RF applications in CMOS process is a hot topic for RFIC world. Therefore, many 

researchers have begun to find ways to improve the inductor performance on Si 

substrate, such as introducing the lower resistance material, for example the copper 

interconnect; using shields to reduce the eddy current in the substrate; 

micromachining to remove the conductive substrate, and etc. All these efforts are 
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trying to integrate the RF section into the existing digital section on chip. Looking at 

the current research activities trend, the production of a full RF system build on Si 

substrate is coming nearer at our doorstep. 

 

 

 

 

1.2 Objectives and scopes of research 

 

 

The main objective of this research is to meet the needs of the coming 

implementation of integrated inductor in CMOS process.  It is to provide know-how 

knowledge in the synthesis and modeling of integrated inductor. The inductor model 

will be developed and readied before the implementation of inductor application on 

CMOS process.  Hence, the scopes of this research are to study and develop a generic 

procedure of both inductor synthesis and inductor modeling. The products of this 

research will include a simple and easy implementation of inductor synthesis and an 

extraction, optimization procedure for integrated inductor. 

 

 

 

 

1.3 Thesis Organization 

 

 

Chapter I presents the introductions of this research work, which includes the 

research background, research objectives and scope of research. Chapter II presents 

the discussions of previous works from literatures. The rest of the chapters cover 

three main parts of this thesis, the first part is devoted to the RF integrated planar 

spiral inductor synthesis. The focus of chapter III is on the physical model and the 

synthesis of planar spiral inductor.  The details of the physical model of the inductor 

are reviewed.  Comparisons of a few inductance expressions for square inductor are 

done.  The most accurate closed form inductance expression is identified and 

described in this work.  The optimum inductor design with the help of the contour 

 



 10

plot of Q is described. An example on synthesizing an inductor for 3nH is shown. 

The second part of the thesis is on the modeling and optimization of integrated spiral 

inductor, which is covered in Chapter IV. In this chapter, it is presented a new 

proposed model extraction procedure.  The improvements of the new proposed 

method are highlighted. A generic model optimization methodology is included in 

this chapter.  One of the wide-band modeling methods is also discussed. The third 

part describes a new global integrated inductor model.   Chapter V presents a break 

through in inductor modeling. The physical modeling and extraction modeling are 

combined and produced the global integrated inductor model (GIIM). Chapter VI 

concludes the thesis. Recommendations and suggestions for future work are 

presented. 

  

 

 

 

 




