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1.1 INTRODUCTION 

 

Copulas are tools for modelling dependence of several random variables.  The term copula 

was first used in the work of Sklar (1959) and is derived from the latin word copulare, to connect or to 

join.  The main purpose of copulas is to describe the interrelation of several random variables.  

(Thorsten Schmidt, 2006). 

Copula is a function that joins the two distributions and known as dependence functions. 

Copula connect multivariate distribution function to its univariate marginal distribution.  When we 

have two models having the problems relating to dependence, we can join that models becoming one 

model using marginal function. So, the dependency is taken care.  It means that copula played an 

important role to join multivariate distributions to their one dimensional marginal distribution 

function. 

 

1.2 PROBLEM STATEMENT 

 

This study will focus on expressing the bivariate distribution function from two univariate 

distribution functions. Considering these two distribution functions are independent, the 

multiplication of these two distributions can be done.  However, in this case, the dependency between 

these two distributions must be considered.  One of the way  allowing the dependency of these 

distributions by using copula method. 

 

 

 

1.3 LITERATURE REVIEW 

 

The Word Copula is a Latin noun that means ''A link, tie, bond''.  In 1959, the word Copula 

appeared for the  first time.   

Copula played an important role to join multivariate distributions to their one dimensional 

marginal distribution function. When we are having the problems relating to dependence, we can join 

that models becoming one model using marginal function as we want dependency is taken care. 

Copula method  has been used for flood frequency analysis. This analysis was based on t-

copula for Johor River, Malaysia. Student Copula was used to model the joint dependence of peak 

flow-volume, volume-duration and peak flow-duration.   (Salarpour et al., 2013). 

Copula also has been used to model bivariate rainfall distribution.  This model has been 

simulated  at two sites in the Murray-Darling Basin, Australia.  The selected sites are Hume and 

Beechworth.  In this study, the asymmetric t-copula, also known as skew-t is used to analyse the 

monthly rainfall data.(Zakariaet al., 2010) 

 

 

 

 

 

 

1.4 METHODOLOGY 

 

Joint Distribution Function 

 



 If Y1and Y2 are jointly continuous random variables with a joint density function given by 

f(y1,y2), then  

1. f(y1,y2) ≥0 for all y1, y2 

2. 
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Joint distribution function is: 
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Marginal distribution function: 

][)(],[)( yYPyGxXPxF 
 (1.2)                 

Gamma Distribution
  

The PDF an d CDF of the gamma distribution with continuous shape parameter ( ), continuous scale 

parameter (  ) and continuous location parameter   ( ) are as depicted below: 

)/)((exp
)(

)(
)(

1

















x
x

xf

   (1.3)  

 

 

)(

)(
)(

/)(










x
xF

       (1.4)   

 

Where:  x  

Parameter Estimation: 

Likelihood function 
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The log-likelihood function iS  
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Use Newton-Raphson method.
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Weibull Distribution 

The PDF and CDF of the weibull distribution with continuous shape parameter ( ), continuous scale 

parameter ( ) and continuous location parameter    (  ) are as depicted below:   
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Where:  x  

Parameter Estimation: 

Likelihood function 
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 Taking the logarithm for the likelihood function will get the log-likelihood function:
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The partial derivatives for the log-likelihood function with respect to  ,  and   are:
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Log-normal Distribution 

The PDF and CDF of the log-normal distribution with shape parameter ( ), scale parameter (  ) and 

location parameter   ( ) are as depicted below 
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Where: x 0  

Parameter Estimation: 

Likelihood function 
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The log-likelihood function is
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Differentiating the log-likelihood function and equating to zero will obtain the   maximum likelihood 

estimating equations.   
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Maximum likelihood estimate for   by replacing eq.1.26and eq.1.28in the last equation, eq.1.39  to 

obtain an equation in 
,
eq.1.30.   
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Kolmogorov-Smirnov (K-S) test 

 The K-S Test statistic is defined as: 
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where ix  is sorted from smallest to largest, F the theoretical cumulative distribution and N is the 

number of sample size.The best fit distribution is selected based on the test statistic, D , where the 

distribution that gives the smallest value of  D  is known as the best fit distribution. 

 

 

Evaluating the dependency 

The dependency can be evaluated using Kendall’s tau ( ) or Kendall’s tau coefficient as below: 
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Where ),( 11 yx  and ),( 22 yx  are taken as concordant or dependent when: 

)( 21 xx  )( 21 yy  >0 

and discordant or independent when: 

)( 21 xx  )( 21 yy  <0 

Finding the Parameters. 

After getting the value of  , the value of   can be obtained using the formula below.Kendall’s tau 

for t copula as written below: 
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In dependent t-test for paired samples, in which two samples are matched or paired, the degree of 

freedom used is n-1 
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where (.)1

vt  denotes the inverse function of the CDF (.)vt with v  as the degree of freedom , and   is 

between )(1 utv


 and )(1 vtv


and controls the strength of the tails. x and y are the dependent variables.   

Simulation of data 

i. Generate multivariate t-distributed random numbers which can be between   to 

  
ii. Transform the multivariate data to uniform data using marginals of univariate t 

distribution. 

iii. Find t-copula values using the uniform data, correlation and degrees of freedom 

 

Comparing The Observed Data And Simulated Data 

Afterward, the copula is compared by using Kolmogorov-Smirnov goodness of fit test at 5% 

significance level. If P-value is greater than 0.05 significance level, conclusion can be made that the 

two distributions are not significantly different at 5% significance level and vice versa. 

 

1.5 RESULT AND DISCUSSION 

 Finding the Marginal Distribution Fx(x) and Fy(y) 

Table 4.1: Values of Parameters and Test Statistics  

 Malacca (x) Tangkak (y) 

 
Parameters 

Test 

Statistics 
Rank Parameters 

Test 

Statistics 
Rank 

Lognormal 

96.707

1412.7

20143.0













 0.14009 1 

1.1222

4373.6

4.0













 0.1125 3 

Gamma 

5.1273

529.97

415.7













 0.14495 2 

4.1398

32.154

2383.3













 0.10967 2 

Weibull 

5.1527

59.526

8411.1













 0.1454 3 

1450

71.501

6896.1













 0.09936 1 

 

i) Kendall’s tau,   

Table 4.2: The Kendall’s tau Correlation between x = Station in Malacca and y=Station in 

Tangkak in 33 years 

Year Kendall’s tau, τ  

1975 -0.0606 

1976 0.5152 

1977 0.3333 



 

 

 

 

 

 

 

 

 

 

 

 

 

ii)       Find values of theta, θ 

The Kendall’s coefficient for the student t copula 

distribution is shown below, 

)arcsin(
2




 
                                                      (1.35) 

theta,  values, make the   To find the 

as the subject  

 

 

 

Then substitute the value of Kendall’s tau in order to 

find value of   for every year.  The range of   

values are shown to be from -1 to1. 

 

 

 

Table 4.3: Values of θ in 33 Years Periods for 

Student t  

Copula 

 

1978 0.3698 

1979 0.3333 

1980 0.1212 

1981 0.5758 

1982 0.3636 

1983 0.4848 

1984 0.5152 

1985 0.5152 

1986 0.4242 

1987 0.2901 

1988 0.5152 

1989 0.6364 

1990 0.5455 

1991 0.4545 

1992 0.4848 

1993 0.1818 

1994 0.4545 

1995 0.3206 

1996 0.5758 

1997 0.303 

1998 0.5152 

1999 0.3333 

2000 0.6644 

2001 0.3636 

2002 0.4848 

2003 0.2424 

2004 0.303 

2005 0.5649 

2006 0.7273 

2007 0.1985 

Year Θ 









 




2
sin



1975 -0.09505 

1976 0.723787 

1977 0.499955 

1978 0.54876 

1979 0.499955 

1980 0.189233 

1981 0.786094 

1982 0.540593 

1983 0.690024 

1984 0.723787 

1985 0.723787 

1986 0.618107 

1987 0.44008 

1988 0.723787 

1989 0.841284 

1990 0.755796 

1991 0.654807 

1992 0.690024 

1993 0.281705 

1994 0.654807 

1995 0.482579 

1996 0.786094 

1997 0.458184 

1998 0.723787 

1999 0.499955 

2000 0.86424 

2001 0.540593 

2002 0.690024 

2003 0.371627 

2004 0.458184 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2005 0.775397 

2006 0.90965 

2007 0.306775 



iii)  Find Degree of Freedom, v 

In dependent t-test for paired samples, in  which  two samples are matched or paired, the degree of 

freedom used is n-1. Since there are 12 samples for every year, thus, the degree of freedom is 11. 

 

 

 

iv)       Find Real Values of C(u,v) 
By substituting the real values of u, v, θ and degree of freedom  for every year into Eq.1.34, the values 

of copula will be obtained.   

 dy
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The values of copula must be in range between 0 and 1.  

Table 4.4: The Real Values of Student t Copula for 33 Years Period 

i Year Ci(u,v) 

1 1975 0.7004 

2 1976 0.4643 

3 1977 0.0182 

4 1978 0.3969 

5 1979 0.4772 

6 1980 0.077 

7 1981 0.2471 

8 1982 0.616 

9 1983 0.9955 

10 1984 0.8352 

11 1985 0.0211 

12 1986 0.6862 

13 1987 0.7622 

14 1988 0.1247 

15 1989 0.6683 

16 1990 0.2646 

17 1991 0.4275 

18 1992 0.1051 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation experiment 

The procedure is divided into two parts: Part 1 – finding the theoretical copula values. Part 2 – 

comparing the analysis of empirical copula and theoretical copula. 

 

i) Generate 100 simulated data for the multivariate-t distributed. 

 100 random numbers are generated. The degree of freedom is 11 using the formula of  n-1. 

The correlation coefficients is calculated using the Kendall’s tau of original data. The Kendall’s 

tau between distribution in Malacca and Tangkak is calculated using eq. (1.32) which gives the 

value 0.405. The PDF for multivariate-t distribution is given by  
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where v is degree of freedom, d is dimensional random vector and   is the gamma function. 

 

ii) Transform generated multivariate-t data to uniform data using   marginals of univariate t 

distribution 

19 1993 0.823 

20 1994 0.3194 

21 1995 0.706 

22 1996 0.0981 

23 1997 0.8425 

24 1998 0.3885 

25 1999 0.3352 

26 2000 0.5204 

27 2001 0.6864 

28 2002 0.1888 

29 2003 0.5138 

30 2004 0.0017 

31 2005 0.4667 

32 2006 0.0099 

33 2007 0.0054 



 

The PDF for univariate student’s t distribution is given by 
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where  defines a gamma function and v is degrees of freedom. 

The Kendall’s tau between distribution in Malacca and Tangkak is calculated using eq. (1.32) 

gives the value of  0.405. Then, substitute the value of Kendall’s tau into eq. (1.33) to get the value of 

θ such as below:   

 







 




2
sin  









 405.0

2
sin


  

 594121.0  

iii)  Eq (1.34) belowis used to calculate  t copula . The range of these copula values must be in 

between 0 and 1. 
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Comparing The Analysis Of Empirical Copula And Theoretical Copula. 

In this case, use Kolmogorov-Smirnov goodness of fit test to compare the distributions of the 

empirical and theoretical copula.  The P-value is found to be greater than 0.05 significance level for 

this test, therefore the conclusion that the two distributions are not significantly different at 5% 

significance level can be made. For addition, 1000 and 5000 random numbers are generated to test the 

P-value. See table below: 

 

Table 4.6: Goodness of fit test of theoretical and empirical copulas for the uniformised observed 

and generated data 

 

 Kolmogorov-Smirnov 

Number of 

simulated data 
100 1000 5000 

P-value 0.9278 0.8524 0.8214 

 

Summary 



Two sets of data (two stations) were tested using Kolmogorov-Smirnov fit test to find the best 

fit marginal distributions. Lognormal provided the best fitted for station in Malacca and weibull was 

the best fitted for station in Tangkak. The parameters u,v,  and degree of freedom were calculated  in 

modelling the bivariate distribution. All calculated parameter values are within the acceptable range. 

Then, the bivariate joint distribution of rainfall data for student-t copula is computed. The simulation 

process of student-t copula has been carried out by using 100, 1000 and 5000 numbers of simulated 

data. All these simulations process give good results which their P-values are greater than 0.05 

significance level.Therefore, every simulation distribution is not significantly different with the 

distribution of observed data. 

 

1.6  CONCLUSION  

Based on the Kolmogorov-Smirnov goodness-of-fit test, lognormal provided the best fitted 

distribution for station in Malacca and weibull was the best for station in Tangkak 

The distributions of observed data and simulated data were not significantly different at 5% 

significance level Kolmogorov-Smirnov goodness of fit test 

Results showed that all calculated  parameter  values were within the acceptable range and 

could be applied to compute the bivariate joint distribution of rainfall data for the student-t copula. 
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